Dependence of the Bidirectional Reflectance Distribution Function Factor ƒ′ on the Particulate Backscattering Ratio in an Inland Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Radiative Transfer Basic Theory
2.2. Inherent Optical Properties Model
2.3. Input Parameters
- Wavelength, (100 values, from 400 nm to 750 nm at an interval of 5 nm)
- Bottom reflectance (macrophytes and clean seagrass, Figure 1a)
- Chlorophyll-bearing particle ratio, (16 values, from 0.005 to 0.018 at an interval of 0.001 as well as 0.0024 and the Petzold average of 0.0183)
- Mineral particle ratio, (13 values, from 0.01 to 0.06 at an interval of 0.005 as well as 0.013 and the Petzold average of 0.0183).
- CDOM (0.30 m−1 at 440 nm)
- Wind speed: 5 m/s
- Real index of refraction, n: 1.34
- Cloud coverage: 0%
- Airmass type: continental
- Relative humidity: 80.0%
- Aerosol optical thickness at 550 nm: 0.261
- Total ozone: 300.0 Dobson units
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morel, A.; Prieur, L. Analysis of Variations in Ocean Color1: Ocean Color Analysis. Limnol. Oceanogr. 1977, 22, 709–722. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Dependence of Relationship Between Inherent and Apparent Optical Properties of Water on Solar Altitude. Limnol. Oceanogr. 1984, 29, 350–356. [Google Scholar] [CrossRef]
- Gordon, H.R. Dependence of the Diffuse Reflectance of Natural Waters on the Sun Angle. Limnol. Oceanogr. 1989, 34, 1484–1489. [Google Scholar] [CrossRef]
- Gordon, H.R.; Brown, O.B.; Jacobs, M.M. Computed Relationships Between the Inherent and Apparent Optical Properties of a Flat Homogeneous Ocean. Appl. Opt. 1975, 14, 417. [Google Scholar] [CrossRef] [PubMed]
- Højerslev, N.K. Analytic Remote-Sensing Optical Algorithms Requiring Simple and Practical Field Parameter Inputs. Appl. Opt. 2001, 40, 4870. [Google Scholar] [CrossRef] [PubMed]
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional Reflectance of Oceanic Waters: Accounting for Raman Emission and Varying Particle Scattering Phase Function. Appl. Opt. 2002, 41, 6289. [Google Scholar] [CrossRef]
- He, S.; Zhang, X.; Xiong, Y.; Gray, D. A Bidirectional Subsurface Remote Sensing Reflectance Model Explicitly Accounting for Particle Backscattering Shapes. JGR Oceans 2017, 122, 8614–8626. [Google Scholar] [CrossRef]
- Lee, Z.P.; Du, K.; Voss, K.J.; Zibordi, G.; Lubac, B.; Arnone, R.; Weidemann, A. An Inherent-Optical-Property-Centered Approach to Correct the Angular Effects in Water-Leaving Radiance. Appl. Opt. 2011, 50, 3155. [Google Scholar] [CrossRef]
- Zhai, P.-W.; Hu, Y.; Trepte, C.R.; Winker, D.M.; Lucker, P.L.; Lee, Z.; Josset, D.B. Uncertainty in the Bidirectional Reflectance Model for Oceanic Waters. Appl. Opt. 2015, 54, 4061. [Google Scholar] [CrossRef]
- Morel, A.; Mueller, J.L. Normalized Water-Leaving Radiance and Remote Sensing Reflectance: Bidirectional Reflectance and Other Factors. In Ocean Optics Protocols For Satellite Ocean Color Sensor Validation; Revision 3; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 2002; pp. 183–210. [Google Scholar]
- Kirk, J.T.O. Volume Scattering Function, Average Cosines, and the Underwater Light Field. Limnol. Oceanogr. 1991, 36, 455–467. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B. Diffuse Reflectance of Oceanic Waters: Its Dependence on Sun Angle as Influenced by the Molecular Scattering Contribution. Appl. Opt. 1991, 30, 4427. [Google Scholar] [CrossRef] [PubMed]
- Loisel, H.; Morel, A. Non-Isotropy of the Upward Radiance Field in Typical Coastal (Case 2) Waters. Int. J. Remote Sens. 2001, 22, 275–295. [Google Scholar] [CrossRef]
- Chami, M.; Thirouard, A.; Harmel, T. POLVSM (Polarized Volume Scattering Meter) Instrument: An Innovative Device to Measure the Directional and Polarized Scattering Properties of Hydrosols. Opt. Express 2014, 22, 26403. [Google Scholar] [CrossRef] [PubMed]
- Harmel, T. Recent Developments in the Use of Light Polarization for Marine Environment Monitoring from Space. In Light Scattering Reviews 10; Springer: Berlin/Heidelberg, Germany, 2016; pp. 41–84. ISBN 978-3-662-46761-9. [Google Scholar]
- Twardowski, M.; Tonizzo, A. Ocean Color Analytical Model Explicitly Dependent on the Volume Scattering Function. Appl. Sci. 2018, 8, 2684. [Google Scholar] [CrossRef] [Green Version]
- Mobley, C.D.; Sundman, L.K.; Boss, E. Phase Function Effects on Oceanic Light Fields. Appl. Opt. 2002, 41, 1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, G.R.; Forand, J.L. Analytic Phase Function for Ocean Water; Jaffe, J.S., Ed.; SPIE: Bergen, Norway, 1994; pp. 194–201. [Google Scholar]
- Whitmire, A.L.; Boss, E.; Cowles, T.J.; Pegau, W.S. Spectral Variability of the Particulate Backscattering Ratio. Opt. Express 2007, 15, 7019. [Google Scholar] [CrossRef] [Green Version]
- Gordon, H.R.; Smyth, T.J.; Balch, W.M.; Boynton, G.C.; Tarran, G.A. Light Scattering by Coccoliths Detached from Emiliania Huxleyi. Appl. Opt. 2009, 48, 6059. [Google Scholar] [CrossRef]
- Boss, E. Particulate Backscattering Ratio at LEO 15 and Its Use to Study Particle Composition and Distribution. J. Geophys. Res. 2004, 109, C01014. [Google Scholar] [CrossRef] [Green Version]
- McKee, D.; Cunningham, A. Identification and Characterisation of Two Optical Water Types in the Irish Sea from in Situ Inherent Optical Properties and Seawater Constituents. Estuar. Coast. Shelf Sci. 2006, 68, 305–316. [Google Scholar] [CrossRef]
- Loisel, H.; Mériaux, X.; Berthon, J.-F.; Poteau, A. Investigation of the Optical Backscattering to Scattering Ratio of Marine Particles in Relation to Their Biogeochemical Composition in the Eastern English Channel and Southern North Sea. Limnol. Oceanogr. 2007, 52, 739–752. [Google Scholar] [CrossRef]
- Snyder, W.A.; Arnone, R.A.; Davis, C.O.; Goode, W.; Gould, R.W.; Ladner, S.; Lamela, G.; Rhea, W.J.; Stavn, R.; Sydor, M.; et al. Optical Scattering and Backscattering by Organic and Inorganic Particulates in US Coastal Waters. Appl. Opt. 2008, 47, 666. [Google Scholar] [CrossRef] [Green Version]
- Gordon, H.R.; Lewis, M.R.; McLean, S.D.; Twardowski, M.S.; Freeman, S.A.; Voss, K.J.; Boynton, G.C. Spectra of Particulate Backscattering in Natural Waters. Opt. Express 2009, 17, 16192. [Google Scholar] [CrossRef]
- Soja-Woźniak, M.; Baird, M.; Schroeder, T.; Qin, Y.; Clementson, L.; Baker, B.; Boadle, D.; Brando, V.; Steven, A.D.L. Particulate Backscattering Ratio as an Indicator of Changing Particle Composition in Coastal Waters: Observations From Great Barrier Reef Waters. J. Geophys. Res. Oceans 2019, 124, 5485–5502. [Google Scholar] [CrossRef]
- Sun, D.; Su, X.; Wang, S.; Qiu, Z.; Ling, Z.; Mao, Z.; He, Y. Variability of Particulate Backscattering Ratio and Its Relations to Particle Intrinsic Features in the Bohai Sea, Yellow Sea, and East China Sea. Opt. Express 2019, 27, 3074. [Google Scholar] [CrossRef]
- Kheireddine, M.; Brewin, R.J.W.; Ouhssain, M.; Jones, B.H. Particulate Scattering and Backscattering in Relation to the Nature of Particles in the Red Sea. J. Geophys. Res. Oceans 2021, 126, e2020JC016610. [Google Scholar] [CrossRef]
- Petzold, T.J. Volume Scattering Functions for Selected Ocean Waters; Defense Technical Information Center: Fort Belvoir, VA, USA, 1972. [Google Scholar]
- Mobley, C.D.; Gentili, B.; Gordon, H.R.; Jin, Z.; Kattawar, G.W.; Morel, A.; Reinersman, P.; Stamnes, K.; Stavn, R.H. Comparison of Numerical Models for Computing Underwater Light Fields. Appl. Opt. 1993, 32, 7484. [Google Scholar] [CrossRef] [Green Version]
- Morel, A.; Gentili, B. Diffuse Reflectance of Oceanic Waters III Implication of Bidirectionality for the Remote-Sensing Problem. Appl. Opt. 1996, 35, 4850. [Google Scholar] [CrossRef]
- Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of Light Absorption by Suspended Particles with Chlorophyll a Concentration in Oceanic (Case 1) Waters: Analysis and Implications for Bio-Optical Models. J. Geophys. Res. 1998, 103, 31033–31044. [Google Scholar] [CrossRef]
- Pope, R.M.; Fry, E.S. Absorption Spectrum (380–700 Nm) of Pure Water II Integrating Cavity Measurements. Appl. Opt. 1997, 36, 8710. [Google Scholar] [CrossRef]
- Prieur, L.; Sathyendranath, S. An Optical Classification of Coastal and Oceanic Waters Based on the Specific Spectral Absorption Curves of Phytoplankton Pigments, Dissolved Organic Matter, and Other Particulate Materials1: Optical Classification. Limnol. Oceanogr. 1981, 26, 671–689. [Google Scholar] [CrossRef]
- Ahn, Y.-H. Proprietes Optiques Des Particules Biologiques et Minerales Presentes Dans l’ocean. Application: Inversion de La Reflectance. Ph.D. Thesis, Universite Pierre et Marie Curie, Paris, France, 1990; 214p. [Google Scholar]
- Bricaud, A.; Morel, A.; Prieur, L. Absorption by Dissolved Organic Matter of the Sea (Yellow Substance) in the UV and Visible Domains. Limnol. Oceanogr. 1981, 26, 43–53. [Google Scholar] [CrossRef]
- Loisel, H.; Morel, A. Light Scattering and Chlorophyll Concentration in Case 1 Waters: A Reexamination. Limnol. Oceanogr. 1998, 43, 847–858. [Google Scholar] [CrossRef] [Green Version]
- Chami, M.; Marken, E.; Stamnes, J.J.; Khomenko, G.; Korotaev, G. Variability of the Relationship between the Particulate Backscattering Coefficient and the Volume Scattering Function Measured at Fixed Angles. J. Geophys. Res. 2006, 111, C05013. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, L.; He, M.-X. Scattering by Pure Seawater: Effect of Salinity. Opt. Express 2009, 17, 5698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffrey, S.W.; Humphrey, G.F. New Spectrophotometric Equations for Determining Chlorophylls a, b, C1 and C2 in Higher Plants, Algae and Natural Phytoplankton. Biochem. Physiol. Pflanz. 1975, 167, 191–194. [Google Scholar] [CrossRef]
- Harrison, A.W.; Coombes, C.A. Angular Distribution of Clear Sky Short Wavelength Radiance. Sol. Energy 1988, 40, 57–63. [Google Scholar] [CrossRef]
- Kasten, F.; Czeplak, G. Solar and Terrestrial Radiation Dependent on the Amount and Type of Cloud. Sol. Energy 1980, 24, 177–189. [Google Scholar] [CrossRef]
- Mobley, C.D.; Zhang, H.; Voss, K.J. Effects of Optically Shallow Bottoms on Upwelling Radiances: Bidirectional Reflectance Distribution Function Effects. Limnol. Oceanogr. 2003, 48, 337–345. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters: 2 Deriving Bottom Depths and Water Properties by Optimization. Appl. Opt. 1999, 38, 3831. [Google Scholar] [CrossRef] [Green Version]
- Spyrakos, E.; O’Donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.H.; Neil, C.; Barbosa, C.C.F.; Binding, C.E.; Bradt, S.; et al. Optical Types of Inland and Coastal Waters: Optical Types of Inland and Coastal Waters. Limnol. Oceanogr. 2018, 63, 846–870. [Google Scholar] [CrossRef] [Green Version]
- Seegers, B.N.; Werdell, P.J.; Vandermeulen, R.A.; Salls, W.; Stumpf, R.P.; Schaeffer, B.A.; Owens, T.J.; Bailey, S.W.; Scott, J.P.; Loftin, K.A. Satellites for Long-Term Monitoring of Inland U.S. Lakes: The MERIS Time Series and Application for Chlorophyll-a. Remote Sens. Environ. 2021, 266, 112685. [Google Scholar] [CrossRef]
- Kutser, T.; Vahtmäe, E.; Paavel, B.; Kauer, T. Removing Glint Effects from Field Radiometry Data Measured in Optically Complex Coastal and Inland Waters. Remote Sens. Environ. 2013, 133, 85–89. [Google Scholar] [CrossRef]
- Gleason, A.C.R.; Voss, K.J.; Gordon, H.R.; Twardowski, M.; Sullivan, J.; Trees, C.; Weidemann, A.; Berthon, J.-F.; Clark, D.; Lee, Z.-P. Detailed Validation of the Bidirectional Effect in Various Case I and Case II Waters. Opt. Express 2012, 20, 7630. [Google Scholar] [CrossRef]
- Qian, S. Bi-Directional Properties of Light Field of Inland Waters Based on Simulated Data by Hydrolight. J. Beijing Univ. Technol. 2017, 43, 649–658. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A Four-Band Semi-Analytical Model for Estimating Chlorophyll a in Highly Turbid Lakes: The Case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Knaeps, E.; Ruddick, K.G.; Doxaran, D.; Dogliotti, A.I.; Nechad, B.; Raymaekers, D.; Sterckx, S. A SWIR Based Algorithm to Retrieve Total Suspended Matter in Extremely Turbid Waters. Remote Sens. Environ. 2015, 168, 66–79. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Li, L.; Song, K.; Li, Y.; Lyu, H.; Wen, Z.; Fang, C.; Bi, S.; Sun, X.; Wang, Z.; et al. An OLCI-Based Algorithm for Semi-Empirically Partitioning Absorption Coefficient and Estimating Chlorophyll a Concentration in Various Turbid Case-2 Waters. Remote Sens. Environ. 2020, 239, 111648. [Google Scholar] [CrossRef]
Parameters | Min | Max | Mean | Std |
---|---|---|---|---|
Chla [mg m−3] | 5.00 | 22.32 | 8.94 | 3.38 |
TSM [mg L−1] | 1.02 | 31.21 | 9.17 | 7.01 |
Depth [m] | 0.79 | 2.33 | 1.37 | 0.32 |
Solar zenith (°) | 15.70 | 48.15 | 27.08 | 9.49 |
Parameter | ||||||
---|---|---|---|---|---|---|
2.0–2.2 | 2.2–2.5 | 2.5–3.0 | 3.0–3.5 | 3.5–4.0 | 4.0–5.0 | |
0.003–0.004 | 16.21 ± 0.25 | |||||
0.004–0.005 | 12.87 ± 0.20 | 10.11 ± 0.16 | 6.21 ± 0.10 | |||
0.005–0.006 | 10.26 ± 0.16 | 8.09 ± 0.13 | 5.11 ± 0.08 | 4.39 ± 0.07 | 3.17 ± 0.05 | |
0.006–0.007 | 9.00 ± 0.14 | 6.91 ± 0.11 | 4.66 ± 0.08 | 3.71 ± 0.06 | 2.51 ± 0.04 | |
0.007–0.008 | 7.78 ± 0.12 | 6.05 ± 0.10 | 4.01 ± 0.07 | 3.45 ± 0.06 | 2.23 ± 0.04 | |
0.008–0.009 | 6.86 ± 0.11 | 5.40 ± 0.09 | 3.66 ± 0.06 | 3.06 ± 0.05 | 1.88 ± 0.03 | |
0.009–0.01 | 6.19 ± 0.10 | 4.76 ± 0.08 | 3.14 ± 0.06 | 2.61 ± 0.04 | 1.74 ± 0.03 | |
0.01–0.012 | 5.35 ± 0.08 | 4.12 ± 0.07 | 2.66 ± 0.05 | 2.21 ± 0.04 | 1.52 ± 0.03 | 1.16 ± 0.02 |
0.012–0.014 | 4.53 ± 0.07 | 3.54 ± 0.06 | 2.30 ± 0.05 | 1.93 ± 0.03 | 1.36 ± 0.02 | 0.99 ± 0.02 |
0.014–0.016 | 3.92 ± 0.06 | 3.07 ± 0.05 | 2.03 ± 0.05 | 1.71 ± 0.03 | 1.22 ± 0.02 | 0.87 ± 0.02 |
0.016–0.018 | 3.47 ± 0.05 | 2.72 ± 0.04 | 1.82 ± 0.04 | 1.54 ± 0.03 | 1.03 ± 0.02 | 0.77 ± 0.01 |
0.018–0.02 | 3.13 ± 0.05 | 2.44 ± 0.04 | 1.55 ± 0.04 | 1.30 ± 0.02 | 0.85 ± 0.02 | 0.70 ± 0.01 |
0.02–0.025 | 2.78 ± 0.04 | 2.13 ± 0.03 | 1.27 ± 0.03 | 1.07 ± 0.02 | 0.72 ± 0.01 | 0.59 ± 0.01 |
0.025–0.03 | 1.78 ± 0.03 | 1.08 ± 0.03 | 0.92 ± 0.02 | 0.61 ± 0.01 | 0.49 ± 0.01 | |
0.03–0.035 | 6.21 ± 0.10 | 0.81 ± 0.02 | 0.57 ± 0.01 | 0.42 ± 0.01 | ||
0.035–0.04 | 0.74 ± 0.01 | 3.17 ± 0.05 | 0.34 ± 0.01 | |||
0.04–0.045 | 4.39 ± 0.07 | 2.51 ± 0.04 | ||||
0.045–0.055 | 0.29 ± 0.01 |
Station | n | at 440 nm | |||
---|---|---|---|---|---|
SSR | MSR | F-Value | p-Value | ||
10 | 17 | 0.001 | 0.00005 | 0 | 1 |
11 | 17 | 0.005 | 0.00030 | 0 | 1 |
21 | 17 | 0.000 | 0.00019 | 0 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, L.; Huang, C.; Cen, Y.; Tong, Q. Dependence of the Bidirectional Reflectance Distribution Function Factor ƒ′ on the Particulate Backscattering Ratio in an Inland Lake. Remote Sens. 2023, 15, 3392. https://doi.org/10.3390/rs15133392
Zhang Y, Zhang L, Huang C, Cen Y, Tong Q. Dependence of the Bidirectional Reflectance Distribution Function Factor ƒ′ on the Particulate Backscattering Ratio in an Inland Lake. Remote Sensing. 2023; 15(13):3392. https://doi.org/10.3390/rs15133392
Chicago/Turabian StyleZhang, Yu, Lifu Zhang, Changping Huang, Yi Cen, and Qingxi Tong. 2023. "Dependence of the Bidirectional Reflectance Distribution Function Factor ƒ′ on the Particulate Backscattering Ratio in an Inland Lake" Remote Sensing 15, no. 13: 3392. https://doi.org/10.3390/rs15133392
APA StyleZhang, Y., Zhang, L., Huang, C., Cen, Y., & Tong, Q. (2023). Dependence of the Bidirectional Reflectance Distribution Function Factor ƒ′ on the Particulate Backscattering Ratio in an Inland Lake. Remote Sensing, 15(13), 3392. https://doi.org/10.3390/rs15133392