Performance Assessment of Global-EO-Based Precipitation Products against Gridded Rainfall from the Indian Meteorological Department
Abstract
:1. Introduction
2. Datasets and Methodology
2.1. Study Area
2.2. Precipitation Datasets
2.3. Methodology
3. Results and Discussion
3.1. Temporal Trend of Precipitation Products over India and Its Sub Regions
3.2. Satellite-Derived Precipitation Products Performance over India at Pixel-Scale
3.3. Performance of Precipitation Products over Sub Regions at Pixel Level
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kidd, C.; Becker, A.; Huffman, G.J.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D.B. So, how much of the Earth’s surface is covered by rain gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [Google Scholar] [CrossRef]
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Misra, V.; DiNapoli, S. The variability of the Southeast Asian summer monsoon. Int. J. Climatol. 2014, 34, 893–901. [Google Scholar] [CrossRef]
- Dikshit, K.R.; Dikshit, J.K. North-East India: Land, People and Economy; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Chakraborty, A.; Nanjundiah, R.; Srinivasan, J. Role of Asian and African orography in Indian summer monsoon. Geophys. Res. Lett. 2002, 29, 50-1–50-4. [Google Scholar] [CrossRef]
- Menon, A.; Levermann, A.; Schewe, J.; Lehmann, J.; Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn. 2013, 4, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Sunilkumar, K.; Narayana Rao, T.; Saikranthi, K.; Purnachandra Rao, M. Comprehensive evaluation of multisatellite precipitation estimates over India using gridded rainfall data. J. Geophys. Res. Atmos. 2015, 120, 8987–9005. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, A.S.; Singh, S.; Maurya, R.K.S.; Kisi, O.; Rani, A.; Danodia, A. Spatio-temporal analysis of rainfall dynamics of 120 years (1901–2020) using innovative trend methodology: A case study of Haryana, India. Sustainability 2022, 14, 4888. [Google Scholar] [CrossRef]
- Bushair, M.; Prakash, S.; Patel, S.; Gairola, R. Assessment of Kalpana-1 rainfall product over Indian meteorological sub-divisions during the summer monsoon season. J. Indian Soc. Remote Sens. 2016, 44, 67–76. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, V.; Singh, K.; Tripathi, J.; Kumar, A.; Sateesh, M.; Peshin, S. Validation of INSAT-3D derived rainfall estimates (HE & IMSRA), GPM (IMERG) and GLDAS 2.1 model rainfall product with IMD gridded rainfall & NMSG data over IMD’s meteorological sub-divisions during monsoon. Mausam 2018, 69, 177–192. [Google Scholar]
- Durai, V.; Bhowmik, S.R.; Mukhopadhyay, B. Evaluation of Indian summer monsoon rainfall features using TRMM and KALPANA-1 satellite derived precipitation and rain gauge observation. Mausam 2010, 61, 317–336. [Google Scholar] [CrossRef]
- Mahesh, C.; Prakash, S.; Gairola, R.; Shah, S.; Pal, P. Meteorological Sub-divisional Scale Rainfall Monitoring Using K alpana-1 VHRR Measurements. Geogr. Res. 2014, 52, 328–336. [Google Scholar] [CrossRef]
- Prakash, S.; Gairola, R.M. Large-scale precipitation estimation using Kalpana-1 IR measurements and its validation using GPCP and GPCC data. Theor. Appl. Climatol. 2011, 106, 283–293. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The global precipitation climatology project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Setti, S.; Maheswaran, R.; Sridhar, V.; Barik, K.K.; Merz, B.; Agarwal, A. Inter-comparison of gauge-based gridded data, reanalysis and satellite precipitation product with an emphasis on hydrological modeling. Atmosphere 2020, 11, 1252. [Google Scholar] [CrossRef]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Yong, B.; Liu, D.; Gourley, J.J.; Tian, Y.; Huffman, G.J.; Ren, L.; Hong, Y. Global view of real-time TRMM multisatellite precipitation analysis: Implications for its successor global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2015, 96, 283–296. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; AghaKouchak, A.; Liu, Z.; Norouzi, H.; Pai, D. A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region. J. Hydrol. 2018, 556, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Mitra, A.K.; Gairola, R.M.; Norouzi, H.; Pai, D.S. Status of high-resolution multisatellite precipitation products across India. In Remote Sensing of Aerosols, Clouds, and Precipitation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 301–314. [Google Scholar]
- Prakash, S.; Mitra, A.K.; Pai, D.; AghaKouchak, A. From TRMM to GPM: How well can heavy rainfall be detected from space? Adv. Water Resour. 2016, 88, 1–7. [Google Scholar] [CrossRef]
- Hoffmann, L.; Günther, G.; Li, D.; Stein, O.; Wu, X.; Griessbach, S.; Heng, Y.; Konopka, P.; Müller, R.; Vogel, B. From ERA-Interim to ERA5: The considerable impact of ECMWF’s next-generation reanalysis on Lagrangian transport simulations. Atmos. Chem. Phys. 2019, 19, 3097–3124. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiwoho, B.S.; Astuti, I.S.; Alfarizi, I.A.G.; Sucahyo, H.R. Validation of three daily satellite rainfall products in a humid tropic watershed, Brantas, Indonesia: Implications to land characteristics and hydrological modelling. Hydrology 2021, 8, 154. [Google Scholar] [CrossRef]
- Saicharan, V.; Rangaswamy, S.H. A Comparison and Ranking Study of Monthly Average Rainfall Datasets with IMD Gridded Data in India. Sustainability 2023, 15, 5758. [Google Scholar] [CrossRef]
- Dubey, R.K.; Dubey, P.K.; Chaurasia, R.; Rao, C.S.; Abhilash, P.C. Impact of integrated agronomic practices on soil fertility and respiration on the Indo-Gangetic Plain of North India. Agronomy 2021, 11, 402. [Google Scholar] [CrossRef]
- Dubey, S.; Gupta, H.; Goyal, M.K.; Joshi, N. Evaluation of precipitation datasets available on Google earth engine over India. Int. J. Climatol. 2021, 41, 4844–4863. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Singh, P.; Nautiyal, O.; Joshi, M.; Kumar, A.; Ahamad, T.; Singh, K. Assessment of physicochemical and radon-attributable radiological parameters of drinking water samples of Pithoragarh district, Uttarakhand. J. Radioanal. Nucl. Chem. 2021, 330, 1559–1570. [Google Scholar] [CrossRef]
- Rao, K.K.; Kulkarni, A.; Patwardhan, S.; Kumar, B.V.; Kumar, T. Future changes in precipitation extremes during northeast monsoon over south peninsular India. Theor. Appl. Climatol. 2020, 142, 205–217. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Singh, V.K.; Mohan, D.; Sinha, S. Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Anal. Chim. Acta 2005, 550, 82–91. [Google Scholar] [CrossRef]
- Singh, J.; Roy, P.; Murthy, M.; Jha, C.S. Application of landscape ecology and remote sensing for assessment, monitoring and conservation of biodiversity. J. Indian Soc. Remote Sens. 2010, 38, 365–385. [Google Scholar] [CrossRef]
- Nandy, S. Agro-Economic Indicators—A Comparative Study of North-Eastern States of India. J. Land Rural. Stud. 2014, 2, 75–88. [Google Scholar] [CrossRef]
- Widdowson, M. Tertiary palaeosurfaces of the SW Deccan, Western India: Implications for passive margin uplift. Geol. Soc. Lond. Spec. Publ. 1997, 120, 221–248. [Google Scholar] [CrossRef]
- Pai, D.; Rajeevan, M.; Sreejith, O.; Mukhopadhyay, B.; Satbha, N. Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. Mausam 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Momin, I.M.; Pai, D.; Rajagopal, E.; Basu, S. Comparison of TMPA-3B42 versions 6 and 7 precipitation products with gauge-based data over India for the southwest monsoon period. J. Hydrometeorol. 2015, 16, 346–362. [Google Scholar] [CrossRef]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, L.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Knoben, W.J.; Freer, J.E.; Woods, R.A. Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol. Earth Syst. Sci. 2019, 23, 4323–4331. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.; Sengupta, D.; Ravichandran, M. Variability of Indian summer monsoon rainfall in daily data from gauge and satellite. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Tiwari, S.; Jha, S.K.; Singh, A. Quantification of node importance in rain gauge network: Influence of temporal resolution and rain gauge density. Sci. Rep. 2020, 10, 9761. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
Datasets Name and Sources | Spatial Resolution | Temporal Resolution | Data Availability |
---|---|---|---|
IMD Gridded Data (https://www.imdpune.gov.in/lrfindex.php, accessed on 3 January 2023) | 0.25° | Daily | 1901–Present |
CHIRPS (https://data.chc.ucsb.edu/products/CHIRPS-2.0/, accessed on 6 January 2023) | 0.05° | Daily | 1981–Present |
NASA POWER (https://power.larc.nasa.gov/beta/data-access-viewer/, accessed on 9 January 2023) | 0.5° | Daily | 1981–Present |
ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/home, accessed on 14 January 2023) | 0.1° | Daily | 1950–Present |
PERSIANN-CDR (https://chrsdata.eng.uci.edu/, accessed on 18 January 2023) | 0.25° | Daily | 1983–Present |
INDIA | ||||
---|---|---|---|---|
CHIRPS | NASA-POWER | ERA-5 | PERSIANN-CDR | |
Correlation coefficient | 0.44 | 0.47 | 0.52 | 0.54 |
RMSE (mm day−1) | 1.07 | 1.04 | 1.19 | 1.15 |
Systematic Error (%) | 4.63 | 3.76 | 5.38 | 4.93 |
Bias | 0.09 | 0.27 | −0.33 | −0.05 |
Variability Ratio | 0.97 | 0.95 | 0.95 | 0.94 |
KGE | 0.17 | 0.22 | 0.28 | 0.31 |
CENTRAL INDIA | ||||
---|---|---|---|---|
CHIRPS | NASA-POWER | ERA-5 | PERSIANN-CDR | |
Correlation coefficient | 0.50 | 0.59 | 0.59 | 0.62 |
RMSE (mm day−1) | 0.83 | 0.79 | 0.86 | 0.94 |
Systematic Error (%) | 4.244 | 3.754 | 4.824 | 4.404 |
Bias | 0.0994 | 0.033 | −0.08 | −0.11 |
Variability Ratio | 0.98 | 0.94 | 1.00 | 0.95 |
KGE | 0.27 | 0.40 | 0.39 | 0.42 |
NORTHEAST INDIA | ||||
---|---|---|---|---|
CHIRPS | NASA-POWER | ERA-5 | PERSIANN-CDR | |
Correlation coefficient | 0.35 | 0.30 | 0.41 | 0.44 |
RMSE (mm day−1) | 1.85 | 1.86 | 2.61 | 2.06 |
Systematic Error (%) | 11.04 | 8.76 | 12.75 | 11.92 |
Bias | 0.07 | 0.83 | −1.43 | 0.08 |
Variability Ratio | 0.96 | 0.968 | 0.93 | 0.982 |
KGE | 0.054 | −0.01 | 0.049 | 0.15 |
NORTHWEST INDIA | ||||
---|---|---|---|---|
CHIRPS | NASA-POWER | ERA-5 | PERSIANN-CDR | |
Correlation coefficient | 0.40 | 0.38 | 0.50 | 0.50 |
RMSE (mm day−1) | 0.95 | 0.94 | 0.917 | 0.87 |
Systematic Error (%) | 1.94 | 1.89 | 2.23 | 2.02 |
Bias | 0.18 | 0.42 | −0.15 | 0.05 |
Variability Ratio | 0.94 | 0.94 | 0.90 | 0.93 |
KGE | 0.09 | 0.07 | 0.22 | 0.24 |
SOUTH PENINSULA | ||||
---|---|---|---|---|
CHIRPS | NASA-POWER | ERA-5 | PERSIANN-CDR | |
Correlation coefficient | 0.46 | 0.53 | 0.54 | 0.53 |
RMSE (mm day−1) | 0.99 | 0.95 | 1.01 | 1.22 |
Systematic Error (%) | 4.32 | 2.74 | 5.40 | 5.05 |
Bias | −0.08 | −0.001 | −0.15 | −0.25 |
Variability Ratio | 0.98 | 0.94 | 0.96 | 0.92 |
KGE | 0.21 | 0.31 | 0.31 | 0.25 |
Region Name ↓ | Indices → | R (Mean) | RMSE (Mean) | Variability Ratio (Mean) | KGE (Mean) | ||||
---|---|---|---|---|---|---|---|---|---|
Data Products ↓ | Rainfall (0–7) mm/day | Rainfall (7–above) mm/day | Rainfall (0–7) mm/day | Rainfall (7–above) mm/day | Rainfall (0–7) mm/day | Rainfall (7–above) mm/day | Rainfall (0–7) mm/day | Rainfall (7–above) mm/day | |
India | CHIRPS | 0.44 | 0.28 | 0.96 | 3.69 | 0.97 | 0.98 | 0.18 | −0.07 |
NASA POWER | 0.47 | 0.44 | 0.93 | 3.88 | 0.95 | 0.97 | 0.22 | 0.13 | |
ERA 5 | 0.53 | 0.42 | 1.08 | 3.97 | 0.96 | 0.90 | 0.28 | 0.08 | |
PERSIANN CDR | 0.21 | 0.29 | 0.99 | 4.92 | 0.95 | 0.91 | 0.32 | −0.25 | |
Central India | CHIRPS | 0.50 | 0.46 | 0.77 | 3.64 | 0.99 | 0.96 | 0.28 | 0.16 |
NASA POWER | 0.60 | 0.63 | 0.72 | 3.93 | 0.95 | 0.95 | 0.41 | 0.35 | |
ERA 5 | 0.59 | 0.67 | 0.81 | 3.05 | 1.01 | 0.97 | 0.40 | 0.46 | |
PERSIANN CDR | 0.64 | 0.26 | 0.82 | 5.42 | 0.96 | 0.88 | 0.44 | −0.19 | |
North-West | CHIRPS | 0.40 | - | 0.95 | - | 0.95 | - | 0.10 | - |
NASA POWER | 0.38 | - | 0.92 | - | 0.95 | - | 0.08 | - | |
ERA 5 | 0.50 | - | 0.92 | - | 0.90 | - | 0.23 | - | |
PERSIANN CDR | 0.51 | - | 0.87 | - | 0.93 | - | 0.25 | - | |
North-East | CHIRPS | 0.39 | 0.14 | 1.47 | 4.28 | 0.97 | 0.98 | 0.10 | −0.27 |
NASA POWER | 0.29 | 0.40 | 1.49 | 4.40 | 0.97 | 0.99 | −0.02 | 0.06 | |
ERA 5 | 0.44 | 0.32 | 2.24 | 5.04 | 0.99 | 0.86 | 0.07 | −0.10 | |
PERSIANN CDR | 0.48 | 0.22 | 1.63 | 0.94 | 0.98 | 0.98 | 0.21 | −0.19 | |
South Peninsula | CHIRPS | 0.47 | 0.41 | 0.90 | 2.54 | 0.99 | 0.99 | 0.22 | 0.14 |
NASA POWER | 0.54 | 0.39 | 0.84 | 2.82 | 0.94 | 0.96 | 0.33 | 0.10 | |
ERA 5 | 0.55 | 0.43 | 0.92 | 2.58 | 0.97 | 0.91 | 0.33 | 0.17 | |
PERSIANN CDR | 0.56 | 0.06 | 1.02 | 4.65 | 0.93 | 0.81 | 0.30 | −0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awasthi, N.; Tripathi, J.N.; Petropoulos, G.P.; Gupta, D.K.; Singh, A.K.; Kathwas, A.K. Performance Assessment of Global-EO-Based Precipitation Products against Gridded Rainfall from the Indian Meteorological Department. Remote Sens. 2023, 15, 3443. https://doi.org/10.3390/rs15133443
Awasthi N, Tripathi JN, Petropoulos GP, Gupta DK, Singh AK, Kathwas AK. Performance Assessment of Global-EO-Based Precipitation Products against Gridded Rainfall from the Indian Meteorological Department. Remote Sensing. 2023; 15(13):3443. https://doi.org/10.3390/rs15133443
Chicago/Turabian StyleAwasthi, Nitesh, Jayant Nath Tripathi, George P. Petropoulos, Dileep Kumar Gupta, Abhay Kumar Singh, and Amar Kumar Kathwas. 2023. "Performance Assessment of Global-EO-Based Precipitation Products against Gridded Rainfall from the Indian Meteorological Department" Remote Sensing 15, no. 13: 3443. https://doi.org/10.3390/rs15133443
APA StyleAwasthi, N., Tripathi, J. N., Petropoulos, G. P., Gupta, D. K., Singh, A. K., & Kathwas, A. K. (2023). Performance Assessment of Global-EO-Based Precipitation Products against Gridded Rainfall from the Indian Meteorological Department. Remote Sensing, 15(13), 3443. https://doi.org/10.3390/rs15133443