A Systematic Approach for Inertial Sensor Calibration of Gravity Recovery Satellites and Its Application to Taiji-1 Mission
Abstract
:1. Introduction
2. Inertial Sensor of Taiji-1
2.1. Taiji-1 Satellite
2.2. Inertial Sensor
3. Principle of IS Calibration
3.1. Principle of Scale Factors and COM Offset Calibrations
3.2. Principle of IS Bias Calibration
4. Calibration Results
4.1. Swing Maneuver and Data Preprocessing
4.2. Results of Scale Factor Calibrations
4.3. Results of COM Calibration
4.4. Results of Bias Calibration
4.5. IS Performance Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reigber, C.; Lühr, H.; Schwintzer, P. CHAMP mission status. Adv. Space Res. 2002, 30, 129–134. [Google Scholar] [CrossRef]
- Davis, E.; Dunn, C.; Stanton, R.; Thomas, J. The GRACE Mission: Meeting the Technical Challenges. 1999. Available online: https://ntrs.nasa.gov/citations/20000052706 (accessed on 27 July 2023).
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flechtner, F.; Morton, P.; Watkins, M.; Webb, F. Status of the GRACE follow-on mission. In Proceedings of Gravity, Geoid and Height Systems: Proceedings of the IAG Symposium GGHS2012, Venice, Italy, 9–12 October 2012; Springer: Berlin/Heidelberg, Germany, 2014; pp. 117–121. [Google Scholar]
- Dahle, C.; Flechtner, F.; Gruber, C.; König, R.; Michalak, G.; Neumayer, K.H. The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission. Surv. Geophys. 2019, 40, 1481–1506. [Google Scholar]
- Drinkwater, M.R.; Floberghagen, R.; Haagmans, R.; Muzi, D.; Popescu, A.; Van den Ijssel, J. GOCE: ESA’s first Earth Explorer Core Mission. Acta Astronaut. 2003, 53, 217–232. [Google Scholar]
- Wu, Y.L.; Luo, Z.R.; Wang, J.Y.; Bai, M. China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna. Commun. Phys. 2021, 4, 34. [Google Scholar]
- Wu, L.M.; Xu, P.; Zhao, S.H.; Qiang, L.E.; Luo, Z.R.; Wu, Y.L. Global Gravity Field Model from Taiji-1 Observations. Microgravity Sci. Technol. 2022, 34, 77. [Google Scholar] [CrossRef]
- McNamara, P.; Vitale, S.; Danzmann, K. LISA Pathfinder: Mission summary and early results. Class. Quantum Gravity 2019, 36, 080301. [Google Scholar]
- Amaro-Seoane, P.; Audley, H.; Babak, S.; Binetruy, P.; Berti, E.; Bohé, A.; Caprini, C.; Colpi, M.; Cornish, N.; Danzmann, K.; et al. Laser Interferometer Space Antenna (LISA) for Gravitational Wave Astronomy: A joint mission between ESA and NASA. Class. Quantum Gravity 2017, 34, 044001. [Google Scholar]
- Hu, W.R.; Wu, Y.L. Taiji program in space for gravitational wave physics and nature of gravity. Natl. Sci. Rev. 2017, 4, 685–686. [Google Scholar] [CrossRef]
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 035010. [Google Scholar] [CrossRef] [Green Version]
- Rehm, C.; König, R.; Jahr, T.; Maier, A.; Neumayer, H.; Schwintzer, P. CHAMP accelerometer data processing: Orbit determination and gravity field recovery. J. Geod. 2000, 74, 8–18. [Google Scholar]
- Ries, J.C.; Tapley, B.D.; Bettadpur, S. Design, implementation, and performance of the GRACE inertial instrument. Adv. Space Res. 2001, 28, 1835–1841. [Google Scholar]
- Floberghagen, R.; Fehringer, M.; Gruber, C.; Muzi, D.; Rothacher, M.; Jäggi, A.; Schrama, E.; Beer, S.; Kruizinga, G.; Pail, R.; et al. The gravity field and steady-state ocean circulation explorer mission: Mission overview and geodetic results. Surv. Geophys. 2013, 34, 511–550. [Google Scholar]
- Luo, Z.R.; Wang, Y.; Wu, Y.L.; Hu, W.R.; Jin, G. The Taiji program: A concise overview. Prog. Theor. Exp. Phys. 2021, 2021, 05A108. [Google Scholar] [CrossRef]
- Luo, Z.R.; Guo, Z.K.; Jin, G.; Wu, Y.L.; Hu, W.R. A brief analysis to Taiji: Science and technology. Results Phys. 2020, 16, 102918. [Google Scholar] [CrossRef]
- Ruan, W.H.; Guo, Z.K.; Cai, R.G.; Zhang, Y.Z. Taiji program: Gravitational-wave sources. Int. J. Mod. Phys. A 2020, 35, 2050075. [Google Scholar] [CrossRef]
- Wang, Z.; Lei, J.G.; On behalf of Taiji Scientific Collaboration. Development and on orbit test of Taiji-1 inertial reference. Int. J. Mod. Phys. A 2021, 36, 2140008. [Google Scholar] [CrossRef]
- Wang, F.R. Study on Center of Mass Calibration and K-Band Ranging System Calibration of the GRACE Mission; The University of Texas at Austin: Austin, TX, USA, 2003. [Google Scholar]
- Van Helleputte, T.; Doornbos, E.; Visser, P. CHAMP and GRACE accelerometer calibration by GPS-based orbit determination. Adv. Space Res. 2009, 43, 1890–1896. [Google Scholar] [CrossRef]
- Armano, M.; Audley, H.; Auger, G.; Baird, J.T.; Bassan, M.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys. Rev. Lett. 2016, 116, 231101. [Google Scholar] [CrossRef] [Green Version]
- Baghi, Q.; Korsakova, N.; Slutsky, J.; Castelli, E.; Karnesis, N.; Bayle, J.B. Detection and characterization of instrumental transients in LISA Pathfinder and their projection to LISA. Phys. Rev. D 2022, 105, 042002. [Google Scholar]
- Huang, Z.Y.; Li, S.S.; Cai, L.; Fan, D.; Huang, L.Y. Estimation of the Center of Mass of GRACE-Type Gravity Satellites. Remote Sens. 2022, 14, 4030. [Google Scholar] [CrossRef]
- Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A.; et al. Calibrating the system dynamics of LISA Pathfinder. Phys. Rev. D 2018, 97, 122002. [Google Scholar] [CrossRef] [Green Version]
- Armano, M.; Audley, H.; Auger, G.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; et al. Bayesian statistics for the calibration of the LISA Pathfinder experiment. J. Phys. Conf. Ser. 2015, 610, 012027. [Google Scholar] [CrossRef]
- Bezděk, A. Calibration of accelerometers aboard GRACE satellites by comparison with POD-based nongravitational accelerations. J. Geodyn. 2010, 50, 410–423. [Google Scholar] [CrossRef] [Green Version]
- Klinger, B.; Mayer-Gürr, T. The role of accelerometer data calibration within GRACE gravity field recovery: Results from ITSG-Grace2016. Adv. Space Res. 2016, 58, 1597–1609. [Google Scholar] [CrossRef] [Green Version]
- Behzadpour, S.; Mayer-Gürr, T.; Krauss, S. GRACE Follow-On Accelerometer Data Recovery. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021297. [Google Scholar] [CrossRef]
- Cai, Z.M.; Deng, J.F.; On behalf of Taiji Scientific Collaboration. Satellite architecture and preliminary in-orbit experiment of Taiji-1. Int. J. Mod. Phys. A 2021, 36, 2140020. [Google Scholar] [CrossRef]
- Jin, H.B.; Xu, P.; On behalf of Taiji Scientific Collaboration. The pipeline of data processing for TAIJI-1 space mission in the TAIJI program for the detection of gravitational wave. Int. J. Mod. Phys. A 2021, 36, 2140025. [Google Scholar] [CrossRef]
- Wang, H.B.; Xiong, Y.Q.; Zhao, C.Y. New Calibration Method of Accelerometers in GRACE Satellites Based on Precise Solar Radiation Model. Chin. Astron. Astrophys. 2017, 41, 558–576. [Google Scholar]
- Christophe, B.; Boulanger, D.; Foulon, B.; Huynh, P.A.; Lebat, V.; Liorzou, F.; Perrot, E. A new generation of ultra-sensitive electrostatic accelerometers for GRACE follow-on and towards the next generation gravity missions. Acta Astronaut. 2015, 117, 1–7. [Google Scholar] [CrossRef]
- Flury, J.; Bettadpur, S.; Tapley, B.D. Precise accelerometry onboard the GRACE gravity field satellite mission. Adv. Space Res. 2008, 42, 1414–1423. [Google Scholar] [CrossRef]
Parameter | x-Axis () | y-Axis () | z-Axis () | Units |
---|---|---|---|---|
l | m | |||
J | kg· m2 | |||
D | m | |||
S | m2 |
Parameter | Nominal Value |
---|---|
Dynamic range | ∼ m/s2 |
Bandwidth | 10 mHz∼1 Hz |
Position noise | ≤1 nm/Hz1/2 |
Actuation noise | ≤ |
Readout noise | ≤ |
Acceleration noise | ≤ |
Compensation Acceleration Readouts | Scale Factors and Actuation Voltages |
---|---|
Scale Factor | Nominal Values | Calibrated Values | Calibrated Values |
---|---|---|---|
On-Ground | In-Orbit | ||
null | |||
null | |||
null | |||
null |
COM Offset | Calibrated Value (µm) | Error (µm) |
---|---|---|
Intrinsic Acceleration Bias | Calibrated Value (m/s2) | Error (m/s2) |
---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Xu, P.; Ye, Z.; Ye, D.; Qiang, L.-E.; Luo, Z.; Qi, K.; Wang, S.; Cai, Z.; Wang, Z.; et al. A Systematic Approach for Inertial Sensor Calibration of Gravity Recovery Satellites and Its Application to Taiji-1 Mission. Remote Sens. 2023, 15, 3817. https://doi.org/10.3390/rs15153817
Zhang H, Xu P, Ye Z, Ye D, Qiang L-E, Luo Z, Qi K, Wang S, Cai Z, Wang Z, et al. A Systematic Approach for Inertial Sensor Calibration of Gravity Recovery Satellites and Its Application to Taiji-1 Mission. Remote Sensing. 2023; 15(15):3817. https://doi.org/10.3390/rs15153817
Chicago/Turabian StyleZhang, Haoyue, Peng Xu, Zongqi Ye, Dong Ye, Li-E Qiang, Ziren Luo, Keqi Qi, Shaoxin Wang, Zhiming Cai, Zuolei Wang, and et al. 2023. "A Systematic Approach for Inertial Sensor Calibration of Gravity Recovery Satellites and Its Application to Taiji-1 Mission" Remote Sensing 15, no. 15: 3817. https://doi.org/10.3390/rs15153817
APA StyleZhang, H., Xu, P., Ye, Z., Ye, D., Qiang, L.-E., Luo, Z., Qi, K., Wang, S., Cai, Z., Wang, Z., Lei, J., & Wu, Y. (2023). A Systematic Approach for Inertial Sensor Calibration of Gravity Recovery Satellites and Its Application to Taiji-1 Mission. Remote Sensing, 15(15), 3817. https://doi.org/10.3390/rs15153817