Impact of Hunga Tonga-Hunga Ha’apai Volcanic Eruption on Stratospheric Water Vapour, Temperature, and Ozone
Abstract
:1. Introduction
2. Eruption Status
3. Dataset
3.1. MLS Observations
3.2. MERRA-2 Reanalysis Products
4. Results
4.1. Changes in Water Vapuor
4.2. Changes in Temperature
4.3. Changes in Ozone
5. Discussion
6. Summary and Conclusions
- One of the most notable characteristics of this HT explosion is the highest altitude (to stratospheric altitudes (1 hPa, or 47.6 km)) of ejection of water vapour (Figure 1c), which was not seen in previous eruptions (Murcray et al., 1981; Glaze et al., 1997; Joshi et al., 2009; Sioris et al., 2016) [28,33,37,38].
- The water vapour injected into the stratosphere by the HT volcanic eruption remains in the stratosphere for several months (from January 2022 to January 2023). In terms of spatial variation, it is observed that water vapour disperses towards SH polar latitudes from January 2022 to January 2023 (Figure 4). During January 2023, the stratospheric water vapour reaches the mesospheric altitudes from stratospheric levels. The increase in stratospheric water vapour does not remain constant throughout the year due to the dynamics involved but varies with the seasons [39,40,41].
- A considerable amount of water vapour is seen at 21.54 hPa (26.30 km) compared to other altitudes (Figure 4). During volcanic eruption, the release of latent heat through condensation of water vapour at lower altitudes accelerates plume ascent, significantly increasing stratospheric water vapour.
- Our finding shows an increase in temperature immediately following the volcanic eruption (Figure 5c). Later, a significant decrease in temperature (cooling) is observed in SH due to IR radiative cooling via water vapour. Increased water vapour reduces stratospheric temperature while increasing the amount of odd hydrogen. Furthermore, increased water vapour results in cooling throughout the stratosphere, with the greatest values in the polar lower stratosphere (Figure 6).
- The cooling reaches a maximum of around ~5 K from May to November, with strong dispersion towards SH polar latitudes due to the significant increase in water vapour (Figure 6).
- A decrease in the ozone is observed due to an increase in water vapour at stratospheric altitudes (Figure 8). Because of increased water vapour in the stratosphere, OH concentrations rise, slightly increasing O3 production via the CH4 oxidation cycle but worsening O3 depletion via the HOx cycle, resulting in a net decrease in O3 [42,43].
- Even after one year of completion of eruption, the WV, T, and O3 did not reach to their background values.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilian, M.; Brinkop, S.; Jöckel, P. Impact of the eruption of Mt Pinatubo on the chemical composition of the stratosphere. Atmos. Chem. Phys. 2020, 20, 11697–11715. [Google Scholar] [CrossRef]
- Butchart, N. The Brewer-Dobson Circulation. Rev. Geophys. 2014, 52, 157–184. [Google Scholar] [CrossRef]
- Zhu, Y.; Toon, O.B.; Kinnison, D.; Harvey, V.L.; Mills, M.J.; Bardeen, C.G.; Pitts, M.; Bègue, N.; Renard, J.; Berthet, G.; et al. Stratospheric aerosols, polarstratospheric clouds, and polar ozonedepletion after the Mount Calbucoeruption in 2015. J. Geophys. Res. Atmos. 2018, 123, 12308–12331. [Google Scholar] [CrossRef]
- Xia, L.; Nowack, P.J.; Tilmes, S.; Robock, A. Impacts of stratospheric sulfate geoengineering on tropospheric ozone. Atmos. Chem. Phys. 2017, 17, 11913–11928. [Google Scholar] [CrossRef] [Green Version]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Gao, C.; Gao, Y.; Zhang, Q.; Shi, C. Climatic Aftermath of the 1815 Tambora Eruption in China. J. Meteorol. Res. 2017, 31, 28–38. [Google Scholar] [CrossRef]
- Raible, C.C.; Brönnimann, S.; Auchmann, R.; Brohan, P.; Frölicher, T.L.; Graf, H.-F.; Jones, P.; Luterbacher, J.; Muthers, S.; Neukom, R.; et al. Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 569–589. [Google Scholar] [CrossRef]
- Stenchikov, G.; Robock, A.; Ramaswamy, V.; Schwarzkopf, M.D.; Hamilton, K.; Ramachandran, S. Arctic Oscillation response to the 1991 Mount Pinatubo eruption: Effects of volcanic aerosols and ozone depletion. J. Geophys. Res. Atmos. 2002, 107, ACL 28-1–ACL 28-16. [Google Scholar] [CrossRef] [Green Version]
- Fischer, T.P.; Aiuppa, A. AGU Centennial Grand Challenge: Volcanoes and deep carbon global CO2 emissions from subaerial volcanism—Recent progress and future challenges. Geochem. Geophys. Geosyst. 2020, 21, e2019GC008690. [Google Scholar] [CrossRef]
- Ravindra Babu, S.; Liou, Y.-A. Day-to-day variability of upper troposphere and lower stratosphere temperature in response to Taal volcanic eruption inferred from COSMIC-2 RO measurements. J. Volcanol. Geotherm. Res. 2022, 421, 107445. [Google Scholar] [CrossRef]
- Yuen, D.A.; Scruggs, M.A.; Spera, F.J.; Zheng, Y.; Hu, H.; McNutt, S.R.; Thompson, G.; Mandli, K.; Keller, B.R.; Wei, S.S.; et al. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano. Earthq. Res. Adv. 2022, 2, 100134. [Google Scholar] [CrossRef]
- Witze, A. Why the Tongan eruption will go down in the history of volcanology. Nature 2022, 602, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Poli, P.; Shapiro, N.M. Rapid Characterization of Large Volcanic Eruptions: Measuring the Impulse of the Hunga Tonga Ha’apai Explosion From Teleseismic Waves. Geophys. Res. Lett. 2022, 49, e2022GL098123. [Google Scholar] [CrossRef]
- Carr, J.L.; Horváth, Á.; Wu, D.L.; Friberg, M.D. Stereo Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga Ha’apai Eruption of 15 January 2022. Geophys. Res. Lett. 2022, 49, e2022GL098131. [Google Scholar] [CrossRef]
- Proud, S.R.; Prata, A.T.; Schmauß, S. The January 2022 Eruption of Hunga Tonga-Hunga Ha’apai Volcano Reached the Mesosphere. Science 2022, 378, 554–557. [Google Scholar] [CrossRef] [PubMed]
- Millán, L.; Santee, M.L.; Lambert, A.; Livesey, N.J.; Werner, F.; Schwartz, M.J.; Pumphrey, H.C.; Manney, G.L.; Wang, Y.; Su, H.; et al. The Hunga Tonga-Hunga Ha’apai Hydration of the Stratosphere. Geophys. Res. Lett. 2022, 49, e2022GL099381. [Google Scholar] [CrossRef]
- Vömel, H.; Evan, S.; Tully, M. Water vapor injection into the stratosphere by Hunga Tonga-Hunga Ha’apai. Science 2022, 377, 1444–1447. [Google Scholar] [CrossRef]
- Sellitto, P.; Podglajen, A.; Belhadji, R.; Boichu, M.; Carboni, E.; Cuesta, J.; Duchamp, C.; Kloss, C.; Siddans, R.; Bègue, N.; et al. The unexpected radiative impact of the Hunga Tonga eruption of 15th January 2022. Commun. Earth Environ. 2022, 3, 288. [Google Scholar] [CrossRef]
- Zhu, Y.; Bardeen, C.G.; Tilmes, S.; Mills, M.J.; Wang, X.; Harvey, V.L.; Taha, G.; Kinnison, D.; Portmann, R.W.; Yu, P.; et al. Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga-Tonga eruption. Commun. Earth Environ. 2022, 3, 248. [Google Scholar] [CrossRef]
- Taha, G.; Loughman, R.; Colarco, P.R.; Zhu, T.; Thomason, L.W.; Jaross, G. Tracking the 2022 Hunga Tonga-Hunga Ha’apai Aerosol Cloud in the Upper and Middle Stratosphere Using Space-Based Observations. Geophys. Res. Lett. 2022, 49, e2022GL100091. [Google Scholar] [CrossRef]
- Legras, B.; Siddans, R.; Carboni, E.; Sellitto, P. IMS sulphate aerosol in the stratospheric plume of the January 2022 Tonga eruption. Zenodo 2022. [Google Scholar] [CrossRef]
- Kloss, C.; Sellitto, P.; Renard, J.-B.; Baron, A.; Bègue, N.; Legras, B.; Berthet, G.; Briaud, E.; Carboni, E.; Duchamp, C.; et al. Aerosol Characterization of the Stratospheric Plume From the Volcanic Eruption at Hunga Tonga 15 January 2022. Geophys. Res. Lett. 2022, 49, e2022GL099394. [Google Scholar] [CrossRef]
- Hurst, D.F.; Lambert, A.; Read, W.G.; Davis, S.M.; Rosenlof, K.H.; Hall, E.G.; Jordan, A.F.; Oltmans, S.J. Validation of Aura Microwave Limb Sounder stratospheric water vapor measurements by the NOAA frost point hygrometer. J. Geophys. Res. Atmos. 2014, 119, 1612–1625. [Google Scholar] [CrossRef] [PubMed]
- Livesey, N.J.; Van Snyder, W.; Read, W.G.; Wagner, P.A. Retrieval algorithms for the EOS Microwave limb sounder (MLS). IEEE Trans. Geosci. Remote Sens. 2006, 44, 1144–1155. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Lambert, A.; Cofield, R.E.; Cuddy, D.T.; Froidevaux, L.; Fuller, R.A.; Jarnot, R.F.; Jiang, J.H.; Jiang, Y.B.; et al. Version 3.3 and 3.4 Level 2 Data Quality and Description Document; JPL D-33509; NASA Jet Propulsion Laboratory: Pasadena, CA, USA, 2013. [Google Scholar]
- Molod, A.; Takacs, L.; Suarez, M.; Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geosci. Model Dev. 2015, 8, 1339–1356. [Google Scholar] [CrossRef] [Green Version]
- Kleist, D.T.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.-S.; Lord, S. Introduction of the GSI into the NCEP Global Data Assimilation System. Weather. Forecast. 2009, 24, 1691–1705. [Google Scholar] [CrossRef] [Green Version]
- Glaze, L.S.; Baloga, S.M.; Wilson, L. Transport of atmospheric water vapor by volcanic eruption columns. J. Geophys. Res. Atmos. 1997, 102, 6099–6108. [Google Scholar] [CrossRef]
- Wright, C.J.; Hindley, N.P.; Alexander, M.J.; Barlow, M.; Hoffmann, L.; Mitchell, C.N.; Prata, F.; Bouillon, M.; Carstens, J.; Clerbaux, C.; et al. Surface-to-space atmospheric waves from Hunga Tonga–Hunga Ha’apai eruption. Nature 2022, 609, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.-K. Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [Green Version]
- Schoeberl, M.R.; Wang, Y.; Ueyama, R.; Taha, G.; Jensen, E.; Yu, W. Analysis and impact of the Hunga Tonga-Hunga Ha’apai stratospheric water vapor plume. Geophys. Res. Lett. 2022, 49, e2022GL100248. [Google Scholar] [CrossRef]
- Clyne, M.; Lamarque, J.-F.; Mills, M.J.; Khodri, M.; Ball, W.; Bekki, S.; Dhomse, S.S.; Lebas, N.; Mann, G.; Marshall, L.; et al. Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble. Atmos. Chem. Phys. 2021, 21, 3317–3343. [Google Scholar] [CrossRef]
- Joshi, M.M.; Jones, G.S. The climatic effects of the direct injection of water vapour into the stratosphere by large volcanic eruptions. Atmos. Chem. Phys. 2009, 9, 6109–6118. [Google Scholar] [CrossRef] [Green Version]
- Löffler, M.; Brinkop, S.; Jöckel, P. Impact of major volcanic eruptions on stratospheric water vapour. Atmos. Chem. Phys. 2016, 16, 6547–6562. [Google Scholar] [CrossRef] [Green Version]
- Akhil Raj, S.T.; Venkat Ratnam, M.; Narayana Rao, D.; Krishna Murthy, B.V. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region. Ann. Geophys. 2018, 36, 149–165. [Google Scholar] [CrossRef] [Green Version]
- Babu, R.; Lin, N.-H. Extreme Heights of 15 January 2022 Tonga Volcanic Plume and Its Initial Evolution Inferred from COSMIC-2 RO Measurements. Atmosphere 2023, 14, 121. [Google Scholar] [CrossRef]
- Murcray, D.G.; Murcray, F.J.; Barker, D.B.; Mastenbrook, H.J. Changes in stratospheric water vapor associated with the Mount St. Helens eruption. Science 1981, 211, 823–824. [Google Scholar] [CrossRef]
- Sioris, C.E.; Zou, J.; McElroy, C.T.; Boone, C.D.; Sheese, P.E.; Bernath, P.F. Water vapour variability in the high-latitude upper troposphere—Part 2: Impact of volcanic eruptions. Atmos. Chem. Phys. 2016, 16, 2207–2219. [Google Scholar] [CrossRef] [Green Version]
- Basha, G.; Ratnam, M.V.; Jiang, J.H.; Kishore, P.; Ravindra Babu, S. Influence of Indian Summer Monsoon on Tropopause, Trace Gases and Aerosols in Asian Summer Monsoon Anticyclone Observed by COSMIC, MLS and CALIPSO. Remote Sens. 2021, 13, 3486. [Google Scholar] [CrossRef]
- Babu, R.; Raj, S.A.; Basha, G.; Ratnam, M.V. Recent trends in the UTLS temperature and tropical tropopause parameters over tropical South Indian region. J. Atmos. Sol. Terr. Phys. 2020, 197, 105164. [Google Scholar]
- Basha, G.; Ratnam, M.V.; Krishna Murthy, B.V. Upper tropospheric water vapour variability over tropical latitudes observed using radiosonde and satellite measurements. J. Earth Syst. Sci. 2013, 122, 1583–1591. [Google Scholar] [CrossRef] [Green Version]
- Dvortsov, V.L.; Solomon, S. Response of the stratospheric temperatures and ozone to past and future increases in stratospheric humidity. J. Geophys. Res. Atmos. 2001, 106, 7505–7514. [Google Scholar] [CrossRef]
- Stenke, A.; Grewe, V. Simulation of stratospheric water vapor trends: Impact on stratospheric ozone chemistry. Atmos. Chem. Phys. 2005, 5, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basha, G.; Ratnam, M.V.; Kumar, A.H.; Jiang, J.H.; Babu, S.R.; Kishore, P. Impact of Hunga Tonga-Hunga Ha’apai Volcanic Eruption on Stratospheric Water Vapour, Temperature, and Ozone. Remote Sens. 2023, 15, 3602. https://doi.org/10.3390/rs15143602
Basha G, Ratnam MV, Kumar AH, Jiang JH, Babu SR, Kishore P. Impact of Hunga Tonga-Hunga Ha’apai Volcanic Eruption on Stratospheric Water Vapour, Temperature, and Ozone. Remote Sensing. 2023; 15(14):3602. https://doi.org/10.3390/rs15143602
Chicago/Turabian StyleBasha, Ghouse, Madineni Venkat Ratnam, Alladi Hemanth Kumar, Jonathan H. Jiang, Saginela Ravindra Babu, and Pangaluru Kishore. 2023. "Impact of Hunga Tonga-Hunga Ha’apai Volcanic Eruption on Stratospheric Water Vapour, Temperature, and Ozone" Remote Sensing 15, no. 14: 3602. https://doi.org/10.3390/rs15143602
APA StyleBasha, G., Ratnam, M. V., Kumar, A. H., Jiang, J. H., Babu, S. R., & Kishore, P. (2023). Impact of Hunga Tonga-Hunga Ha’apai Volcanic Eruption on Stratospheric Water Vapour, Temperature, and Ozone. Remote Sensing, 15(14), 3602. https://doi.org/10.3390/rs15143602