Dynamics of Freezing/Thawing Indices and Frozen Ground from 1961 to 2010 on the Qinghai-Tibet Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Land Surface Model Data
2.1.2. Remote Sensing Data
2.2. Methods
2.2.1. Freezing/Thawing Indices
2.2.2. Surface Frost Index
2.2.3. Statistical Analysis Method
2.2.4. Model and Numerical Simulation Design
3. Results
3.1. Decadal Changes of Permafrost Distribution on the QTP from 1961 to 2010
3.2. Comparisons of Thermal States between Near-Surface Atmosphere and Ground Surface in Climatology
3.3. Spatial Changes of Freezing and Thawing Indices in Permafrost and Seasonally Frozen Ground
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, T.; Zhou, Y.; Guo, D.; Qiu, G.; Li, S. Geocryology in China. Arct. Antarct. Alp. Res. 2001, 33, 245. [Google Scholar]
- Yang, K.; Ye, B.; Zhou, D.; Wu, B.; Foken, T.; Qin, J.; Zhou, Z.; Oppenheimer, M.; Yohe, G. Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Clim. Chang. 2011, 109, 517–534. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.; Wang, W.; et al. Third Pole Environment (TPE). Environ. Dev. 2012, 3, 52–64. [Google Scholar] [CrossRef]
- Pan, X.; Guo, X.; Li, X.; Niu, X.; Yang, X.; Feng, M.; Che, T.; Jin, R.; Ran, Y.; Guo, J.; et al. National Tibetan Plateau Data Center: Promoting Earth System Science on the Third Pole. Bull. Am. Meteorol. Soc. 2021, 102, E2062–E2078. [Google Scholar]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Luo, D.L.; Wang, L.; Huang, Y.D.; Chen, F.F. Dynamics of freezing/thawing indices and frozen ground from 1900 to 2017 in the upper Brahmaputra River Basin, Tibetan Plateau. Adv. Clim. Chang. Res. 2021, 12, 6–17. [Google Scholar] [CrossRef]
- Dobinski, W. Permafrost. Earth Sci. Rev. 2011, 108, 158–169. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G. A GIS-aided response model of high-altitude permafrost to global change. Sci. China Earth Sci. 1999, 42, 72–79. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. CMIP5 permafrost degradation projection:A comparison among different regions. J. Geophys. Res. Atmos. 2016, 121, 4499–4517. [Google Scholar] [CrossRef]
- Schuur, E.; Vogel, J.G.; Crummer, K.G.; Lee, H.; Sickman, J.O.; Osterkamp, T.E. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 2009, 459, 556–559. [Google Scholar] [CrossRef]
- Cheng, G.; Jin, H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 2012, 21, 5–23. [Google Scholar] [CrossRef]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. Geophys. Res. Earth Surf. 2007, 112, F2. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Guo, J.; Han, B.; Sun, Q.; Liu, L. The effect of climate warming and permafrost thaw on desertification in the Qinghai-Tibetan Plateau. Gepmorphology 2009, 108, 182–190. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere 2018, 12, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Bao, Q.; Hoskins, B.; Wu, G.; Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 2008, 35, L14702. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, T. Recent permafrost warming on the Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2008, 113, D13108. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, T. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. J. Geophys. Res. Atmos. 2010, 115, D09107. [Google Scholar] [CrossRef]
- Frauenfeld, O.W.; Zhang, T.; Mccreight, J.L. Northern Hemisphere freezing/thawing index variations over the twentieth century. Int. J. Climatol. 2010, 27, 47–63. [Google Scholar] [CrossRef]
- Wu, T.; Qin, Y.; Wu, X.; Li, R.; Zou, D.; Xie, C. Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai-Tibet Plateau from 1980 to 2013. Theor. Appl. Climatol. 2018, 132, 1187–1199. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Zhao, L.; Liang, Y.; Cheng, G. Qinghai-Tibet Plateau wetting reduces permafrost thermal responses to climate warming. Earth Planet. Sci. Lett. 2021, 31, 916–930. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, C.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Li, W.; Ma, L.; Huang, M.; Zeng, H. Climate Warming Benefits Alpine Vegetation Growth in Three-River Headwater Region, China. Sci. Total Environ. 2020, 742, 140574. [Google Scholar] [CrossRef]
- Cai, D.; Fraedrich, K.; Sielmann, F.; Zhang, L.; Zhu, X.; Guo, S.; Guan, Y. Vegetation Dynamics on the Tibetan Plateau (1982–2006); An Attribution by Ecohydrological Diagnostics. J. Clim. 2015, 28, 4576–4584. [Google Scholar] [CrossRef]
- Li, J.; Chen, F.; Zhang, G.; Barlage, M.; Gan, Y.; Xin, X.; Wang, C. Impacts of Land Cover and Soil Texture Uncertainty on Land Model Simulations Over the Central Tibetan Plateau. J. Adv. Model. Earth Syst. 2018, 10, 2121–2146. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Ma, Y.; Salama, M.S.; Su, Z. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim. Chang. 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Wu, M.; Zhang, Y.; Ran, Y. Modeling the start of frozen dates with leaf senescence over Tibetan Plateau. Remote Sens. Environ. 2022, 281, 113258. [Google Scholar] [CrossRef]
- Fang, X.; Chen, Y.; Cheng, C.; Wang, Z.; Lyu, S.; Fraedrich, K. Changes of timing and duration of the ground surface freeze on the Tibetan Plateau in the highly wetting period from 1998 to 2021. Clim. Chang. 2023, 176, 59. [Google Scholar] [CrossRef]
- Meng, X.; Li, R.; Luan, L.; Lyu, S.; Zhang, T.; Ao, Y.; Han, B.; Zhao, L.; Ma, Y. Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau. Clim. Dyn. 2018, 51, 4157–4168. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Wu, T.; Zhao, L.; Wu, X.; Li, R.; Xie, C.; Pang, Q.; Hu, G.; Qiao, Y.; Zhao, G.; et al. Numerical Modeling of the Active Layer Thickness and Permafrost Thermal State Across Qinghai-Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 11604–11620. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Meng, Q.; Liu, D.; Fang, J.; Liu, J. Numeric simulation of permafrost degradation in the eastern Tibetan Plateau. Permafr. Periglac. Process. 2008, 19, 93–99. [Google Scholar] [CrossRef]
- Yang, M.; Nelson, F.E.; Shiklomanov, N.I.; Guo, D.; Wan, G. Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth Sci. Rev. 2010, 103, 31–44. [Google Scholar] [CrossRef]
- Yang, M.; Wang, X.; Pang, G.; Wan, G.; Liu, Z. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth Sci. Rev. 2019, 190, 353–369. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J. Geophys. Res. Atmos. 2013, 118, 5216–5230. [Google Scholar] [CrossRef]
- Yin, G.; Niu, F.; Lin, Z.; Luo, J.; Liu, M. Data-driven spatiotemporal projections of shallow permafrost based on CMIP6 across the Qinghai-Tibet Plateau at 1 km2 scale. Adv. Clim. Chang. Res. 2021, 12, 814–827. [Google Scholar] [CrossRef]
- Zhang, G.; Nan, Z.; Wu, X.; Ji, H.; Zhao, S. The Role of Warming in Permafrost Change over the Qinghai-Tibet Plateau. Geophys. Res. Lett. 2019, 46, 11261–11269. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Hu, G.; Zou, D.; Wu, X.; Ma, L.; Sun, Z.; Yuan, L.; Zhou, H.; Liu, S. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau. Bull. Chin. Acad. Sci. 2019, 34, 1233–1246. (In Chinese) [Google Scholar]
- Fang, X.; Li, Z.; Cheng, C.; Fraedrich, K.; Wang, A.; Chen, Y.; Xu, Y.; Lyu, S. Response of freezing/thawing indexes to the wetting trend under warming climate conditions over the Qinghai-Tibetan Plateau during 1961–2010: A Numerical Simulations. Adv. Atmos. Sci. 2023, 40, 211–222. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Bense, V.F.; Jin, X.; Li, X. Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the Headwater Area of the Yellow River, Tibetan Plateau. Geoderma 2020, 376, 114531. [Google Scholar] [CrossRef]
- Li, T.; Zheng, X.; Dai, Y.; Yang, C.; Chen, Z.; Zhang, S.; Wu, G.; Wang, Z.; Huang, C.; Shen, Y.; et al. Mapping near-surface air temperature, pressure, relative humidity and wind speed over Mainland China with high spatiotemporal resolution. Adv. Atmos. Sci. 2014, 31, 1127–1135. [Google Scholar] [CrossRef]
- Fang, X.; Luo, S.; Lyu, S.; Cheng, C.; Li, Z.; Zhang, S. Numerical modeling of the responses of soil temperature and soil moisture to climate change over the Tibetan Plateau. 1961–2010. Int. J. Climatol. 2021, 41, 4134–4150. [Google Scholar] [CrossRef]
- Pinzon, J.E.; Tucker, C.J. A Non-Stationary 1981–2012 AVHRR NDVI3g Time Series. Remote Sens. 2014, 6, 6929–6960. [Google Scholar] [CrossRef] [Green Version]
- Klene, A.E.; Nelson, F.E.; Shiklomanov, N.I.; Hinkel, K.M. The N-factor in natural landscapes: Variability of air and soil-surface temperatures, Kuparuk River Basin, Alaska, USA. Arct. Antarct. Alp. Res. 2001, 38, 140–148. [Google Scholar] [CrossRef]
- Luo, D.; Jin, H.; Marchenko, S.S.; Romanovsky, V.E. Difference between near-surface air, land surface and ground surface temperatures and their influences on the frozen ground on the Qinghai-Tibe Plateau. Geoderma 2018, 312, 74–85. [Google Scholar] [CrossRef]
- Wang, C.; Jin, S.; Wu, Z.; Cui, Y. Evaluation and Application of the Estimation Methods of Frozen (Thawing) Depth over China. Adv. Earth Sci. 2009, 24, 132–140. [Google Scholar]
- Change, Y.; Lyu, S.; Luo, S.; Li, Z.; Fang, X.; Chen, B.; Li, R.; Chen, S. Estimation of permafrost on the Tibetan Plateau under current and future climate conditions using the CMIP5 data. Int. J. Climatol. 2018, 38, 5659–5676. [Google Scholar] [CrossRef]
- Anisinov, O.A.; Nelson, F.E. Permafrost distribution in the Northern Hemishpere under scenarios of climatic change. Glob. Planet. Chang. 1996, 14, 59–72. [Google Scholar] [CrossRef]
- Slater, A.G.; Lawrence, D.M. Diagnosing Present and Future Permafrost from Climate Models. J. Clim. 2013, 26, 5608–5623. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Luo, S.; Lyu, S. Observed soil temperature trends associated with climate change in the Tibetan Plateau, 1960–2014. Theor. Appl. Climatol. 2019, 135, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Lawrence, D. A new fractional snow-covered area parameterization for the Community Land Model and its effect on the surface energy balance. J. Geophys. Res. Atmos. 2012, 117, D21107. [Google Scholar] [CrossRef]
- Guo, D.; Wang, H. Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010. Chin. Sci. Bull. 2014, 59, 2439–2448. [Google Scholar] [CrossRef]
- Fang, X.; Luo, S.; Lyu, S.; Chen, B.; Zhang, Y.; Ma, D.; Chang, Y. A Simulation and Validation of CLM during Freeze-Thaw on the Tibetan Plateau. Adv. Meteorol. 2016, 2016, 9476098. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Wang, C. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations. Agric. For. Meteorol. 2019, 265, 280–294. [Google Scholar] [CrossRef]
- Wu, Q.; Hou, Y.; Yun, H.; Liu, Y. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China. Glob. Planet. Chang. 2015, 124, 149–155. [Google Scholar] [CrossRef]
- Wang, G.; Liu, G.; Li, C.; Yang, Y. The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region. Agric. For. Meteorol. 2012, 162–163, 44–57. [Google Scholar]
- Yin, D.; Roderick, M.L. A framework to quantify the inter-annual variation in near-surface air temperature due to change in precipitation in snow-free regions. Environ. Res. Lett. 2020, 15, 114028. [Google Scholar] [CrossRef]
- Lamsal, P.; Kumar, L.; Shabani, F.; Atreya, K. The greening of the Himalayas and Tibetan Plateau under climate change. Glob. Planet. Chang. 2017, 159, 77–92. [Google Scholar] [CrossRef]
- Alessandri, A.; Catalano, F.; Felice, M.D.; Hurk, B.; Balsamo, G. Varying snow and vegetation signatures of surface-albedo feedback on the Northern Hemisphere land warming. Environ. Res. Lett. 2021, 16, 034023. [Google Scholar] [CrossRef]
- Gao, Y.; Li, X.; Leung, L.R.; Chen, D.; Xu, J. Aridity changes in the Tibetan Plateau in a warming climate. Environ. Res. Lett. 2015, 10, 034013. [Google Scholar] [CrossRef]
- Li, D.; Wen, Z.; Cheng, Q.; Xing, A.; Zhang, M.; Li, A. Thermal dynamics of the permafrost active layer under increased precipitation at the Qinghai-Tibet Plateau. J. Mt. Sci. 2019, 16, 309–322. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, L.; Li, R.; Wang, Q.; Xie, C.; Pang, Q. Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. Int. J. Climatol. 2013, 33, 920–930. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, T.; Yang, D. Permafrost dynamics and their hydrologic impacts over the Russian Arctic drainage basin. Adv. Clim. Chang. Res. 2021, 12, 482–498. [Google Scholar] [CrossRef]
- Pattison, R.R.; Jorgenson, J.C.; Raynolds, M.K.; Welker, J.M. Trend in NDVI and tundra community composition in the arctic of NE Alaska between 1984 and 2009. Ecosystems 2015, 18, 707–719. [Google Scholar] [CrossRef]
- Blok, D.; Heijmans, M.M.P.D.; Schaepman-Strub, G.; Kononov, A.V.; Maximov, T.C.; Berendse, F. Shrub expansion may reduce summer permafrost thaw in Siberian tundra. Glob. Chang. Biol. 2010, 16, 1296–1305. [Google Scholar] [CrossRef]
- Smith, S.L.; Lewkowicz, A.G.; Duchesne, C.; Ednie, M. Variability and change in permafrost thermal state in northern Canada. In Proceedings of the 68th Canadian Geotechnical Conference and Seventh Canadian Conference on Permafrost, Québec, QC, Canada, 20–23 September 2015. [Google Scholar]
- Lu, Y.; Yang, Y.; Wang, L.; Liu, J. Recent hiatus of Tibetan Plateau vegetation greening and the consequence impact on climate. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023. [Google Scholar]
Periods | Permafrost Area (×106 km2) | Region | AFI (°C·d/Decade) | GFI (°C·d/Decade) | ATI (°C·d/Decade) | GTI (°C·d/Decade) | AFI/ATI | GFI/GTI |
---|---|---|---|---|---|---|---|---|
1960s | 1.62 | permafrost | −20.75 | 14.99 | 2.07 | 2.25 | 4.94 | 1.15 |
SFG | −20.87 | 8.13 | −4.79 | −9.10 * | 0.64 | 0.28 | ||
QTP | −10.59 | 16.57 | −8.31 | −11.09 | 1.57 | 0.57 | ||
1970s | 1.50 (7.41% ↓) | permafrost | 0.40 | 1.72 | −0.53 | 0.25 | 4.73 | 1.18 |
SFG | 2.14 | 1.16 | 0.05 | 2.40 | 0.64 | 0.29 | ||
QTP | 1.32 | 0.73 | 0.45 | 2.67 | 1.44 | 0.57 | ||
1980s | 1.40 (6.67% ↓) | permafrost | −23.28 * | −13.68 * | 0.65 | −1.95 | 4.83 | 1.28 |
SFG | −14.87 * | −11.73 * | −3.79 | −5.19 | 0.68 | 0.31 | ||
QTP | −22.64 * | −17.13 * | 0.81 | −0.13 | 1.45 | 0.56 | ||
1990s | 1.53 (9.29% ↑) | permafrost | −6.93 | −5.55 | 1.17 | −4.09 | 4.31 | 1.44 |
SFG | −13.03 * | −14.75 * | 16.39 | 24.33 * | 0.60 | 0.36 | ||
QTP | −19.23 | −18.60 | 20.96 | 27.21 | 1.18 | 0.59 | ||
2000s | 1.02 (33.33% ↓) | permafrost | 13.37 | 14.73 | −6.41 | 10.98 | 3.36 | 0.98 |
SFG | 25.68 | 32.66 * | −12.91 | −9.57 | 0.53 | 0.24 | ||
QTP | 38.07 | 52.42 * | −20.07 | −38.16 | 1.20 | 0.49 |
Periods | Frozen Type | AFI | GFI | ATI | GTI | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | Trend | Mean | Trend | Mean | Trend | Mean | Trend | ||
1961–1990 | permafrost | 3357.15 | −13.59 | 2427.27 | 67.59 | 187.27 | 39.86 * | 940.77 | 29.26 |
SFG | 1806.63 | −44.27 * | 1258.67 | 1.48 | 1165.43 | 19.61 | 2120.32 | −10.70 | |
QTP | 1991.66 | −41.85 | 1397.33 | 8.58 | 1063.34 | 27.71 | 2009.92 | −0.11 | |
1991–2010 | permafrost | 3168.49 | −202.57 * | 2393.41 | −85.22 * | 263.83 | 16.94 | 918.51 | −83.58 |
SFG | 1640.24 | −148.97 * | 1184.92 | −42.39 | 1297.28 | 68.33 | 2162.22 | −15.20 | |
QTP | 1796.94 | −57.24 | 1275.56 | 3.21 | 1203.37 | 2.35 | 2154.49 | −45.90 | |
1961–2010 | permafrost | 3286.73 | −72.74 | 2413.87 | −0.50 | 217.57 | 32.73 * | 931.96 | −5.38 |
SFG | 1740.77 | −68.74 | 1229.48 | −24.35 | 1217.62 | 47.98 | 2136.69 | 6.13 | |
QTP | 1914.58 | −71.00 * | 1349.13 | −34.33 * | 1118.77 | 48.13 * | 2067.14 | 40.37 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Wang, A.; Lyu, S.; Fraedrich, K. Dynamics of Freezing/Thawing Indices and Frozen Ground from 1961 to 2010 on the Qinghai-Tibet Plateau. Remote Sens. 2023, 15, 3478. https://doi.org/10.3390/rs15143478
Fang X, Wang A, Lyu S, Fraedrich K. Dynamics of Freezing/Thawing Indices and Frozen Ground from 1961 to 2010 on the Qinghai-Tibet Plateau. Remote Sensing. 2023; 15(14):3478. https://doi.org/10.3390/rs15143478
Chicago/Turabian StyleFang, Xuewei, Anqi Wang, Shihua Lyu, and Klaus Fraedrich. 2023. "Dynamics of Freezing/Thawing Indices and Frozen Ground from 1961 to 2010 on the Qinghai-Tibet Plateau" Remote Sensing 15, no. 14: 3478. https://doi.org/10.3390/rs15143478
APA StyleFang, X., Wang, A., Lyu, S., & Fraedrich, K. (2023). Dynamics of Freezing/Thawing Indices and Frozen Ground from 1961 to 2010 on the Qinghai-Tibet Plateau. Remote Sensing, 15(14), 3478. https://doi.org/10.3390/rs15143478