Creation and Verification of a High-Resolution Multi-Parameter Surface Meteorological Assimilation Dataset for the Tibetan Plateau for 2010–2020 Available Online
Abstract
:1. Introduction
2. Methods
2.1. Introduction to WRF Model Configuration
2.2. Introduction to NCEP_ADP Data and Assimilation Methods
- (1)
- The multi-level q adjustment should be made while ensuring the conservation of column-integrated water vapor, considering the need to verify the supersaturation (RH > 95%) and the minimum relative humidity (RH < 11%) requirements.
- (2)
- The assimilation of surface observations will rely on the surface similarity theory within the planetary boundary layer instead of using the lowest model level’s first guess.
- (3)
- Any stations where the model’s interpolated height differs from the actual observation station’s height by more than 100 m will be deemed invalid and excluded.
- (4)
- This specifies the method used to interpolate the background into the observation space. The method involves selecting the neighboring model grid point with the smallest height difference, while disregarding the grid points over water.
2.3. Introduction to Observational Data and ERA-5 Data
3. Results
3.1. Comparison of Observations and QTP-HRAD Simulations from 10 Weather Stations
3.2. Comparison of Observations and QTP-HRAD over QTP Region
3.3. Comparison of QTP-HRAD and ERA-5 Data over QTP Region
4. Data Records and Availability
5. Conclusions
- We selected 10 representative weather stations in the QTP region and compared the observed and simulated values of the 2 m temperature, relative humidity, and precipitation for the period 2011–2020. It was found that the simulated surface pressure bias and RMSEs of the stations located in complex mountainous and terrain areas on the plateau were significantly different from the observed values. The bias between the observed and simulated surface pressure values at the Garz, Nyingchi, and Pulan stations were −93.84 hPa, −74.89 hPa, and −62.44 hPa, respectively, and the temperature and relative humidity bias of these sites were also large. However, at the stations with relatively flat terrain on the plateau such as Hotan, Nagqu, and Zoige, the disparities between the simulated and observed surface pressure values were minor, and the simulated values of the 2 m temperature, relative humidity, and wind speed were mostly in agreement with the observed values.
- The annual variations in the simulated and observed precipitation are relatively consistent. The simulated values can reflect the peak periods and magnitudes of summer precipitation on the plateau. The daily average evaporation and precipitation at the 10 stations show a significant positive correlation. The daily average evaporation in the summer is about 2–4 mm/d, while in the winter, it tends to be zero. Overall, there is more precipitation and evaporation at the stations in the eastern and southern parts of the QTP, such as Qamdo, Garz, Nyingchi, and Zoige, while the stations in the western and northern arid areas of the plateau, such as Hotan and Tuotuohe, have less precipitation and evaporation.
- An error statistical analysis was conducted on the observed and simulated values of the 2 m temperature, surface temperature, surface pressure, relative humidity, and 10 m wind speed at all 91 meteorological stations in the QTP region. It was found that the correlation coefficients of the 2 m temperature, surface temperature, and surface pressure were relatively high, all above 0.9. The correlation coefficient between the observed and simulated values of relative humidity was around 0.7 for most stations on the plateau, with positive bias at the stations in the southern part of the plateau and negative bias at the stations in the northern part. The correlation coefficient between the observed and simulated values of wind speed was relatively low, around 0.5, with positive bias at most stations on the plateau, indicating that the simulated values of the near-surface wind speed were higher than the observed values.
- We also compared the QTP-HRAD with ERA-5 on a regional scale and calculated their differences. The spatial distribution patterns of the two datasets for the 2 m temperature and surface temperature are quite consistent, with the QTP-HRAD values slightly lower than the ERA-5 in the southwest region of the plateau. The difference in the surface pressure between the two datasets shows clear positive and negative differences along the plateau boundary. The QTP-HRAD simulated specific humidity is about 2–5 g/kg higher than the ERA-5. The simulated values of the 10 m wind speed near the ground are also higher than the ERA-5, except for the central plateau area, with a difference of 1–3 m/s. The simulated precipitation amount shows the largest difference along the southern side of the plateau, particularly along the Himalayan range, and the annual total simulated precipitation amount by the QTP-HRAD is higher than that of the ERA-5.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qiu, J. The third pole: Climate change is coming fast and furious to the Tibetan plateau. Jane Qiu reports on the changes atop the roof of the world. Nature 2008, 454, 393–397. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Immerzeel, W.W. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Pepin, N. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Z.; Yan, L.; Yin, Z.Y. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Glob. Planet Change 2009, 68, 164–174. [Google Scholar] [CrossRef]
- Yao, T. Tackling on environmental changes in Tibetan Plateau with focus on water, ecosystem and adaptation. Sci. Bull. 2019, 64, 417. [Google Scholar] [CrossRef]
- Yao, T. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: Multidisciplinary approach with observations, modeling, and analysis. Bull. Amer. Meteor. Soc. 2019, 100, 423–444. [Google Scholar] [CrossRef]
- Chen, F.H. The Tibetan Plateau as the engine for Asian environmental change: The Tibetan Plateau Earth system research into a new era. Sci. Bull. 2021, 66, 1263–1266. [Google Scholar] [CrossRef]
- Gao, Y.-X.; Tang, M.-C.; Luo, S.-W.; Shen, Z.-B.; Li, C. Some aspects of recent research on the Qinghai-Xizang Plateau meteorology. Bull. Am. Meteorol. Soc. 1981, 62, 31–35. [Google Scholar] [CrossRef]
- Ye, D. Some characteristics of the summer circulation over the Qinghai-Xizang (Tibet) Plateau and its neighborhood. Bull. Am. Meteorol. Soc. 1981, 62, 14–19. [Google Scholar] [CrossRef]
- Yanai, M.; Li, C.; Song, Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteorol. Soc. Japan. Ser. II 1992, 70, 319–351. [Google Scholar] [CrossRef]
- Ye, D.-Z.; Wu, G.-X. The role of the heat source of the Tibetan Plateau in the general circulation. Meteorol. Atmos. Phys. 1998, 67, 181–198. [Google Scholar] [CrossRef]
- Tsukamoto, O.; Ishikawa, H.; Tamagawa, I. Analysis of aerodynamic and thermodynamic parameters on the grassy marshland surface of Tibetan Plateau. Prog. Nat. Sci. 2002, 12, 36–40. [Google Scholar]
- Ma, Y.; Su, Z.; Koike, T.; Yao, T.; Ishikawa, H.; Ueno, K.i.; Menenti, M. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau––From GAME/Tibet to CAMP/Tibet. Phys. Chem. Earth Parts A/B/C 2003, 28, 63–74. [Google Scholar] [CrossRef]
- Ma, Y.; Fan, S.; Ishikawa, H.; Tsukamoto, O.; Yao, T.; Koike, T.; Zuo, H.; Hu, Z.; Su, Z. Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area. Theor. Appl. Climatol. 2005, 80, 259–273. [Google Scholar] [CrossRef]
- Ma, Y.; Zhong, L.; Su, Z.; Ishikawa, H.; Menenti, M.; Koike, T. Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 Enhanced Thematic Mapper data over the central Tibetan Plateau area. J. Geophys. Res. Atmos. 2006, 111, D10305. [Google Scholar] [CrossRef]
- Qie, X.; Wu, X.; Yuan, T.; Bian, J.; Lu, D. Comprehensive pattern of deep convective systems over the Tibetan Plateau–South Asian monsoon region based on TRMM data. J. Clim. 2014, 27, 6612–6626. [Google Scholar] [CrossRef]
- Zhao, P.; Li, Y.; Guo, X.; Xu, X.; Liu, Y.; Tang, S.; Xiao, W.; Shi, C.; Ma, Y.; Yu, X. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: The Third Tibetan Plateau Atmospheric Science Experiment. J. Meteorol. Res. 2019, 33, 375–399. [Google Scholar] [CrossRef]
- Tao, S.; Luo, S.; Zhang, H. The Qinghai-Xizang Plateau Meteorological Experiment (Qxpmex) May–August 1979. In Proceedings of the International Symposium on the Qinghai-Xizang Plateau and Mountain Meteorology, Beijing, China, 20–24 March 1984; American Meteorological Society: Boston, MA, USA, 1986; pp. 3–13. Available online: https://link.springer.com/chapter/10.1007/978-1-935704-19-5_1 (accessed on 31 December 2020).
- Wang, J. Land surface process experiments and interaction study in China: From HEIFE to IMGRASS and GAME-Tibet/TIPEX. Plateau Meteorol. 1999, 18, 280–294. [Google Scholar]
- Ma, Y.-M.; Yao, T.-D.; Wang, J.-M. Experimental Study of Energy and Water Cycle in Tibetan Plateau—The Progress Introduction on the Study of GAME/Tibet and CAMP/Tibet. Plateau Meteorol. 2006, 25, 344–351. [Google Scholar]
- Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L.; Hong, Y.; Li, Y.; La, Z.; Peng, H. The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects. Bull. Am. Meteorol. Soc. 2018, 99, 757–776. [Google Scholar] [CrossRef]
- Wang, H.-J.; Sun, J.-Q.; Chen, H.-P.; Zhu, Y.-L.; Zhang, Y.; Jiang, D.-B.; Lang, X.-M.; Fan, K.; Yu, E.-T.; Yang, S. Extreme climate in China: Facts, simulation and projection. Meteorol. Z. 2012, 21, 279. [Google Scholar] [CrossRef]
- Dasari, H.P.; Salgado, R.; Perdigao, J.; Challa, V.S. A regional climate simulation study using WRF-ARW model over Europe and evaluation for extreme temperature weather events. Int. J. Atmos. Sci. 2014, 2014, 704079. [Google Scholar] [CrossRef]
- Sun, Q.; Zwiers, F.; Zhang, X.; Li, G. A comparison of intra-annual and long-term trend scaling of extreme precipitation with temperature in a large-ensemble regional climate simulation. J. Clim. 2020, 33, 9233–9245. [Google Scholar] [CrossRef]
- Sasai, T.; Kawase, H.; Kanno, Y.; Yamaguchi, J.; Sugimoto, S.; Yamazaki, T.; Sasaki, H.; Fujita, M.; Iwasaki, T. Future projection of extreme heavy snowfall events with a 5-km large ensemble regional climate simulation. J. Geophys. Res. Atmos. 2019, 124, 13975–13990. [Google Scholar] [CrossRef]
- Altaratz, O.; Koren, I.; Remer, L.; Hirsch, E. Cloud invigoration by aerosols—Coupling between microphysics and dynamics. Atmos. Res. 2014, 140, 38–60. [Google Scholar] [CrossRef]
- Morrison, H.; van Lier-Walqui, M.; Fridlind, A.M.; Grabowski, W.W.; Harrington, J.Y.; Hoose, C.; Korolev, A.; Kumjian, M.R.; Milbrandt, J.A.; Pawlowska, H. Confronting the challenge of modeling cloud and precipitation microphysics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001689. [Google Scholar] [CrossRef]
- Zhuo, H.; Liu, Y.; Jin, J. Improvement of land surface temperature simulation over the Tibetan Plateau and the associated impact on circulation in East Asia. Atmos. Sci. Lett. 2016, 17, 162–168. [Google Scholar] [CrossRef]
- Meng, X.; Lyu, S.; Zhang, T.; Zhao, L.; Li, Z.; Han, B.; Li, S.; Ma, D.; Chen, H.; Ao, Y. Simulated cold bias being improved by using MODIS time-varying albedo in the Tibetan Plateau in WRF model. Environ. Res. Lett. 2018, 13, 044028. [Google Scholar] [CrossRef]
- Peng, Q.; Meixue, Y.; Donglin, G.; Chu-xiong, C. Simulation of summer air temperature and precipitation over Tibetan Plateau with Regional Climate Model (RegCM3). Plateau Meteor. 2009, 28, 738–744. [Google Scholar]
- Zhang, D.; Gao, X.; Bai, H.; Li, D. Simulation of climate over Qinghai-Xizang Plateau utilizing RegCM3. Plateau Meteor. 2005, 24, 714–720. [Google Scholar]
- Gao, X.; Shi, Y.; Zhang, D.; Giorgi, F. Climate change in China in the 21st century as simulated by a high resolution regional climate model. Chin. Sci. Bull. 2012, 57, 1188–1195. [Google Scholar] [CrossRef]
- Gao, Y.; Xu, J.; Chen, D. Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during 1979–2011. J. Clim. 2015, 28, 2823–2841. [Google Scholar] [CrossRef]
- Yu, E.; Sun, J.; Chen, H.; Xiang, W. Evaluation of a high-resolution historical simulation over China: Climatology and extremes. Clim. Dyn. 2015, 45, 2013–2031. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, F.; Jiang, Y. Evaluation of a convection-permitting modeling of precipitation over the Tibetan Plateau and its influences on the simulation of snow-cover fraction. J. Hydrometeorol. 2020, 21, 1531–1548. [Google Scholar] [CrossRef]
- You, Q.; Min, J.; Zhang, W.; Pepin, N.; Kang, S. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim. Dyn. 2015, 45, 791–806. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, Y.; Wu, G. An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Sci. China Earth Sci. 2012, 55, 779–786. [Google Scholar] [CrossRef]
- Su, Z.; De Rosnay, P.; Wen, J.; Wang, L.; Zeng, Y. Evaluation of ECMWF’s soil moisture analyses using observations on the Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 5304–5318. [Google Scholar] [CrossRef]
- Zeng, Y.; Su, Z.; Van der Velde, R.; Wang, L.; Xu, K.; Wang, X.; Wen, J. Blending satellite observed, model simulated, and in situ measured soil moisture over Tibetan Plateau. Remote Sens. 2016, 8, 268. [Google Scholar] [CrossRef]
- Grose, M.R.; Narsey, S.; Delage, F.; Dowdy, A.J.; Bador, M.; Boschat, G.; Chung, C.; Kajtar, J.; Rauniyar, S.; Freund, M. Insights from CMIP6 for Australia’s future climate. Earth’s Future 2020, 8, e2019EF001469. [Google Scholar] [CrossRef]
- Ban, N.; Schmidli, J.; Schär, C. Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos. 2014, 119, 7889–7907. [Google Scholar] [CrossRef]
- Collier, E.; Mölg, T.; Sauter, T. Recent atmospheric variability at Kibo Summit, Kilimanjaro, and its relation to climate mode activity. J. Clim. 2018, 31, 3875–3891. [Google Scholar] [CrossRef]
- Ekström, M.; Grose, M.R.; Whetton, P.H. An appraisal of downscaling methods used in climate change research. Wiley Interdiscip. Rev. Clim. Chang. 2015, 6, 301–319. [Google Scholar] [CrossRef]
- Smith, T.L.; Benjamin, S.G.; Gutman, S.I.; Sahm, S. Short-range forecast impact from assimilation of GPS-IPW observations into the Rapid Update Cycle. Mon. Weather Rev. 2007, 135, 2914–2930. [Google Scholar] [CrossRef]
- Benjamin, S.G.; Dévényi, D.; Weygandt, S.S.; Brundage, K.J.; Brown, J.M.; Grell, G.A.; Kim, D.; Schwartz, B.E.; Smirnova, T.G.; Smith, T.L. An hourly assimilation–forecast cycle: The RUC. Mon. Weather Rev. 2004, 132, 495–518. [Google Scholar] [CrossRef]
- James, E.P.; Benjamin, S.G. Observation system experiments with the hourly updating Rapid Refresh model using GSI hybrid ensemble–variational data assimilation. Mon. Weather Rev. 2017, 145, 2897–2918. [Google Scholar] [CrossRef]
- Ha, S.-Y.; Snyder, C. Influence of surface observations in mesoscale data assimilation using an ensemble Kalman filter. Mon. Weather Rev. 2014, 142, 1489–1508. [Google Scholar] [CrossRef]
- Wen, X.; Zhu, X.; Li, M.; Guo, H.; Zhang, S.; Yang, X.; Zheng, Z.; Yan, D.; Zhang, Y.; Lv, S. QTP-HRAD[DS/OL]. V2. Science Data Bank. 2022. Available online: https://www.scidb.cn/en/detail?dataSetId=f0860df1bd8e4fee842baa70fe6d9b94# (accessed on 29 March 2023).
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Bae, S.Y.; Hong, S.-Y.; Lim, K.-S.S. Coupling WRF double-moment 6-class microphysics schemes to RRTMG radiation scheme in weather research forecasting model. Adv. Meteorol. 2016, 2016, 5070154. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Hamilton, K. Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Weather Rev. 2011, 139, 3489–3513. [Google Scholar] [CrossRef]
- Ek, M.; Mitchell, K.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, GCP12-1. [Google Scholar] [CrossRef]
- Janjić, Z.I. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Weather. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Chen, F.; Janjić, Z.; Mitchell, K. Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP mesoscale Eta model. Bound.-Layer Meteorol. 1997, 85, 391–421. [Google Scholar] [CrossRef]
- Bassett, R.; Young, P.; Blair, G.; Samreen, F.; Simm, W. A large ensemble approach to quantifying internal model variability within the WRF numerical model. J. Geophys. Res. Atmos. 2020, 125, e2019JD031286. [Google Scholar] [CrossRef]
- Zhang, X.; Cornuelle, B.D.; Martin, A.; Weihs, R.R.; Ralph, M. West-WRF Sensitivity to Sea Surface Temperature Boundary Condition in California Precipitation Forecasts of AR Related Events. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017; pp. A33H–2496. [Google Scholar]
- Zeng, X.; Beljaars, A. A prognostic scheme of sea surface skin temperature for modeling and data assimilation. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Ide, K.; Courtier, P.; Ghil, M.; Lorenc, A.C. Unified notation for data assimilation: Operational, sequential and variational (gtspecial issueltdata assimilation in meteology and oceanography: Theory and practice). J. Meteorol. Soc. Japan. Ser. II 1997, 75, 181–189. [Google Scholar] [CrossRef]
- Lorenc, A.C. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 1986, 112, 1177–1194. [Google Scholar] [CrossRef]
- Barker, D.M.; Huang, W.; Guo, Y.-R.; Bourgeois, A.; Xiao, Q. A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Weather. Rev. 2004, 132, 897–914. [Google Scholar] [CrossRef]
- Routray, A.; Mohanty, U.; Osuri, K.K.; Kiran Prasad, S. Improvement of monsoon depressions forecast with assimilation of Indian DWR data using WRF-3DVAR analysis system. Pure Appl. Geophys. 2013, 170, 2329–2350. [Google Scholar] [CrossRef]
- Dragani, R.; Hersbach, H.; Poli, P.; Pebeuy, C.; Hirahara, S.; Simmons, A.; Dee, D. Recent Reanalysis Activities at ECMWF: Results from ERA-20C and Plans for ERA5. AGU Fall Meet. Abstr. 2015, 2015, A11R-02. [Google Scholar]
- Urraca, R.; Huld, T.; Gracia-Amillo, A.; Martinez-De-Pison, F.J.; Kaspar, F.; Sanz-Garcia, A. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Sol. Energy 2018, 164, 339–354. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bao, X.; Zhang, F. Evaluation of NCEP–CFSR, NCEP–NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J. Clim. 2013, 26, 206–214. [Google Scholar] [CrossRef]
- You, Q.; Kang, S.; Pepin, N.; Flügel, W.-A.; Yan, Y.; Behrawan, H.; Huang, J. Relationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis data. Glob. Planet. Change 2010, 71, 124–133. [Google Scholar] [CrossRef]
- Frauenfeld, O.W.; Zhang, T.; Serreze, M.C. Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J. Geophys. Res. Atmos. 2005, 110, D02101.1–D02101.9. [Google Scholar] [CrossRef]
- Baolin, L.; Yichi, Z.; Chenghu, Z. Remote sensing detection of glacier changes in Tianshan Mountains for the past 40 years. J. Geogr. Sci. 2004, 14, 296–302. [Google Scholar] [CrossRef]
- Hanna, S.R.; Yang, R. Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths. J. Appl. Meteorol. 2001, 40, 1095–1104. [Google Scholar] [CrossRef]
- Horvath, K.; Koracin, D.; Vellore, R.; Jiang, J.; Belu, R. Sub-kilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res. Atmos. 2012, 117, D11111. [Google Scholar] [CrossRef]
- Wen, X.; Lu, S.; Jin, J. Integrating remote sensing data with WRF for improved simulations of oasis effects on local weather processes over an arid region in northwestern China. J. Hydrometeorol. 2012, 13, 573–587. [Google Scholar] [CrossRef]
Domain Configuration | Domain 1 | Domain 2 |
---|---|---|
Horizontal grid spacing | 25 km | 5 km |
Grid dimensions | 370 × 270 | 544 × 304 |
Time step | 180 s | 30 s |
Central longitude–latitude | 103°E, 38°N | 87.76°E, 33.41°N |
Geog data resolution | usgs_lakes + default | usgs_lakes + default |
Model physics | ||
Microphysics | Thompson scheme | |
Cumulus parameterization | Tiedtke scheme | |
Longwave and shortwave radiation | RRTMG scheme | |
Surface layer | Eta-similarity scheme | |
Land surface | Noah land surface model | |
Planetary boundary layer | Mellor–Yamada–Janjic scheme | |
Other physics options for long simulations | tmn_update: update deep soil temperature sst_skin: calculate skin SST based on Zeng and Beljaars [60] sst_update: update sea-surface temperature, vegetation fraction, albedo |
Weather Stations | 2 m Temperature (°C) | Specific Humidity (g/kg) | Surface Pressure (hPa) | 10 m Wind Speed (m/s) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE | Bias | R | RMSE | Bias | R | RMSE | Bias | R | RMSE | Bias | R | |
Qamdo | 4.88 | −4.51 | 0.96 * | 1.07 | −0.51 | 0.95 * | 59.9 | −59.86 | 0.89 * | 0.22 | 1.65 | 0.22 * |
Garz | 8.39 | −8.11 | 0.96 * | 1.14 | −0.82 | 0.96 * | 93.9 | −93.84 | 0.85 * | 1.72 | 1.29 | 0.22 * |
Hotan | 1.35 | 0.36 | 0.99 * | 0.75 | −0.26 | 0.96 * | 11.56 | −11.45 | 0.96 * | 1.73 | 1.34 | 0.51 * |
Nyingchi | 6.84 | −6.61 | 0.95 * | 0.90 | −0.48 | 0.97 * | 74.93 | −74.89 | 0.79 * | 1.151 | 0.536 | −0.15 |
Nagqu | 2.01 | −0.54 | 0.97 * | 0.77 | −0.39 | 0.97 * | 9.08 | −9.03 | 0.97 * | 1.54 | 1.16 | 0.54 * |
Pulan | 8.66 | −8.24 | 0.95 * | 0.81 | −0.46 | 0.97 * | 62.48 | −62.44 | 0.85 * | 1.259 | 0.117 | 0.003 |
Qumacai | 4.97 | −4.43 | 0.96 * | 1.18 | −0.89 | 0.96 * | 52.21 | −52.16 | 0.95 * | 2.59 | 2.0 | 0.23 * |
Zoige | 2.24 | −0.31 | 0.96 * | 0.73 | −0.22 | 0.97 * | 8.24 | −8.153 | 0.96 * | 1.67 | 1.25 | 0.33 * |
Tuotuohe | 2.19 | −1.00 | 0.97 * | 1.24 | −0.93 | 0.95 * | 20.48 | −20.46 | 0.97 * | 1.38 | 0.44 | 0.56 * |
Yushu | 3.68 | −2.95 | 0.96 * | 1.08 | −0.78 | 0.97 * | 39.50 | −39.47 | 0.90 * | 1.67 | 1.41 | 0.39 * |
Data Description | ||||
Data type | Gridded | |||
Projection | Mercator projection | |||
Horizontal coverage | The QTP region, 72.3°E to 103.2°E and 25.9°N to 40.3°N | |||
Horizontal resolution | 0.05° × 0.05°, about 5 × 5 km | |||
Vertical coverage | Land surface, 2 m and 10 m above the surface level | |||
Temporal coverage | Began at 00:00 (UTC) 1 January 2010 and ended at 23:00 (UTC) 31 December 2020 | |||
Temporal resolution | Hourly | |||
File format | NETCDF | |||
Variables of QTP-HRAD | ||||
Variables | Short_name | Long_name | Missing_value | Unit |
2 m temperature | t2 | TEMP at 2 m | 1 × 1030 | K |
Land surface temperature | tsk | Surface skin temperature | 1 × 1030 | K |
2 m relative humidity | rh2 | Relative Humidity at 2 m | 1 × 1030 | % |
Surface pressure | prs | Sfc pressure | 1 × 1030 | Pa |
2 m water vapor mixing ratio | q2 | QV at 2 m | 1 × 1030 | kg·kg−1 |
10 m U wind components | u10 | U at 10 m | 1 × 1030 | m·s−1 |
10 m V wind components | v10 | V at 10 m | 1 × 1030 | m·s−1 |
10 m wind speed | ws10 | Wind speed at 10 m | 1 × 1030 | m·s−1 |
10 m wind direction | wd10 | Wind direction at 10 m | 1 × 1030 | Degrees |
Precipitation | pre | Accumulated total cumulus precipitation, accumulated total grid scale precipitation | 1 × 1030 1 × 1030 | mm, mm |
2 m dew point temperature | td2 | Dewpoint temperature at 2 m | 1 × 1030 | °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Zhu, X.; Li, M.; Chen, M.; Zhang, S.; Yang, X.; Zheng, Z.; Qin, Y.; Zhang, Y.; Lv, S. Creation and Verification of a High-Resolution Multi-Parameter Surface Meteorological Assimilation Dataset for the Tibetan Plateau for 2010–2020 Available Online. Remote Sens. 2023, 15, 2906. https://doi.org/10.3390/rs15112906
Wen X, Zhu X, Li M, Chen M, Zhang S, Yang X, Zheng Z, Qin Y, Zhang Y, Lv S. Creation and Verification of a High-Resolution Multi-Parameter Surface Meteorological Assimilation Dataset for the Tibetan Plateau for 2010–2020 Available Online. Remote Sensing. 2023; 15(11):2906. https://doi.org/10.3390/rs15112906
Chicago/Turabian StyleWen, Xiaohang, Xian Zhu, Maoshan Li, Mei Chen, Shaobo Zhang, Xianyu Yang, Zhiyuan Zheng, Yikun Qin, Yu Zhang, and Shihua Lv. 2023. "Creation and Verification of a High-Resolution Multi-Parameter Surface Meteorological Assimilation Dataset for the Tibetan Plateau for 2010–2020 Available Online" Remote Sensing 15, no. 11: 2906. https://doi.org/10.3390/rs15112906
APA StyleWen, X., Zhu, X., Li, M., Chen, M., Zhang, S., Yang, X., Zheng, Z., Qin, Y., Zhang, Y., & Lv, S. (2023). Creation and Verification of a High-Resolution Multi-Parameter Surface Meteorological Assimilation Dataset for the Tibetan Plateau for 2010–2020 Available Online. Remote Sensing, 15(11), 2906. https://doi.org/10.3390/rs15112906