The Stability Analysis of Mt. Gongga Glaciers Affected by the 2022 Luding MS 6.8 Earthquake Based on LuTan-1 and Sentinel-1 Data
Abstract
:1. Introduction
2. Geological Background of the Study Area
3. Data and Methods
3.1. Data
3.2. Method
3.2.1. Pixel Offset Tracking
3.2.2. POT-SBAS
3.2.3. POT-Stacking
4. Results
4.1. Coseismic Displacements Derived from the LT-1 SAR
4.2. Dynamic Feature Monitoring of Glacier Movement Based on Sentinel-1
4.2.1. Preseismic
4.2.2. Coseismic
4.2.3. Postseismic
5. Discussion
5.1. Surface Velocity Changes before and after the Earthquake
5.2. Comparison of Sentinel-1 and LT-1 in Coseismic Surface Monitoring and Analysis
5.3. Glacier Stability and Postseismic Risks
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Z.; Xu, C.; Huang, Y.; He, X.; Shao, X.; Chen, Z.; Xie, C.; Li, T.; Xu, X. Analysis of spatial distribution of landslides triggered by the Ms 6.8 Luding earthquake in China on September 5, 2022. Geoenviron. Disasters 2023, 10, 3. [Google Scholar] [CrossRef]
- Zhao, F.; Zhu, M.; Li, J.; Xu, Y.; Dan, C.; Xiao, Y.; Qiu, R.; Dong, J. Characteristics and Spatial Distribution of Highway Damage caused by the Ms 6.8 Luding Earthquake. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, G.; Wang, X.; Fu, Y.; Liu, Q.; Yu, B.; Zhang, R.; Li, Z. Semi-Automated Mapping of Complex-Terrain Mountain Glaciers by Integrating L-Band SAR Amplitude and Interferometric Coherence. Remote Sens. 2022, 14, 1993. [Google Scholar] [CrossRef]
- An, Y.; Wang, D.; Ma, Q.; Xu, Y.; Li, Y.; Zhang, Y.; Liu, Z.; Huang, C.; Su, J.; Li, J.; et al. Preliminary report of the September 5, 2022 MS 6.8 Luding earthquake, Sichuan, China. Earthq. Res. Adv. 2023, 3, 100184. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, D.; Shan, X.; Gao, Z.; Huang, X.; Gong, W. Coseismic Slip Model of the 2022 Mw 6.7 Luding (Tibet) Earthquake: Pre- and Post-Earthquake Interactions With Surrounding Major Faults. Geophys. Res. Lett. 2022, 49, e2022GL102043. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, Q.; Liu, G.; Zhang, B.; Zhang, R.; Cai, J.; Wang, X.; Xiang, W. Seasonal ice dynamics in the lower ablation zone of Dagongba Glacier, southeastern Tibetan Plateau, from multitemporal UAV images. J. Glaciol. 2021, 68, 636–650. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Li, Y.; Li, Y.; Sun, X.; Liu, D.; Ding, R.; Yang, P. The Surface Process and Seismogenic Structure of the 2021 Ms 6.1 Biru, Central Tibet Earthquake. Seismol. Res. Lett. 2022, 93, 1976–1991. [Google Scholar] [CrossRef]
- Ma, J.; Yang, J.; Zhu, Z.; Cao, H.; Li, S.; Du, X. Decision-making fusion of InSAR technology and offset tracking to study the deformation of large gradients in mining areas-Xuemiaotan mine as an example. Front. Earth Sci. 2022, 10, 962362. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, L.; Deng, K.; Wang, M.; Xu, Y.; Zheng, M.; Luo, Q. An Adaptive Offset-Tracking Method Based on Deformation Gradients and Image Noises for Mining Deformation Monitoring. Remote Sens. 2021, 13, 2958. [Google Scholar] [CrossRef]
- Xiao, R.; Jiang, M.; Li, Z.; He, X. New insights into the 2020 Sardoba dam failure in Uzbekistan from Earth observation. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102705. [Google Scholar] [CrossRef]
- Yang, Z.; Pang, B.; Dong, W.; Li, D. Spatial Pattern and Intensity Mapping of Coseismic Landslides Triggered by the 2022 Luding Earthquake in China. Remote Sens. 2023, 15, 1323. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, Z.; Sun, P. Rapid Glacier Shrinkage in the Gongga Mountains in the Last 27 Years. Remote Sens. 2022, 14, 5397. [Google Scholar] [CrossRef]
- Huang, Y.; Xie, C.; Li, T.; Xu, C.; He, X.; Shao, X.; Xu, X.; Zhan, T.; Chen, Z. An open-accessed inventory of landslides triggered by the MS 6.8 Luding earthquake, China on September 5, 2022. Earthq. Res. Adv. 2023, 3, 100181. [Google Scholar] [CrossRef]
- Xu, S.; Fu, P.; Quincey, D.; Feng, M.; Marsh, S.; Liu, Q. UAV-based geomorphological evolution of the Terminus Area of the Hailuogou Glacier, Southeastern Tibetan Plateau between 2017 and 2020. Geomorphology 2022, 411, 108293. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, L.; Liu, A.; Chen, S. Simulating the strong ground motion of the 2022 MS 6.8 Luding Earthquake, Sichuan, China. Earthq Sci. 2023, 36, 1–13. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, Q.; Westoby, M.; Nie, Y.; Pellicciotti, F.; Zhang, B.; Cai, J.; Liu, G.; Liao, H.; Lu, X. Intensified paraglacial slope failures due to accelerating downwasting of a temperate glacier in Mt. Gongga, southeastern Tibetan Plateau. Earth Surf. Dynam. 2022, 10, 23–42. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, B.; Zhao, B.; Zhong, Y.; Lu, X.; Zhou, J. Stability of the Hailuogou glacier during the “9.5” Luding Earthquake: A preliminary assessment based on multi-source observations. J. Mt. Sci. 2022, 19, 3037–3050. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2017, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Hu, J.; Li, Z.; Ma, Z.; Wu, L.; Jiang, W.; Feng, G.; Zhu, J. Complete three-dimensional coseismic displacements due to the 2021 Maduo earthquake in Qinghai Province, China from Sentinel-1 and ALOS-2 SAR images. Sci. China-Earth Sci. 2022, 52, 882–892. [Google Scholar] [CrossRef]
- Li, T.; Tang, X.; Zhou, X.; Zhang, X. LuTan-1 SAR Main Applications and Products. In Proceedings of the EUSAR 2022—14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022. [Google Scholar]
- Liu, K.; Wang, R.; Zhang, H.; Liu, D.; Ou, N.; Chen, Y.; Yue, H.; Yu, W.; Deng, Y.; Liang, D.; et al. LuTan-1: An Innovative L-band Spaceborne SAR Mission. In Proceedings of the EUSAR 2022—14th European Conference on Synthetic Aperture Radar, Leipzig, Germany, 25–27 July 2022. [Google Scholar]
- Lin, H.; Deng, Y.; Zhang, H.; Liu, D.; Liang, D.; Fang, T.; Wang, R. On the Processing of Dual-Channel Receiving Signals of the LuTan-1 SAR System. Remote Sens. 2022, 14, 515. [Google Scholar] [CrossRef]
- Luckman, A.; Murray, T.; Jiskoot, H.; Pritchard, H.; Strozzi, T. ERS SAR feature-tracking measurement of outlet glacier velocities on a regional scale in East Greenland. Ann. Glaciol. 2003, 36, 129–134. [Google Scholar] [CrossRef]
- Scambos, T.; Dutkiewicz, M.; Wilson, J.; Bindschadler, R. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ. 1992, 42, 177–186. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Wu, L.; Xu, B.; Hu, J.; Zhou, Y.; Miao, Z. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique. J. Hydrol. 2018, 559, 596–608. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Zhang, L.; Li, Z.; Yan, S. South Inylchek Glacier Surface Motion Extraction and Analysis based on Time-series Pixel Tracking Algorithm. Remote Sens. Technol. Appl. 2020, 35, 1273–1282. [Google Scholar] [CrossRef]
- Zhang, L.; Dai, K.; Deng, J.; Ge, D.; Liang, R.; Li, W.; Xu, Q. Identifying Potential Landslides by Stacking-InSAR in Southwestern China and Its Performance Comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, C.; Li, Z.; Jiang, M.; He, X. InSAR stacking with atmospheric correction for rapid geohazard detection: Applications to ground subsidence and landslides in China. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103082. [Google Scholar] [CrossRef]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S.; Avallone, A.; Bignami, C.; Bonano, M.; Calcaterra, S.; et al. Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophys. Res. Lett. 2017, 44, 6778–6787. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Tao, Q.; Liu, G.; Wang, L.; Wang, F. Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence. Remote Sens. 2021, 13, 4365. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Liang, K.; Li, H.; Jiang, W. Coseismic Displacement and Slip Distribution of the 21 May 2021 Mw 6.1 Earthquake in Yangbi, China Derived From InSAR Observations. Front. Environ Sci. 2022, 10, 857739. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Lu, H.; Yu, C.; Shan, Y.; Li, Z.; Dong, X.; Xu, Q. Analysis of Seismic Impact on Hailuogou Glacier after the 2022 Luding Ms 6.8 Earthquake, China, Using SAR Offset Tracking Technology. Remote Sens. 2023, 15, 1468. [Google Scholar] [CrossRef]
- Wang, X.; Fang, C.; Tang, X.; Dai, L.; Fan, X.; Xu, Q. Research on Emergency Evaluation of Landslides Induced by Luding Ms 6.8 Earthquake. Geomat. Inf. Sci. Wuhan Univ. 2022, 15, 25–35. [Google Scholar] [CrossRef]
- Xu, J.; Shao, Z.; Ma, H.; Zhang, L. Evolution of Coulomb stress and stress interaction among strong earthquakes along the Xianshuihe fault zone. Chin. J. Geophys. 2013, 56, 1146–1158. [Google Scholar] [CrossRef]
Sentinel-1A | LuTan-1 | |
---|---|---|
Polarization mode | VV | HH |
Orbit mode | Ascending | Descending |
Radar wavelength (cm) | 5.6 (C-band) | 23.8 (L-band) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, B.; Li, Y.; Duan, H. The Stability Analysis of Mt. Gongga Glaciers Affected by the 2022 Luding MS 6.8 Earthquake Based on LuTan-1 and Sentinel-1 Data. Remote Sens. 2023, 15, 3882. https://doi.org/10.3390/rs15153882
Li H, Li B, Li Y, Duan H. The Stability Analysis of Mt. Gongga Glaciers Affected by the 2022 Luding MS 6.8 Earthquake Based on LuTan-1 and Sentinel-1 Data. Remote Sensing. 2023; 15(15):3882. https://doi.org/10.3390/rs15153882
Chicago/Turabian StyleLi, Hao, Bingquan Li, Yongsheng Li, and Huizhi Duan. 2023. "The Stability Analysis of Mt. Gongga Glaciers Affected by the 2022 Luding MS 6.8 Earthquake Based on LuTan-1 and Sentinel-1 Data" Remote Sensing 15, no. 15: 3882. https://doi.org/10.3390/rs15153882
APA StyleLi, H., Li, B., Li, Y., & Duan, H. (2023). The Stability Analysis of Mt. Gongga Glaciers Affected by the 2022 Luding MS 6.8 Earthquake Based on LuTan-1 and Sentinel-1 Data. Remote Sensing, 15(15), 3882. https://doi.org/10.3390/rs15153882