Infrared Dim Small Target Detection Based on Nonconvex Constraint with L1–L2 Norm and Total Variation
Abstract
:1. Introduction
- (1)
- The difference of L1 and L2 norms is applied in the field of the IR dim and small target detection, which is parameter free, and the nonconvex optimization of the L1-L2 norm can achieve sparser target image restoration;
- (2)
- A total variation (TV) regularization is conducted on the sparse target image, which is to constrain the sparse clutters and decrease the residuals in the target image;
- (3)
- The difference between convex algorithm (DCA) [5] and Newton conjugate gradient (CG) [6] methods based on the alternating direction method of multipliers (ADMM) are presented to solve the nonconvex model. DCA is used to solve the difference between L1 and L2 norms. In addition, the CG is supposed to solve the total variation regularization, which converges quickly.
2. Related Work
2.1. The Background Suppression-Based Method
2.2. The Human Visual System-Based Method
2.3. The Data Optimization Based-Method
2.4. The Deep Learning-Based Method
3. Methodology
3.1. Enhanced Sparsity of L1–L2 Metric
3.2. Total Variation Regularization
3.3. Proposed Method
3.4. Solution of the Proposed Model
- (a)
- subproblem of B
- (b)
- subproblem of T
- (c)
- subproblem of F
Algorithm 1: Newton-CG algorithm for solving TV norm. |
Input: , Output: Initialize: While not converged do Compute ; Compute (approximate Hessian matrix); Compute d; Solving with CG method; Compute ; Check the convergence conditions ; Update k k = k + 1; end |
Algorithm 2: ADMM solver to the proposed model. |
Input: Patch image D, Output: Target image T, Background image B Initialize: ; While not converged do %Update ; %Update ; %Update ; %Update , and ; ; ; % Judge the convergence conditions ; % Update k ; end |
3.5. The Procedure of the Proposed Method
- Convert the original infrared image into a patch image through a sliding window with a length of len and a step of step The len and step value will be discussed in the next section;
- Parameters initialize of lambda1. The influence of the parameters on the experiments is discussed in Section 3;
- The patch image input Algorithm 1 and target patch image T solves until the iterative convergence. During iteration, the T and F iteration expressions are solved with DCA and Newton-CG methods, respectively;
- The target patch image is restored with the inverse process of step 1;
- The target detection utilizes threshold segmentation, and the segmentation is shown as Equation (23), and μ and δ denotes the mean and variance value of the separated target competent.
4. Experiments and Results
4.1. Experimental Setting
4.2. Evaluation Metrics
4.3. ROC Curve
4.4. Parameter Analysis
4.5. Comparison to SOTA
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yavari, M.; Moallem, P.; Kazemi, M.; Moradi, S. Small Infrared Target Detection Using Minimum Variation Direction Interpolation. Digit. Signal Process. 2021, 117, 103174. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, L.; Huang, S.; Peng, Z. Infrared Small Target Detection via Non-Convex Tensor Rank Surrogate Joint Local Contrast Energy. Remote Sens. 2020, 12, 1520. [Google Scholar] [CrossRef]
- Cai, Y. Weighted Lp—L1 Minimization Methods for Block Sparse Recovery and Rank Minimization. Anal. Appl. 2020, 19, 343–361. [Google Scholar] [CrossRef]
- Peng, C.; Liu, Y.; Kang, K.; Chen, Y.; Wu, X.; Cheng, A.; Kang, Z.; Chen, C.; Cheng, Q. Hyperspectral Image Denoising Using Nonconvex Local Low-Rank and Sparse Separation with Spatial–Spectral Total Variation Regularization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Aragón Artacho, F.J.; Vuong, P.T. The Boosted Difference of Convex Functions Algorithm for Nonsmooth Functions. SIAM J. Optim. 2020, 30, 980–1006. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Almurib, H.A.F.; Kumar, T.N.; Lombardi, F. An Inexact Newton Method For Unconstrained Total Variation-Based Image Denoising by Approximate Addition. IEEE Trans. Emerg. Top. Comput. 2022, 10, 1192–1207. [Google Scholar] [CrossRef]
- Balasingam, B.; Bar-Shalom, Y.; Willett, P.; Pattipati, K. Maximum Likelihood Detection on Images. In Proceedings of the 2017 20th International Conference on Information Fusion (Fusion), Xi’an, China, 10–13 July 2017; pp. 1–8. [Google Scholar]
- Deshpande, S.D.; Er, M.H.; Venkateswarlu, R.; Chan, P. Max-Mean and Max-Median Filters for Detection of Small Targets. In Signal and Data Processing of Small Targets; SPIE: Santa Clara, CA, USA, 1999; Volume 3809, pp. 74–83. [Google Scholar]
- Liu, R.; Wang, D.; Zhou, D.; Jia, P. Point Target Detection Based on Multiscale Morphological Filtering and an Energy Concentration Criterion. Appl. Opt. 2017, 56, 6796. [Google Scholar] [CrossRef]
- Shao, X.; Fan, H.; Lu, G.; Xu, J. An Improved Infrared Dim and Small Target Detection Algorithm Based on the Contrast Mechanism of Human Visual System. Infrared Phys. Technol. 2012, 55, 403–408. [Google Scholar] [CrossRef]
- Aghaziyarati, S.; Moradi, S.; Talebi, H. Small Infrared Target Detection Using Absolute Average Difference Weighted by Cumulative Directional Derivatives. Infrared Phys. Technol. 2019, 101, 78–87. [Google Scholar] [CrossRef]
- Bai, X.; Bi, Y. Derivative Entropy-Based Contrast Measure for Infrared Small-Target Detection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2452–2466. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A Local Contrast Method for Small Infrared Target Detection. IEEE Trans. Geosci. Remote Sens. 2014, 52, 574–581. [Google Scholar] [CrossRef]
- Han, J.; Ma, Y.; Zhou, B.; Fan, F.; Liang, K.; Fang, Y. A Robust Infrared Small Target Detection Algorithm Based on Human Visual System. IEEE Geosci. Remote Sens. Lett. 2014, 11, 2168–2172. [Google Scholar] [CrossRef]
- Han, J.; Liang, K.; Zhou, B.; Zhu, X.; Zhao, J.; Zhao, L. Infrared Small Target Detection Utilizing the Multiscale Relative Local Contrast Measure. IEEE Geosci. Remote Sens. Lett. 2018, 15, 612–616. [Google Scholar] [CrossRef]
- Wei, Y.; You, X.; Li, H. Multiscale Patch-Based Contrast Measure for Small Infrared Target Detection. Pattern Recognit. 2016, 58, 216–226. [Google Scholar] [CrossRef]
- Han, J.; Moradi, S.; Faramarzi, I.; Zhang, H.; Zhao, Q.; Zhang, X.; Li, N. Infrared Small Target Detection Based on the Weighted Strengthened Local Contrast Measure. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1670–1674. [Google Scholar] [CrossRef]
- Shi, Y.; Wei, Y.; Yao, H.; Pan, D.; Xiao, G. High-Boost-Based Multiscale Local Contrast Measure for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2018, 15, 33–37. [Google Scholar] [CrossRef]
- Guan, X.; Peng, Z.; Huang, S.; Chen, Y. Gaussian Scale-Space Enhanced Local Contrast Measure for Small Infrared Target Detection. IEEE Geosci. Remote Sens. Lett. 2020, 17, 327–331. [Google Scholar] [CrossRef]
- Yao, S.; Chang, Y.; Qin, X. A Coarse-to-Fine Method for Infrared Small Target Detection. IEEE Geosci. Remote Sens. Lett. 2019, 16, 256–260. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared Patch-Image Model for Small Target Detection in a Single Image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, Z.; Kong, D.; Zhang, P.; He, Y. Infrared Dim Target Detection Based on Total Variation Regularization and Principal Component Pursuit. Image Vis. Comput. 2017, 63, 1–9. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Song, Y. Infrared Small Target and Background Separation via Column-Wise Weighted Robust Principal Component Analysis. Infrared Phys. Technol. 2016, 77, 421–430. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y. Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ely, G.; Aeron, S.; Hao, N.; Kilmer, M. Novel Methods for Multilinear Data Completion and De-Noising Based on Tensor-SVD. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3842–3849. [Google Scholar]
- Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; Peng, Z. Infrared Small Target Detection via Non-Convex Rank Approximation Minimization Joint L2,1 Norm. Remote Sens. 2018, 10, 1821. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Wu, H.; Liu, Y.; Peng, L.; Yang, C.; Peng, Z. Infrared Small Target Detection Based on Non-Convex Optimization with Lp-Norm Constraint. Remote Sens. 2019, 11, 559. [Google Scholar] [CrossRef] [Green Version]
- Chartrand, R.; Staneva, V. Restricted Isometry Properties and Nonconvex Compressive Sensing. Inverse Probl. 2008, 24, 035020. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.; Bi, D.; Xiong, L.; Ma, S.; He, L.; Ding, W. Dim Infrared Image Enhancement Based on Convolutional Neural Network. Neurocomputing 2018, 272, 396–404. [Google Scholar] [CrossRef]
- Ju, M.; Luo, J.; Liu, G.; Luo, H. ISTDet: An Efficient End-to-End Neural Network for Infrared Small Target Detection. Infrared Phys. Technol. 2021, 114, 103659. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Attentional Local Contrast Networks for Infrared Small Target Detection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9813–9824. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, L.; Tan, F.; Xi, Y.; Zheng, H.; Li, N. ISTDU-Net: Infrared Small-Target Detection U-Net. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Zhou, F.; Wu, Y.; Dai, Y.; Ni, K. Robust Infrared Small Target Detection via Jointly Sparse Constraint of L1/2-Metric and Dual-Graph Regularization. Remote Sens. 2020, 12, 1963. [Google Scholar] [CrossRef]
- Yin, P.; Lou, Y.; He, Q.; Xin, J. Minimization of ℓ1−2 for Compressed Sensing. SIAM J. Sci. Comput. 2015, 37, A536–A563. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Yin, P.; He, Q.; Xin, J. Computing Sparse Representation in a Highly Coherent Dictionary Based on Difference of L1 L 1 and L2 L 2. J. Sci. Comput. 2015, 64, 178–196. [Google Scholar] [CrossRef]
- Sun, L.; Ge, W.; Chen, Y.; Zhang, J.; Jeon, B. Hyperspectral Unmixing Employing l1−l2 Sparsity and Total Variation Regularization. Int. J. Remote Sens. 2018, 39, 6037–6060. [Google Scholar] [CrossRef]
- Kim, S.; Yang, Y.; Lee, J.; Park, Y. Small Target Detection Utilizing Robust Methods of the Human Visual System for IRST. J. Infrared Millim. Terahertz Waves 2009, 30, 994–1011. [Google Scholar] [CrossRef]
- Zhao, M.; Li, W.; Li, L.; Hu, J.; Ma, P.; Tao, R. Single-Frame Infrared Small-Target Detection: A Survey. IEEE Geosci. Remote Sens. Mag. 2022, 10, 87–119. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Liu, P. Infrared Small Target Detection Based on Salient Region Extraction and Gradient Vector Processing. In Proceedings of the ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2019; pp. 422–426. [Google Scholar]
- Cai, J.-F.; Candès, E.J.; Shen, Z. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM J. Optim. 2010, 20, 1956–1982. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, Z.; Wan, M.; Yang, G. Robust Principal Component Analysis Based on L1-2 Metric. In Proceedings of the 2017 4th IAPR Asian Conference on Pattern Recognition (ACPR), Nanjing, China, 26–29 November 2017; pp. 394–398. [Google Scholar]
- Yuan, M.; Lin, Y. Model Selection and Estimation in Regression with Grouped Variables. J. R. Stat. Soc. Ser. B Stat. Methodol. 2006, 68, 49–67. [Google Scholar] [CrossRef]
- Moradi, S.; Moallem, P.; Sabahi, M.F. Fast and Robust Small Infrared Target Detection Using Absolute Directional Mean Difference Algorithm. Signal Process. 2020, 177, 107727. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm. Remote Sens. 2019, 11, 382. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ding, Q.; Luo, H.; Hui, B.; Chang, Z.; Zhang, J. Infrared Small Target Detection Based on an Image-Patch Tensor Model. Infrared Phys. Technol. 2019, 99, 55–63. [Google Scholar] [CrossRef]
Kind of Methods | Typical Algorithms |
---|---|
The background suppression-based method | max-mean\max-median, morphology opening method, LoG, AAGD, facet model |
The human visual system-based method | LCM, RLCM, MPCM, WSLCM, HB-MLCM, GSS-ELCM |
The data optimization- based method | IPI, WIPI, RIPT, |
The deep learning- based method | ALCNet, ISTDU-Net |
Algorithm | Parameter Setting |
---|---|
LCM | Slide windows size: 3 × 3 |
MPCM | Slide windows size: 1, 2, 3, 4 |
ADMD | Slide windows size: 3, 5, 7, 9 |
IPI | Patch size: 30 × 30 Slide step: 10 lambda: 1/sqrt (min (m, n)) |
NOLC | Patch size: 30 × 30 Slide step: 10 lambda: 1/sqrt (max (m, n)) p = 0.5 |
NARM | Patch size: 30 × 30 Slide step: 10 lambda: 1/sqrt (min (m, n)) |
PSTNN | Patch size: 40 × 40 Slide step: 40 lambda: 0.7/sqrt (min (m, n)) |
Test Image | Frame Number | Size | Image Description |
---|---|---|---|
sequence1 | 50 | 589 × 418 | The background contains a lot of broken clouds and banded clouds, and the target occupies few pixels |
sequence2 | 50 | 480 × 359 | The image contains a highlighted building background, and the target is dim |
sequence3 | 50 | 256 × 239 | The background contains cumulus and edge clutter with high brightness, and there are few target pixels |
sequence4 | 50 | 256 × 200 | The background mainly contains banded clouds |
single frame1 | 198 × 134 | The background of the image is relatively uniform, but there is some convex interference. The image contains two dim targets, which are close to each other | |
single frame2 | 128 × 128 | The image is based on the ground and contains three targets, which are vulnerable to background interference during detection | |
single frame3 | 233 × 161 | There are buildings in the image background, and the details of buildings are easy to interfere with the detection of targets occupying a few pixels | |
single frame4 | 128 × 128 | The target is buried in the ground object background and seriously disturbed by the weed texture |
LCM | MPCM | ADMD | IPI | PSTNN | NRAM | NOLC | Proposed | ||
---|---|---|---|---|---|---|---|---|---|
Seq 1 | SCRG | 0.6766 | 3.3325 | 2.8766 | 3.0071 | 3.7805 | 1.1525 | 2.6787 | Inf |
BSF | 1.4943 | 4.3979 | 30.5796 | 4.6997 | 11.8668 | 13.5845 | 24.4370 | 37.8915 | |
Seq 2 | SCRG | 2.8994 | 2.9210 | 42.4387 | 46.9946 | 28.8361 | 5.2754 | Inf | Inf |
BSF | 2.0465 | 4.3853 | 4.8713 | 4.7876 | 12.1526 | 16.0935 | 17.9242 | 22.7435 | |
Seq 3 | SCRG | 3.8201 | 0.6461 | 73.6852 | 109.5999 | 140.9454 | 14.9330 | Inf | Inf |
BSF | 1.5474 | 1.4455 | 0.8282 | 1.7376 | 1.7940 | 2.6039 | 2.4205 | 2.7145 | |
Seq 4 | SCRG | 3.5833 | 4.6747 | 39.1615 | 197.6377 | 14.6742 | 16.7123 | Inf | Inf |
BSF | 1.1544 | 2.8494 | 11.1216 | 3.7819 | 6.2014 | 10.3059 | 11.2824 | 12.9538 |
Method | LCM | MPCM | ADMD | IPI | PSTNN | NRAM | NOLC | Proposed |
Complexity | O(k3MN) | O(k3MN) | O(8k3MN) | O(nm2) | O(nm2) | O(nm2) | O(nm2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Kang, X.; Ma, M.; Chen, C.; He, S.; Wang, D. Infrared Dim Small Target Detection Based on Nonconvex Constraint with L1–L2 Norm and Total Variation. Remote Sens. 2023, 15, 3513. https://doi.org/10.3390/rs15143513
Shao Y, Kang X, Ma M, Chen C, He S, Wang D. Infrared Dim Small Target Detection Based on Nonconvex Constraint with L1–L2 Norm and Total Variation. Remote Sensing. 2023; 15(14):3513. https://doi.org/10.3390/rs15143513
Chicago/Turabian StyleShao, Yu, Xu Kang, Mingyang Ma, Cheng Chen, Sun He, and Dejiang Wang. 2023. "Infrared Dim Small Target Detection Based on Nonconvex Constraint with L1–L2 Norm and Total Variation" Remote Sensing 15, no. 14: 3513. https://doi.org/10.3390/rs15143513
APA StyleShao, Y., Kang, X., Ma, M., Chen, C., He, S., & Wang, D. (2023). Infrared Dim Small Target Detection Based on Nonconvex Constraint with L1–L2 Norm and Total Variation. Remote Sensing, 15(14), 3513. https://doi.org/10.3390/rs15143513