A Day at the Bog: Preliminary Interpretation of Prehistoric Human Occupation at Ancient Lake Duvensee (Germany) by GPR Structures
Abstract
:1. Introduction
- identify stratigraphic patterns and geomorphological parameters close to the former shoreline at locations with and without known Mesolithic campsites;
- use GPR information to find patterns in the sediment stratigraphy in order to figure out the deposition sequence of lake sediments;
- find patterns which explain where people settled on the islands; since first indications point to a focus on shore locations, another aim is to explore reasons for this preference.
2. Geo-Archaeological Setting
3. Methods
3.1. Ground-Penetrating Radar (GPR) Survey
3.2. Radar Facies Interpretation
3.3. Raster Data Calculation
4. Results
4.1. Ground-Penetrating Radar (GPR) Survey
- Interface1 (yellow dashed line) represents the transition between the coarse organic sediments (peat and coarse detritus gyttja) at the surface and the underlying fine organic sediments (i.e., fine detritus gyttja, calcareous gyttja),
- Interface2 (green dashed line) represents the transition between fine organic sediments and underlying clayish-loamy deposits in the bottom of the previous lake, and
- Interface3 (red dashed line) marks the transition between the clayish-loamy layer and the basal sand deposits, which indicate the location of former islands.
4.2. Geomorphological Variables in Archaeological Context
4.3. Comparison between Radar Facies and Sedimentary Structures
4.4. Understanding the Human Occupation and Landscape Evolution as Derived from This Study
4.4.1. Late Preboreal
4.4.2. Early Boreal
4.4.3. Late Boreal/Early Atlantic
4.4.4. Subboreal
5. Discussion
5.1. Deposition Scenario at Ancient Lake Duvensee
5.2. Use of the Islands from Archeological Perspective
5.3. Preliminary Insight on Supraregional and Cross-Temporal Comparisons
6. Conclusions
- We identified three shoreline radar facies (from the five presented) in proximity to Mesolithic camps which were consecutively occupied after becoming dry during the evolution of the lake filling:
- ➢
- GPR facies 1 and 2 are located mainly on top of former islands and are connected to the specialized sites where the shoreline slope is shallower. This information leads to the assumption that the sites with these conditions have the probability to be repeatedly-occupied camps;
- ➢
- GPR facies 5 is characterized by a steeper slope and in proximity to unspecialized camps, suggesting that these sites are most probably short-lived camps.
- An internal peat stratification (Peat_1) has been detected and identified via the GPR record, delivering an improved model for the basin reconstruction that fits with archeological knowledge, but no internal stratigraphical patterns have been recognized.
- In the new models, we saw for the first time what facies were underwater and at what time, meaning that our understanding of the lake filling evolution becomes more reconstructable.
- Mesolithic hunter–gatherers and Neolithic groups preferred dry areas with access to open water for short-lived campsites and flatter and more protected areas for specialized and repeatedly occupied campsites. The cardinal orientation of a campsite seems to be secondary to the local peat over-growing process and access to water.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van de Noort, R.; O’Sullivan, A. Rethinking Wetland Archaeology; Gerald Duckworth and Co., Ltd: London, UK, 2006. [Google Scholar]
- Menotti, F. Wetland Archaeology and Beyond: Theory and Practice; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Seng, E.; Schlichtherle, H.; Wolf, C.; Sommer, C.S. Prähistorische Pfahlbauten im Alpenraum. Erschließung und Vermittlung eines Welterbes. Reflexe der Immateriellen und Materiellen Kultur 3; De Gruyter: Berlin/Boston, Germany, 2019. [Google Scholar] [CrossRef]
- Warner, B.G.; Nobes, D.C.; Theimer, B.D. An application of ground penetrating radar to peat stratigraphy of Ellice Swamp, southwestern Ontario. Can. J. Earth Sci. 1990, 27, 932–938. [Google Scholar] [CrossRef]
- Slater, L.; Reeve, A. Understanding peatland hydrology and stratigraphy using integrated electrical geophysics. Geophysics 2002, 67, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Corradini, E.; Dreibrodt, S.; Erkul, E.; Groẞ, D.; Lübke, H.; Panning, D.; Pickartz, N.; Thorwart, M.; Vött, A.; Willershäuser, T.; et al. Understanding Wetlands Stratigraphy: Geophysics and Soil Parameters for Investigating Ancient Basin Development at Lake Duvensee. Geosciences 2020, 10, 314. [Google Scholar] [CrossRef]
- Pereira, D.; Dias, E.; Ponte, M. Investigating the internal structure of four Azorean Sphagnum bogs using ground-penetrating radar. Mires Peat 2017, 19, 1–19. [Google Scholar] [CrossRef]
- Van Bellen, S.; Dallaire, P.L.; Garneau, M.; Bergeron, Y. Quantifying spatial and temporal Holocene carbon accumulation in ombrotrophic peatlands of the Eastmain region, Quebec, Canada. Global Biogeochem. Cycles 2011, 25, GB2016. [Google Scholar] [CrossRef]
- Korhola, A. Initiation of a sloping mire complex in southwestern Finland: Autogenic versus allogenic controls. Ecoscience 1996, 3, 216–222. [Google Scholar] [CrossRef]
- Schwantes, G.; Gripp, K.; Beyle, M. Der frühneolithische Wohnplatz von Duvensee. Praehist. Z. 1925, 16, 173–177. [Google Scholar]
- Schwabedissen, H. Grabungen auf dem Moorwohnplatz von Duvensee. Germania 1951, 29, 208. [Google Scholar]
- Bokelmann, K. Duvensee, ein Wohnplatz des Mesolithikums in Schleswig-Holstein, und die Duvenseegruppe. Offa 1971, 28, 5–26. [Google Scholar]
- Holst, D. Hazelnut economy of early Holocene Hunter–Gatherers: A case study from Mesolithic Duvensee, Northern Germany. J. Archaeol. Sci. 2010, 37, 2871–2880. [Google Scholar] [CrossRef]
- Bokelmann, K. Spade paddling on a Mesolithic lake—Remarks on Preboreal and Boreal sites from Duvensee (Northern Germany). In A Mind Set on Flint; Studies in Honour of Dick Stapert; Niekus, M.J.L.T., Barton, R.N.E., Street, M., Eds.; Groningen Archaeological Studies: Groningen, The Netherlands, 2012; pp. 369–380. [Google Scholar]
- Groß, D.; Lübke, H.; Schmölcke, U.; Zanon, M. Early Mesolithic activities at ancient Lake Duvensee, northern Germany. Holocene 2018, 29, 197–208. [Google Scholar] [CrossRef]
- Corradini, E.; Wilken, D.; Zanon, M.; Groß, D.; Lübke, H.; Panning, D.; Dörfler, W.; Rusch, K.; Mecking, R.; Erkul, E.; et al. Reconstructing the palaeoenvironment at the early Mesolithic site of Lake Duvensee: Ground-penetrating radar and geoarchaeology for 3D facies mapping. Holocene 2020, 30, 820–833. [Google Scholar] [CrossRef]
- Corradini, E.; Groß, D.; Wunderlich, T.; Lübke, H.; Wilken, D.; Erkul, E.; Schmölcke, U.; Rabbel, W. Finding Mesolithic Sites: A Multichannel Ground-Penetrating Radar (GPR) Investigation at the Ancient Lake Duvensee. Remote Sens. 2022, 14, 781. [Google Scholar] [CrossRef]
- Gramsch, B. Friesack: Letzte Jäger und Sammler in Brandenburg. Jahrb. Des Römisch-Ger. Zentralmuseums Mainz 2002, 47, 51–96. [Google Scholar]
- Jochim, M.A. Henauhof-Nordwest—Ein mittelsteinzeitlicher Lagerplatz am Federsee. In Materialhefte zur Vor- und Frühgeschichte in Baden-Württemberg, Heft 19; Theiss Verlag: Stuttgart, Germany, 1993. [Google Scholar]
- Kind, C.-J. Die letzten Wildbeuter. In Henauhof Nord II und das Ende Mesolithikum in Baden-Württemberg; Materialhefte zur Archäologie in Baden-Württemberg 39; Theiss Verlag: Stuttgart, Germany, 1997. [Google Scholar]
- Andersen, K. Stenalderbebyggelsen i den Vestsjællandske Åmose; Fredningsstyrelsen: København, Denmark, 1983. [Google Scholar]
- Schwantes, G. Die Vorgeschichte Schleswig-Holsteins (Stein- und Bronzezeit); Wachholtz: Neumünster, Germany, 1939. [Google Scholar]
- Averdieck, F.-R. Palynological investigations in sediments of ancient lake Duvensee, Schleswig-Holstein (North Germany). Hydrobiologia 1986, 143, 407–410. [Google Scholar] [CrossRef]
- Wieckowska-Lüth, M.; Dörfler, W. Duvensee palaeo-data in new light: Re-evaluation of on- and near-site sediment sequences from the Mesolithic and beyond. Offa 2023, in press.
- Groß, D.; Lübke, H.; Meadows, J.; Jantzen, D.; Dreibrodt, S. Re-evaluation of the site Hohen Viecheln 1. In Working at the Sharp End: From Bone and Antler to Early Mesolithic Life in Northern Europe; Groß, D., Lübke, H., Meadows, J., Jantzen, D., Eds.; Untersuchungen und Materialien zur Steinzeit in Schleswig-Holstein und im Ostseeraum, Band 10; Wachholtz: Kiel/Hamburg, Germany, 2020; pp. 15–112. [Google Scholar]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Theimer, B.D.; Nobes, D.C.; Warner, B.G. A study of the geoelectrical properties of peatlands and their influence on ground-penetrating radar surveying. Geophys. Prospect. 1994, 42, 179–209. [Google Scholar] [CrossRef]
- Kettridge, N.; Comas, X.; Baird, A.; Slater, L.; Strack, M.; Thompson, D.; Jol, H.; Binley, A. Ecohydrologically important subsurface structures in peatlands revealed by ground-penetrating radar and complex conductivity surveys. J. Geophys. Res. 2008, 113, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Comas, X.; Slater, L.; Reeve, A. Stratigraphic controls on pool formation in a domed bog inferred from ground penetrating radar (GPR). J. Hydrol. 2005, 315, 40–51. [Google Scholar] [CrossRef]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth-Surf. Process. Land. 2004, 27, 261–330. [Google Scholar] [CrossRef]
- Gawthorpe, R.L.; Collier, R.E.; Alexandre, J.; Bridge, J.S.; Leeder, M.R. Ground penetrating radar: Application to sandbody geometry and heterogeneity studies. In Characterization of Fluvial and Aeolian Reservoirs; North, C.P., Prosser, D.J., Eds.; Geological Society Special Publication: London, UK, 1993; Volume 73, pp. 21–432. [Google Scholar]
- Bokelmann, K. Duvensee, Wohnplatz 9: Ein präboreal- zeitlicher Lagerplatz in Schleswig-Holstein. Offa 1991, 48, 75–114. [Google Scholar]
- Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Bokelmann, K.; Averdieck, F.-R. and Willkomm. H. Duvensee, Wohnplatz 13. Offa 1985, 42, 13–33. [Google Scholar]
- Bokelmann, K. Rast unter Bäumen.Ein ephemerer mesolithischer Lagerplatz aus dem Duvenseer Moor. Offa 1986, 43, 149–163. [Google Scholar]
- Hausmann, N. Duvensee 13—A Reevaluation: A Technological and Spatial Analysis of the Lithic Assemblage of Duvensee 13; Y8419769 Mesolithic Studies; University of York: New York, NY, USA, 2012. [Google Scholar]
- Bokelmann, K. Eine neue borealzeitliche Fundstelle in Schleswig-Holstein. Kölner Jahrb. Für Vor-Und Frühgeschichte Berl. 1981, 15, 181–188. [Google Scholar]
- Averdieck, F.-R. Palynologischer Beitrag zur Entwicklungsgeschichte des Grossen Plöner Sees und der Vegetation seiner Umgebung. Arch. Hydrobiol. 1978, 83, 1–46. [Google Scholar]
- Averdieck, F.-R. Pollenanalytische Untersuchungen zum Wohnplatz 13 aus dem Duvenseer Moor. Offa 1986, 43, 165–169. [Google Scholar]
- Schütrumpf, R. Der pollenanalytische Nachweis einer ‘schwimmenden Insel’ und die Anzahl der Siedlungsphasen am mittelsteinzeitlichen Fundplatz Duvensee. In Kölner Jahrbuch Für Vor-Und Frühgeschichte; Kr. Herzogtum Lauenburg: Schleswig-Holstein, Germany, 1981; Volume 15, pp. 161–180. [Google Scholar]
- Theuerkauf, M.; Blume, T.; Brauer, A.; Dräger, N.; Feldens, P.; Kaiser, K.; Kappler, C.; Kästner, F.; Lorenz, S.; Schmidt, J.-P.; et al. Holocene lake-level evolution of Lake Tiefer See, NE Germany, caused by climate and land cover changes. Boreas 2021, 51, 299–316. [Google Scholar] [CrossRef]
- Bork, H.-R.; Bork, H.; Dalchow, C.; Faust, B.; Piorr, H.-P.; Schatz, T. Landschaftsentwicklung in Mitteleuropa; Klett-Perthes: Gotha, Germany, 1998. [Google Scholar]
- Dreibrodt, S.; Wiethold, J. Lake Belau and its catchment (northern Germany): A key archive of environmental history in northern central Europe since the onset of agriculture. Holocene 2015, 25, 296–332. [Google Scholar] [CrossRef]
- Dreibrodt, S.; Lomax, J.; Nelle, O.; Lubos, C.; Fischer, P.; Mitusov, A.; Reiss, S.; Radtke, U.; Grootes, P.M.; Bork, H.R. Are mid Latitude slope deposits sensitive to climatic oscillations?—Implications from an Early Holocene sequence of slope deposits and buried soils from Eastern Germany. Geomorphology 2010, 122, 351–369. [Google Scholar] [CrossRef]
- Zanon, M.; Feeser, I.; Dreibrodt, S.; Schwark, L.; van den Bogaard, C.; Dörfler, W. Exploring short-term ecosystem dynamics in connection with the Early Holocene Saksunarvatn Ash fallout over continental Europe. Quater Sci. Rev. 2021, 253, 106772. [Google Scholar] [CrossRef]
- Kaiser, K. The hydrological development of Mecklenburgian lakes in the late Quaternary, Petermanns. Geogr. Mitteilungen 1996, 140, 323–342. [Google Scholar]
- Bokelmann, K. Eine mesolithische Kiefernrindenmatte aus dem Duvenseer Moor. Offa 1989, 46, 17–22. [Google Scholar]
- Groß, D.; Henke, I.S.; Lübke, H.; Meadows, J.; Schmölcke, U. Duvensee WP 10—An early Mesolithic site at ancient Lake Duvensee, Germany. J. Wetl. Archaeol. 2021. [Google Scholar] [CrossRef]
- Schmölcke, U. Die Säugetierfunde vom präboreal- und borealzeitlichen Fundplatz Friesack 4 in Brandenburg. In Subsistenz und Umwelt der Feuchtbodenstation Friesack 4 im Havelland. Ergebnisse der naturwissenschaftlichen Untersuchungen; Benecke, N., Gramsch, B., Jahns, S., Eds.; Brandenburgisches Landesamt für Denkmalpflege und Archäologisches Landesmuseum: Wünsdorf, Germany, 2016; pp. 45–116. [Google Scholar]
- Groß, D.; Piezonka, H.; Corradini, E.; Schmölcke, U.; Zanon, M.; Dörfler, W.; Dreibrodt, S.; Feeser, I.; Krüger, S.; Lübke, H.; et al. Adaptations and transformations of hunter-gatherers in forest environments: New archaeological and anthropological insights. Holocene 2019, 29, 1531–1544. [Google Scholar] [CrossRef] [Green Version]
- Schuldt, E. Hohen Viecheln: Ein Mittelsteinzeitlicher Wohnplatz in Mecklenburg; Akademie-Verlag: Berlin, Germany, 1961. [Google Scholar]
- Lage, W. Experimental archaeological exploration of Mesolithic techniques for hazelnut roasting. Schriften Des Naturwissenschaftlichen Ver. Für Schleswig-Holst. 2011, 73, 12–22. [Google Scholar]
- Lage, W. Experimentalarchäologische Untersuchungen zu mesolithischen Techniken der Haselnussröstung. Exp. Archäol. Eur. Bilanz 2012, 22–32. [Google Scholar]
- Leesch, D.; Fabre, M.; Schoch, W.H. Les Occupations Mésolithiques des abris sous-roche de Berdorf-Kalekapp 2 (Grand Duché de Luxembourg); Centre National de Recherche Archéologique: Luxembourg, Germany, 2017. [Google Scholar]
- Wieckowska, M.; Dörfler, W.; Kirleis, W. Holocene history of environment and human impact on two islands in the Ostholstein lakeland area, Northern Germany. Veget Hist. Archaeobot 2012, 21, 303–320. [Google Scholar] [CrossRef]
- Wieckowska-Lüth, M.; Dörfler, W.; Kirleis, W. Lake level change and its influence on human settlement on islands in the Holstein Lake District, Schleswig-Holstein. Offa 2014, 67–68, 27–49. [Google Scholar]
- Gumiński, W.; Michniewicz, M. Forest and mobility. A case from the fishing camp site Dudka, Masuria, north-eastern Poland. In Mesolithic on the Move; Larsson, L., Ed.; Oxbow Books: Oxford, UK, 2003; pp. 110–127. [Google Scholar]
- Brozio, J.; Feeser, I.; Heumüller, M.; Müller, J.; Corradini, E.; Kirleis, W.; Dörfler, W.; Erkul, E.; Wunderlich, T. Hunte 4: Re-validation of a Bell Beaker domestic site in the Dümmer region in northwestern Germany. Praehist. Z. 2022. [Google Scholar] [CrossRef]
- Dahms, E. Limnogeologische Untersuchungen im Dümmer-Becken im Hinblick auf seine Bedeutung als Natur- und Landschaftsschutzgebiet. Geol. Unters. Nieders Binnenseen 1972, 29. [Google Scholar]
- Schneekloth Schneider, S. Die Moore in Niedersachsen. 3. Teil. Bereich des Blattes Bielefeld der Geologischen Karte der Bundesrepublik Deutschland (1:200 000). Forschungen zur Landes- und Volkskunde 1. Veröffentlichungen Des Niedersächsischen Inst. für Landeskd. und Landesentwickl. Der Univ. Göttingen = Schriften der Wirtsch. Ges. Zum Stud. Niedersachs. e.V. N.F. 1972, 96, 1–96. [Google Scholar]
- Wunderlich, T. MultichannelGPR: A New MATLAB-Tool for the processing of GPR Data. Archeosci. Rev. Archéométrie 2021, 45, 279–283. [Google Scholar] [CrossRef]
- Taioli, F.; Santos, M.G.; Dos, M.; Assine, M.L.; Mendes, D. How Ground Penetrating Radar helps to understand the Nhecolândia lakes landscape in the Brazilian Pantanal wetland. Braz. J. Geol. 2021. [Google Scholar] [CrossRef]
- Leandro, C.G.; Barboza, E.G.; Caron, F.; de Jesus, F.A.N. GPR trace analysis for coastal depositional environments of southern Brazil. J. Appl. Geophys. 2019, 162, 1–12. [Google Scholar] [CrossRef]
- Corbeanu, R.M.; Soegaard, K.; Szerbiak, R.B.; Thurmond, J.B.; McMechan, G.A.; Wang, D.; Snelgrove, S.; Forster, C.B.; Menitove, A. Detailed internal architecture of a fluvial channel sandstone determined from outcrop, cores, and 3-D ground-penetrating radar: Example from the middle Cretaceous Ferron Sandstone, east-central Utah. Am. Assoc. Pet. Geol. Bull. 2001, 85, 1583–1608. [Google Scholar]
- van Overmeeren, R.A. Radar facies of unconsolidated sediments in The Netherlands: A radar stratigraphy interpretation method for hydrogeology. J. Appl. Geophys. 1998, 40, 1–18. [Google Scholar] [CrossRef]
- Comas, X.; Slater, L.; Reeve, A. Poolpatterning in a northern peatland: Geophysical evidence for the role of postglacial landforms. J. Hydrol. 2011, 399, 173–184. [Google Scholar] [CrossRef]
Site | Dating (14C) cal BP | Specialized Lithic Inventory | Fireplace | Hazelnut Processing | Short- Lived (Used Only Once) | Note |
---|---|---|---|---|---|---|
WP1 (2) | 10,500–10,200 | no | yes | yes | yes | |
WP2 (2) | 10,800–10,400 | no | yes | no | ? | |
WP3 (2) | undated | ? | yes | no | ? | |
WP4 (2) | undated | ? | ? | no | ? | |
WP5 (2) | undated | yes | yes | yes | ? | younger than WP1 and WP2 |
WP6 (2) | 10,400–9900 | yes | yes | yes | ? | |
WP7, WP12 (2) | undated | ? | ? | ? | ? | Not real sites. Indeterminate find accumulations (charcoal, burned wood) in the shore area |
WP8 (1) | 11,100–10,700 | no | yes | yes | yes | |
WP9 (1) | 11,100–10,700 | no | yes | no | ? | |
WP10 (6) | 10,700 | no | yes | yes | yes | |
WP11 (2) | 10,100–9900 | no | yes | yes | no | |
WP13 (3) | 10,300–9400 | yes | yes | yes | yes | |
WP15 (4) | 2600 cal BC | ? | ? | ? | ? | |
WP17 (5) | 2600 cal BC | ? | ? | ? | ? | |
WP14, WP16, WP20, WP23 (4) | undated | ? | ? | ? | ? | only stray surface finds |
WP19 (3) | 9000–8400 | ? | yes | no | yes | |
WP21 (4) | 10,300–9500 | ? | yes | ? | ? | |
WP22 (5) | undated | ? | ? | ? | ? |
200 MHz Survey | Processing | ||
---|---|---|---|
Sampling frequency (MHz) | 4273 | Time zero correction | |
Number of samples | 471 | Spreading correction | |
Number of stacks | 8 | Background filter | |
Time window (ns) | 110 | k-highpass | kmax = 0.01 m−1 |
Sampling interval (ns) | 0.02 | Band pass filter | (50–400 MHz) |
Radar velocity 0.055 ± 0.050 m/ns (hyperbola fitting) | |||
400 MHz Survey | Processing | ||
Sampling frequency (MHz) | 10,340 | Dc-removal | |
Number of samples | 1024 | Trace interpolation | |
Number of stacks | 8 | Time zero correction | |
Time window (ns) | 99 | ||
Sampling interval (ns) | 0.07 | Normalization | |
Band pass filter | (200–800 MHz) | ||
Gain function | (−20, 0, 10, 15, 20 dB). | ||
Radar velocity be 0.072 ± 0.010 m/ns (hyperbola fitting) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corradini, E.; Dreibrodt, S.; Lübke, H.; Schmölcke, U.; Wieckowska-Lüth, M.; Wunderlich, T.; Wilken, D.; Brozio, J.P.; Rabbel, W. A Day at the Bog: Preliminary Interpretation of Prehistoric Human Occupation at Ancient Lake Duvensee (Germany) by GPR Structures. Remote Sens. 2023, 15, 3647. https://doi.org/10.3390/rs15143647
Corradini E, Dreibrodt S, Lübke H, Schmölcke U, Wieckowska-Lüth M, Wunderlich T, Wilken D, Brozio JP, Rabbel W. A Day at the Bog: Preliminary Interpretation of Prehistoric Human Occupation at Ancient Lake Duvensee (Germany) by GPR Structures. Remote Sensing. 2023; 15(14):3647. https://doi.org/10.3390/rs15143647
Chicago/Turabian StyleCorradini, Erica, Stefan Dreibrodt, Harald Lübke, Ulrich Schmölcke, Magdalena Wieckowska-Lüth, Tina Wunderlich, Dennis Wilken, Jan Piet Brozio, and Wolfgang Rabbel. 2023. "A Day at the Bog: Preliminary Interpretation of Prehistoric Human Occupation at Ancient Lake Duvensee (Germany) by GPR Structures" Remote Sensing 15, no. 14: 3647. https://doi.org/10.3390/rs15143647
APA StyleCorradini, E., Dreibrodt, S., Lübke, H., Schmölcke, U., Wieckowska-Lüth, M., Wunderlich, T., Wilken, D., Brozio, J. P., & Rabbel, W. (2023). A Day at the Bog: Preliminary Interpretation of Prehistoric Human Occupation at Ancient Lake Duvensee (Germany) by GPR Structures. Remote Sensing, 15(14), 3647. https://doi.org/10.3390/rs15143647