Spatial Distributions of Cloud Occurrences in Terms of Volume Fraction as Inferred from CloudSat and CALIPSO
Abstract
:1. Introduction
2. Data and Methodology
2.1. CloudSat and CALIPSO
2.2. Cloud Area Fraction and Volume Fraction
3. Results
3.1. Spatial Distribution of Cloud Volume Fraction
3.2. Contribution of Cloud Types in Different Domains
4. Conclusions
- (1)
- The overall volume fraction of total clouds throughout the troposphere is 15.9%, compared to the global area cloud fraction of 73.6%. As for the volume fraction in each atmospheric column, the maximum arises at middle latitudes over the Southern Ocean (38.2%), and the minimum arises over North Africa (1.1%). The elementary ones, i.e., the volume fraction at each cube (the volume unit concerned), were compared throughout the troposphere. It was found that a common peak arises consistently around 1 km regardless of the geographic positions, and there is another peak occurring at 13 km and 8 km in low-latitude and mid-latitude regions, respectively. The 1 km peak mainly comprised Sc and Cu, while the other peaks are mainly contributed by Ci and As. The averaged vertical pattern of volume fraction for any single cloud type tends to be unimodal. The dominant cloud types are nearly region independent. From high-level to low-level, they are Ci, As, Ac, Sc, and Cu in low latitudes and Ci, As, Ns, and Sc in other latitudes.
- (2)
- Low-level clouds are predominant below 3 km, mainly concentrated around 1 km, and the fractions show evident differences among cloud types (Sc > Cu > St). Sc has a maximum of 48.8% at 1 km above the Greenland Sea, which is the highest among all cloud types globally. At high latitudes, Sc is the dominant type, accounting for at least 75%, while at low and middle latitudes, it is Cu or Sc, depending on the specific height.
- (3)
- Middle-level clouds mainly occur below 15 km, in which As has higher volume fractions and is at higher altitudes compared with Ac. Both As and Ac have similar average fractions below 3 km. Between 3 and 6 km, As is the dominant middle-level cloud in high latitudes, while Ac is the dominant middle-level cloud in low latitudes, and their proportions are roughly equal in middle latitudes.
- (4)
- The only high-level cloud type Ci is mostly in the range of 6–18 km and frequently over the equator and the middle latitudes. Near the equator, Ci is concentrated in the warm pool, and the fraction varies notably with height. In contrast, the fraction is nearly invariable vertically for Ci in the middle latitudes.
- (5)
- Vertically extending clouds emerge throughout the troposphere. The fraction of Ns is much larger than that of Dc. There is a notable vertical variation in the fraction of Ns below 9 km, while that of Dc varies weakly in the entire vertical range. Ns dominates in middle–high latitudes, and in low latitudes, the proportions of Dc and Ns are roughly equal.
- (6)
- From the perspective of cloud volume fraction, the occurrences of high-level, middle-level, low-level, and vertically extending clouds are not completely confined to specific height ranges defined by traditional ground-based observations of low-, middle-, and high-level clouds.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matus, A.V.; L’Ecuyer, T.S. The role of cloud phase in Earth’s radiation budget. J. Geophys. Res. Atmos. 2017, 122, 2559–2578. [Google Scholar] [CrossRef]
- Zhou, C.; Zelinka, M.D.; Klein, S.A. Impact of decadal cloud variations on the Earth’s energy budget. Nat. Geosci. 2016, 9, 871–874. [Google Scholar] [CrossRef]
- Norris, J.R.; Allen, R.J.; Evan, A.T.; Zelinka, M.D.; O’Dell, C.W.; Klein, S.A. Evidence for climate change in the satellite cloud record. Nature 2016, 536, 72–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D. Cloud-Radiative Forcing and Climate—Results from the Earth Radiation Budget Experiment. Science 1989, 243, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartmann, D.L.; Short, D.A. On the Use of Earth Radiation Budget Statistics for Studies of Clouds and Climate. J. Atmos. Sci. 1980, 37, 1233–1250. [Google Scholar] [CrossRef]
- Slingo, A.; Slingo, J.M. The Response of a General-Circulation Model to Cloud Longwave Radiative Forcing. 1. Introduction and Initial Experiments. Q. J. R. Meteorol. Soc. 1988, 114, 1027–1062. [Google Scholar] [CrossRef]
- Webb, M.J.; Senior, C.A.; Sexton, D.M.H.; Ingram, W.J.; Williams, K.D.; Ringer, M.A.; McAvaney, B.J.; Colman, R.; Soden, B.J.; Gudgel, R.; et al. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim. Dyn. 2006, 27, 17–38. [Google Scholar] [CrossRef]
- de Szoeke, S.P.; Fairall, C.W.; Pezoa, S. Ship Observations of the Tropical Pacific Ocean along the Coast of South America. J. Clim. 2009, 22, 458–464. [Google Scholar] [CrossRef] [Green Version]
- Eastman, R.; Warren, S.G. A 39-Yr Survey of Cloud Changes from Land Stations Worldwide 1971–2009: Long-Term Trends, Relation to Aerosols, and Expansion of the Tropical Belt. J. Clim. 2013, 26, 1286–1303. [Google Scholar] [CrossRef]
- Eastman, R.; Warren, S.G. Diurnal Cycles of Cumulus, Cumulonimbus, Stratus, Stratocumulus, and Fog from Surface Observations over Land and Ocean. J. Clim. 2014, 27, 2386–2404. [Google Scholar] [CrossRef] [Green Version]
- Eastman, R.; Warren, S.G.; Hahn, C.J. Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 1954–2008. J. Clim. 2011, 24, 5914–5934. [Google Scholar] [CrossRef]
- Zhang, D.M.; Luo, T.; Liu, D.; Wang, Z. Spatial scales of altocumulus clouds observed with collocated CALIPSO and CloudSat measurements. Atmos. Res. 2014, 149, 58–69. [Google Scholar] [CrossRef]
- Hang, Y.; L’Ecuyer, T.S.; Henderson, D.S.; Matus, A.V.; Wang, Z. Reassessing the Effect of Cloud Type on Earth’s Energy Balance in the Age of Active Spaceborne Observations. Part II: Atmospheric Heating. J. Clim. 2019, 32, 6219–6236. [Google Scholar] [CrossRef]
- L’Ecuyer, T.S.; Hang, Y.; Matus, A.V.; Wang, Z. Reassessing the Effect of Cloud Type on Earth’s Energy Balance in the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface. J. Clim. 2019, 32, 6197–6217. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.R.; Ecklund, W.L.; Gage, K.S. Classification of Precipitating Clouds in the Tropics Using 915-Mhz Wind Profilers. J. Atmos. Ocean. Technol. 1995, 12, 996–1012. [Google Scholar] [CrossRef]
- Luo, G.; Davis, P.A.; Stowe, L.L.; Mcclain, E.P. A Pixel-Scale Algorithm of Cloud Type, Layer, and Amount for Avhrr Data. 1. Nighttime. J. Atmos. Ocean. Technol. 1995, 12, 1013–1037. [Google Scholar] [CrossRef]
- Uddstrom, M.J.; Gray, W.R. Satellite cloud classification and rain-rate estimation using multispectral radiances and measures of spatial texture. J. Appl. Meteorol. 1996, 35, 839–858. [Google Scholar] [CrossRef]
- Barry, R.G. International Cloud Atlas, Volume I: Manual on the Observation of Clouds and Other Meteors. Arct. Alp. Res. 1977, 9, 323. [Google Scholar] [CrossRef]
- Duchon, C.E.; O’Malley, M.S. Estimating cloud type from pyranometer observations. J. Appl. Meteorol. 1999, 38, 132–141. [Google Scholar] [CrossRef]
- Stephens, G.L.; Kummerow, C.D. The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci. 2007, 64, 3742–3765. [Google Scholar] [CrossRef]
- Rabindra, P.; Sengupta, S.K.; Welch, R.M. An Interactive Hybrid Expert System for Polar Cloud and Surface Classification. Environmetrics 1992, 3, 121–147. [Google Scholar] [CrossRef]
- Tovinkere, V.R.; Penaloza, M.; Logar, A.; Lee, J.; Weger, R.C.; Berendes, T.A.; Welch, R.M. An Intercomparison of Artificial-Intelligence Approaches for Polar Scene Identification. J. Geophys. Res. Atmos. 1993, 98, 5001–5016. [Google Scholar] [CrossRef]
- Bankert, R.L. Cloud Pattern Identification as Part of an Automated Image Analysis. In Proceedings of the 7th American Meteorological Society Conference on Satellite Meteorology and Oceanography, Monterey, CA, USA, 6–10 June 1994; pp. 441–443. [Google Scholar]
- Liu, H.L.; Zhu, W.Q.; Yi, S.H.; Li, W.L.; Chen, L.X.; Bai, L.J. Climatic analysis of the cloud over China. Acta Meteorol. Sin. 2003, 61, 466–473+517–518. [Google Scholar]
- Yonghang, C.; Yan, C.; Jianping, H.; Zhihai, Z.; Jing, S.U.; He, H. Distribution and Variation Trend of Cloud over Northwestern China. Plateau Meteorol. 2007, 26, 741–748. [Google Scholar]
- Rossow, W.B.; Schiffer, R.A. Isccp Cloud Data Products. Bull. Am. Meteorol. Soc. 1991, 72, 2–20. [Google Scholar] [CrossRef]
- Rossow, W.B.; Knapp, K.R.; Young, A.H. International Satellite Cloud Climatology Project: Extending the Record. J. Clim. 2022, 35, 141–158. [Google Scholar] [CrossRef]
- Schiffer, R.A.; Rossow, W.B. The International-Satellite-Cloud-Climatology-Project (Isccp)—The 1st Project of the World-Climate-Research-Programme. Bull. Am. Meteorol. Soc. 1983, 64, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.B.; Schiffer, R.A. Advances in understanding clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2287. [Google Scholar] [CrossRef]
- Ding, S.G.; Shi, G.Y.; Zhao, C.S. Analyzing global trends of different cloud types and their potential impacts on climate by using the ISCCP D2 dataset. Chin. Sci. Bull. 2004, 49, 1301–1306. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y.; Feng, S. Geographical patterns of the cloud amount derived from the ISCCP and their correlation with the NCEP reanalysis datasets. Acta Meteorol. Sin. 2010, 68, 689–704. [Google Scholar]
- Mace, G.G.; Wrenn, F.J. Evaluation of the Hydrometeor Layers in the East and West Pacific within ISCCP Cloud-Top Pressure-Optical Depth Bins Using Merged CloudSat and CALIPSO Data. J. Clim. 2013, 26, 9429–9444. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.; Devasthale, A.; Ekman, A.M.L.; Tjernström, M.; L’Ecuyer, T. How Does Cloud Overlap Affect the Radiative Heating in the Tropical Upper Troposphere/Lower Stratosphere? Geophys. Res. Lett. 2019, 46, 5623–5631. [Google Scholar] [CrossRef] [Green Version]
- Nam, C.C.W.; Quaas, J. Geographically versus dynamically defined boundary layer cloud regimes and their use to evaluate general circulation model cloud parameterizations. Geophys. Res. Lett. 2013, 40, 4951–4956. [Google Scholar] [CrossRef] [Green Version]
- Yuan, T.; Oreopoulos, L. On the global character of overlap between low and high clouds. Geophys. Res. Lett. 2013, 40, 5320–5326. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.H.; Liu, Q.; Lao, P. Characteristics of Oceanic Warm Cloud Layers within Multilevel Cloud Systems Derived by Satellite Measurements. Atmosphere 2019, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Huang, J.; Stamnes, K.; Wang, T.; Lv, Q.; Jin, H. A global survey of cloud overlap based on CALIPSO and CloudSat measurements. Atmos. Chem. Phys. 2015, 15, 519–536. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Jiang, J.H.; Wang, Z.; Su, H.; Deng, M.; Massie, S. Climatology of cloud water content associated with different cloud types observed by A-Train satellites. J. Geophys. Res. Atmos. 2015, 120, 4196–4212. [Google Scholar] [CrossRef]
- Kotarba, A.Z. Vertical profile of cloud amount over Poland: Variability and uncertainty based on CloudSat-CALIPSO observations. Int. J. Clim. 2018, 38, 4142–4154. [Google Scholar] [CrossRef]
- Stein, T.H.M.; Holloway, C.E.; Tobin, I.; Bony, S. Observed Relationships between Cloud Vertical Structure and Convective Aggregation over Tropical Ocean. J. Clim. 2017, 30, 2187–2207. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, Y.; Lu, J. Cloud vertical structure, precipitation, and cloud radiative effects over Tibetan Plateau and its neighboring regions. J. Geophys. Res. Atmos. 2016, 121, 5864–5877. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Q.; Li, Z.Q.; Chen, H.B.; Yoo, H.; Cribb, M. Cloud vertical distribution from radiosonde, remote sensing, and model simulations. Clim. Dyn. 2014, 43, 1129–1140. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Yu, R. Vertical Structures and Physical Properties of the Cold-Season Stratus Clouds Downstream of the Tibetan Plateau: Differences between Daytime and Nighttime. J. Clim. 2014, 27, 6857–6876. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Lv, Q.; Jian, B.; Zhang, M.; Zhao, C.; Fu, Q.; Kawamoto, K.; Zhang, H. The impact of atmospheric stability and wind shear on vertical cloud overlap over the Tibetan Plateau. Atmos. Chem. Phys. 2018, 18, 7329–7343. [Google Scholar] [CrossRef] [Green Version]
- Oreopoulos, L.; Cho, N.; Lee, D. New Insights about Cloud Vertical Structure from CloudSat and CALIPSO observations. J. Geophys. Res. Atmos. 2017, 122, 9280–9300. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, T.; Dey, S.; Ganguly, D.; Di Girolamo, L.; Hong, Y.L. Comparative assessment of a near-global view of individual cloud types from space-borne active and passive sensors and ground-based observations. Int. J. Clim. 2022, 42, 8073–8088. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, H.; Xiao, H.; Liang, F.; Cheng, W.; Zhou, L.; Shu, W.; Sun, J. The spatio-temporal distribution characteristics of cloud types and phases in the Arctic based on CloudSat and CALIPSO cloud classification products. Adv. Atmos. Sci. 2023. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Tanelli, S.; Im, E.; Durden, S.; Rokey, M.; Reinke, D.; Partain, P.; Mace, G.G.; Austin, R.; et al. CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.E.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The cloudsat mission and the a-train—A new dimension of space-based observations of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Marchand, R.; Mace, G.G.; Ackerman, T.; Stephens, G. Hydrometeor detection using Cloudsat—An earth-orbiting 94-GHz cloud radar. J. Atmos. Ocean. Technol. 2008, 25, 519–533. [Google Scholar] [CrossRef]
- Cai, H.K.; Yang, Y.; Chen, Q.L. Distribution Characteristics of Cloud Types and Cloud Phases over China and Their Relationship with Cloud Temperature. Remote Sens. 2022, 14, 5601. [Google Scholar] [CrossRef]
- Stephens, G.; Winker, D.; Pelon, J.; Trepte, C.; Vane, D.; Yuhas, C.; L’Ecuyer, T.; Lebsock, M. CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System. Bull. Am. Meteorol. Soc. 2018, 99, 569–581. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.Y.; Liu, Q.; Zhou, L.L. Underestimation of Oceanic Warm Cloud Occurrences by the Cloud Profiling Radar Aboard CloudSat. J. Meteorol. Res. 2015, 29, 576–593. [Google Scholar] [CrossRef]
- Wang, Z. CloudSat 2B-CLDCLASS-LIDAR Product Process Description and Interface Control Document. Available online: https://www.cloudsat.cira.colostate.edu/cloudsat-static/info/dl/2b-cldclass-lidar/2B-CLDCLASS-LIDAR_PDICD.P1_R05.rev0_.pdf (accessed on 29 June 2023).
- Kishore, P.; Namboothiri, S.P.; Igarashi, K.; Jiang, J.H.; Ao, C.O.; Romans, L.J. Climatological characteristics of the tropopause parameters derived from GPS/CHAMP and GPS/SAC-C measurements. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Xu, T.L.; Liu, J. Characteristics of the seasonal variation of the global tropopause revealed by COSMIC/GPS data. Adv. Space Res. 2014, 54, 2274–2285. [Google Scholar] [CrossRef]
All | St | Sc | Cu | As | Ac | Ci | Ns | Dc | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Full | Globe | Cloud fraction (%) | 30.4 | 1.0 | 16.3 | 5.7 | 10.0 | 4.2 | 9.5 | 7.0 | 0.8 |
Peak height (km) | 1.20 | 0.96 | 1.20 | 0.96 | 6.72 | 3.36 | 12.72 | 3.12 | 9.36 | ||
Low latitude | Cloud fraction (%) | 21.5 | 0.5 | 8.9 | 11.6 | 5.1 | 3.9 | 13.1 | 1.6 | 1.5 | |
Peak height (km) | 0.96 | 1.20 | 1.44 | 0.72 | 8.64 | 5.28 | 13.44 | 3.12 | 4.56 | ||
Middle latitude | Cloud fraction (%) | 37.2 | 1.0 | 22.6 | 4.3 | 13.0 | 4.7 | 9.8 | 8.0 | 0.4 | |
Peak height (km) | 1.20 | 0.96 | 1.20 | 1.20 | 6.96 | 3.36 | 10.56 | 2.88 | 4.80 | ||
High latitude | Cloud fraction (%) | 32.7 | 1.4 | 18.0 | 1.3 | 15.1 | 4.3 | 6.3 | 11.7 | 0.0 | |
Peak height (km) | 1.20 | 0.96 | 1.20 | 1.20 | 6.00 | 3.12 | 8.88 | 3.36 | 4.08 | ||
Land | Globe | Cloud fraction (%) | 20.9 | 0.2 | 7.5 | 3.3 | 11.0 | 4.1 | 9.1 | 6.5 | 0.9 |
Peak height (km) | 3.12 | 1.20 | 2.16 | 1.92 | 6.72 | 3.60 | 14.16 | 3.84 | 9.36 | ||
Low latitude | Cloud fraction (%) | 16.9 | 0.0 | 3.5 | 7.2 | 5.4 | 6.2 | 12.7 | 1.7 | 1.7 | |
Peak height (km) | 2.40 | 1.20 | 2.40 | 1.92 | 8.88 | 5.28 | 13.44 | 5.76 | 5.28 | ||
Middle latitude | Cloud fraction (%) | 21.3 | 0.2 | 8.8 | 3.0 | 12.7 | 4.8 | 9.2 | 6.3 | 0.4 | |
Peak height (km) | 2.64 | 1.20 | 1.92 | 1.92 | 7.20 | 3.84 | 10.32 | 3.60 | 6.00 | ||
High latitude | Cloud fraction (%) | 26.6 | 0.4 | 9.4 | 1.1 | 15.1 | 2.7 | 5.6 | 9.7 | 0.0 | |
Peak height (km) | 4.32 | 1.20 | 1.92 | 1.92 | 6.24 | 3.36 | 9.12 | 3.84 | 4.08 | ||
Ocean | Globe | Cloud fraction (%) | 38.2 | 1.7 | 21.0 | 7.7 | 9.6 | 4.2 | 9.8 | 7.4 | 0.7 |
Peak height (km) | 1.20 | 0.96 | 1.20 | 0.96 | 6.48 | 3.36 | 12.72 | 2.40 | 9.36 | ||
Low latitude | Cloud fraction (%) | 27.2 | 0.6 | 11.2 | 15.2 | 5.0 | 3.1 | 13.3 | 1.7 | 1.4 | |
Peak height (km) | 0.96 | 0.96 | 1.44 | 0.72 | 8.40 | 5.28 | 13.44 | 2.64 | 4.08 | ||
Middle latitude | Cloud fraction (%) | 44.7 | 1.3 | 27.6 | 5.3 | 13.2 | 4.8 | 10.0 | 8.6 | 0.4 | |
Peak height (km) | 1.20 | 0.96 | 1.20 | 0.96 | 6.72 | 3.36 | 10.56 | 2.40 | 3.84 | ||
High latitude | Cloud fraction (%) | 47.4 | 2.2 | 26.3 | 1.6 | 15.5 | 5.6 | 6.8 | 14.1 | 0.0 | |
Peak height (km) | 1.20 | 0.96 | 0.96 | 0.96 | 5.76 | 3.12 | 8.64 | 2.40 | 3.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Liu, Q.; Lao, P.; Li, M.; Li, Y.; Zheng, Q.; Peng, Y. Spatial Distributions of Cloud Occurrences in Terms of Volume Fraction as Inferred from CloudSat and CALIPSO. Remote Sens. 2023, 15, 3978. https://doi.org/10.3390/rs15163978
Ding Y, Liu Q, Lao P, Li M, Li Y, Zheng Q, Peng Y. Spatial Distributions of Cloud Occurrences in Terms of Volume Fraction as Inferred from CloudSat and CALIPSO. Remote Sensing. 2023; 15(16):3978. https://doi.org/10.3390/rs15163978
Chicago/Turabian StyleDing, Yuhao, Qi Liu, Ping Lao, Meng Li, Yuan Li, Qun Zheng, and Yanghui Peng. 2023. "Spatial Distributions of Cloud Occurrences in Terms of Volume Fraction as Inferred from CloudSat and CALIPSO" Remote Sensing 15, no. 16: 3978. https://doi.org/10.3390/rs15163978
APA StyleDing, Y., Liu, Q., Lao, P., Li, M., Li, Y., Zheng, Q., & Peng, Y. (2023). Spatial Distributions of Cloud Occurrences in Terms of Volume Fraction as Inferred from CloudSat and CALIPSO. Remote Sensing, 15(16), 3978. https://doi.org/10.3390/rs15163978