How Does Wind Influence Near-Nadir and Low-Incidence Ka-Band Radar Backscatter and Coherence from Small Inland Water Bodies?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. AirSWOT Ka-Band Interferometric Synthetic Aperture Radar
2.1.2. SWOT Prior Lake Database (PLD)
2.1.3. Modeled and In Situ Wind Parameters
2.2. Methods
2.2.1. Extract Ka-Band Radar Backscatter and Coherence over More Than 11,000 Inland Water Bodies
2.2.2. Interpolate Local Wind Speed and Direction
2.2.3. Compare AirSWOT Ka-Band SAR Backscatter and InSAR Coherence with Wind Speed by Incidence Angle and Lake Area
2.2.4. Compare AirSWOT Ka-Band SAR Backscatter and InSAR Coherence with Wind Direction
2.2.5. Identify Global Lake Wind Speeds
3. Results
3.1. Interpolate Local Wind Speed and Direction
3.2. Compare AirSWOT Ka-Band SAR Backscatter and InSAR Coherence with Wind Speed by Incidence Angle and Lake Area
3.3. Compare AirSWOT Ka-Band SAR Backscatter and InSAR Coherence with Wind Direction
3.4. Identify Global Lake Wind Speeds
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, K.; Griffis, T.J.; Baker, J.M.; Bolstad, P.V.; Erickson, M.D.; Lee, X.; Wood, J.D.; Hu, C.; Nieber, J.L. Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level. J. Hydrol. 2018, 561, 59–75. [Google Scholar] [CrossRef]
- Wu, T.; Qin, B.; Huang, A.; Sheng, Y.; Feng, S.; Casenave, C. Reconsideration of wind stress, wind waves, and turbulence in simulating wind-driven currents of shallow lakes in the Wave and Current Coupled Model (WCCM) version 1.0. Geosci. Model Dev. 2022, 15, 745–769. [Google Scholar] [CrossRef]
- Van Hylckama, T.E.A. Water Level Fluctuation in Evapotranspirometers. Water Resour. Res. 1968, 4, 761–768. [Google Scholar] [CrossRef]
- Ma, N.; Szilagyi, J.; Niu, G.-Y.; Zhang, Y.; Zhang, T.; Wang, B.; Wu, Y. Evaporation variability of Nam Co Lake in the Tibetan Plateau and its role in recent rapid lake expansion. J. Hydrol. 2016, 537, 27–35. [Google Scholar] [CrossRef]
- Zeng, Z.; Ziegler, A.D.; Searchinger, T.; Yang, L.; Chen, A.; Ju, K.; Piao, S.; Li, L.Z.X.; Ciais, P.; Chen, D.; et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Chang. 2019, 9, 979–985. [Google Scholar] [CrossRef]
- Liu, M.; Vecchi, G.A.; Smith, J.A.; Knutson, T.R. Causes of large projected increases in hurricane precipitation rates with global warming. NPJ Clim. Atmos. Sci. 2019, 2, 38. [Google Scholar] [CrossRef] [Green Version]
- Jones, W.; Schroeder, L.; Mitchell, J. Aircraft measurements of the microwave scattering signature of the ocean. IEEE J. Ocean. Eng. 1977, 2, 52–61. [Google Scholar] [CrossRef]
- Rodríguez, E.; Wineteer, A.; Perkovic-Martin, D.; Gál, T.; Stiles, B.W.; Niamsuwan, N.; Monje, R.R. Estimating Ocean Vector Winds and Currents Using a Ka-Band Pencil-Beam Doppler Scatterometer. Remote Sens. 2018, 10, 576. [Google Scholar] [CrossRef] [Green Version]
- Durden, S.; Vesecky, J. A physical radar cross-section model for a wind-driven sea with swell. IEEE J. Ocean. Eng. 1985, 10, 445–451. [Google Scholar] [CrossRef]
- Giovanangeli, J.-P.; Bliven, L.; Le Calve, O. A wind-wave tank study of the azimuthal response of a Ka-band scatterometer. IEEE Trans. Geosci. Remote Sens. 1991, 29, 143–148. [Google Scholar] [CrossRef]
- Yueh, S.H.; Tang, W.; Fore, A.G.; Neumann, G.; Hayashi, A.; Freedman, A.; Chaubell, J.; Lagerloef, G.S.E. L-Band Passive and Active Microwave Geophysical Model Functions of Ocean Surface Winds and Applications to Aquarius Retrieval. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4619–4632. [Google Scholar] [CrossRef]
- Wineteer, A.; Perkovic-Martin, D.; Monje, R.; Rodríguez, E.; Gál, T.; Niamsuwan, N.; Nicaise, F.; Srinivasan, K.; Baldi, C.; Majurec, N.; et al. Measuring Winds and Currents with Ka-Band Doppler Scatterometry: An Airborne Implementation and Progress towards a Spaceborne Mission. Remote Sens. 2020, 12, 1021. [Google Scholar] [CrossRef] [Green Version]
- Monaldo, F.; Thompson, D.; Beal, R.; Pichel, W.; Clemente-Colon, P. Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2587–2600. [Google Scholar] [CrossRef]
- Monaldo, F.; Jackson, C.; Pichel, W. Seasat to Radarsat-2: Research to Operations. Oceanography 2013, 26, 34–45. [Google Scholar] [CrossRef] [Green Version]
- Moller, D.; Rodriguez, E.; Carswell, J.; Esteban-Fernandez, D. AirSWOT—A Calibra-tion/Validation Platform for the SWOT Mission. In Proceedings of the IGARSS 2010, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Wu, X.; Hensley, S.; Rodriguez, E.; Moller, D.; Muellerschoen, R.; Michel, T. Near nadir Ka-band sar interferometry: SWOT airborne experiment. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 2681–2684. [Google Scholar] [CrossRef]
- Fayne, J.V.; Smith, L.C.; Liao, T.-H.; Pitcher, L.; Denbina, M.; Chen, A.C.; Simard, M.; Chen, C.W.; Williams, B.A. Characterizing Near-Nadir and Low Incidence Ka-Band SAR Backscatter from Wet Surfaces and Diverse Land Covers. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023. in revision. [Google Scholar]
- Altenau, E.H.; Pavelsky, T.M.; Moller, D.; Lion, C.; Pitcher, L.H.; Allen, G.H.; Bates, P.D.; Calmant, S.; Durand, M.; Smith, L.C. AirSWOT measurements of river water surface elevation and slope: Tanana River, AK. Geophys. Res. Lett. 2017, 44, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Pitcher, L.H.; Pavelsky, T.M.; Smith, L.C.; Moller, D.K.; Altenau, E.H.; Allen, G.H.; Lion, C.; Butman, D.; Cooley, S.W.; Fayne, J.V.; et al. AirSWOT InSAR Mapping of Surface Water Elevations and Hydraulic Gradients Across the Yukon Flats Basin, Alaska. Water Resour. Res. 2019, 55, 937–953. [Google Scholar] [CrossRef]
- Denbina, M.; Simard, M.; Rodriguez, E.; Wu, X.; Chen, A.; Pavelsky, T. Mapping Water Surface Elevation and Slope in the Mississippi River Delta Using the AirSWOT Ka-Band Interferometric Synthetic Aperture Radar. Remote Sens. 2019, 11, 2739. [Google Scholar] [CrossRef] [Green Version]
- Tuozzolo, S.; Lind, G.; Overstreet, B.; Mangano, J.; Fonstad, M.; Hagemann, M.; Frasson, R.P.M.; Larnier, K.; Garambois, P.; Monnier, J.; et al. Estimating River Discharge With Swath Altimetry: A Proof of Concept Using AirSWOT Observations. Geophys. Res. Lett. 2019, 46, 1459–1466. [Google Scholar] [CrossRef]
- Fayne, J.V.; Smith, L.C.; Pitcher, L.H.; Kyzivat, E.D.; Cooley, S.W.; Cooper, M.G.; Denbina, M.W.; Chen, A.C.; Chen, C.W.; Pavelsky, T.M. Airborne observations of arctic-boreal water surface elevations from AirSWOT Ka-Band InSAR and LVIS LiDAR. Environ. Res. Lett. 2020, 15, 105005. [Google Scholar] [CrossRef]
- Peral, E.; Rodríguez, E.; Esteban-Fernández, D. Impact of Surface Waves on SWOT’s Projected Ocean Accuracy. Remote Sens. 2015, 7, 14509–14529. [Google Scholar] [CrossRef] [Green Version]
- Frappart, F.; Fatras, C.; Mougin, E.; Marieu, V.; Diepkilé, A.; Blarel, F.; Borderies, P. Radar altimetry backscattering signatures at Ka, Ku, C, and S bands over West Africa. Phys. Chem. Earth Parts A/B/C 2015, 83–84, 96–110. [Google Scholar] [CrossRef]
- Nouguier, F.; Mouche, A.; Rascle, N.; Chapron, B.; Vandemark, D. Analysis of Dual-Frequency Ocean Backscatter Measurements at Ku- and Ka-Bands Using Near-Nadir Incidence GPM Radar Data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1310–1314. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, E.; Fernandez, D.E.; Peral, E.; Chen, C.W.; Bleser, J.-W.D.; Williams, B. Wide-Swath Altimetry: A Review. In Satellite Altimetry over Oceans and Land Surfaces; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Frappart, F.; Blarel, F.; Papa, F.; Prigent, C.; Mougin, E.; Paillou, P.; Baup, F.; Zeiger, P.; Salameh, E.; Darrozes, J.; et al. Backscattering signatures at Ka, Ku, C and S bands from low resolution radar altimetry over land. Adv. Space Res. 2020, 68, 989–1012. [Google Scholar] [CrossRef]
- Cooley, S.W.; Smith, L.C.; Ryan, J.C.; Pitcher, L.H.; Pavelsky, T.M. Arctic-Boreal Lake Dynamics Revealed Using CubeSat Imagery. Geophys. Res. Lett. 2019, 46, 2111–2120. [Google Scholar] [CrossRef]
- Fjortoft, R.; Gaudin, J.-M.; Pourthie, N.; Lalaurie, J.-C.; Mallet, A.; Nouvel, J.-F.; Martinot-Lagarde, J.; Oriot, H.; Borderies, P.; Ruiz, C.; et al. KaRIn on SWOT: Characteristics of Near-Nadir Ka-Band Interferometric SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2013, 52, 2172–2185. [Google Scholar] [CrossRef]
- NASA JPL SWOT Homepage. (n.d.). NASA SWOT. Available online: https://swot.jpl.nasa.gov/ (accessed on 26 April 2023).
- Fayne, J.V.; Smith, L.C.; Pitcher, L.H.; Pavelsky, T.M. ABoVE: AirSWOT Ka-band Radar over Surface Waters of Alaska and Canada, 2017; ORNL DAAC: Oak Ridge, TN, USA, 2019. [Google Scholar] [CrossRef]
- Miller, C.E.; Griffith, P.C.; Goetz, S.J.; Hoy, E.E.; Pinto, N.; McCubbin, I.B.; Thorpe, A.K.; Hofton, M.; Hodkinson, D.; Hansen, C.; et al. An overview of ABoVE airborne campaign data acquisitions and science opportunities. Environ. Res. Lett. 2019, 14, 080201. [Google Scholar] [CrossRef]
- Kyzivat, E.D.; Smith, L.C.; Pitcher, L.H.; Fayne, J.V.; Cooley, S.W.; Cooper, M.G.; Topp, S.N.; Langhorst, T.; Harlan, M.E.; Horvat, C.; et al. A High-Resolution Airborne Color-Infrared Camera Water Mask for the NASA ABoVE Campaign. Remote Sens. 2019, 11, 2163. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Song, C.; Wang, J.; Lyons, E.A.; Knox, B.R.; Cox, J.S.; Gao, F. Representative lake water extent mapping at continental scales using multi-temporal Landsat-8 imagery. Remote Sens. Environ. 2016, 185, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Walter, B.A.; Yao, F.; Song, C.; Ding, M.; Maroof, A.S.; Zhu, J.; Fan, C.; McAlister, J.M.; Sikder, S.; et al. GeoDAR: Georeferenced global dams and reservoirs dataset for bridging attributes and geolocations. Earth Syst. Sci. Data 2022, 14, 1869–1899. [Google Scholar] [CrossRef]
- ERA-5 Hourly Data on Single Levels from 1979 to Present. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 9 May 2022).
- Global Land Surface Atmospheric Variables from 1755 to 2020 from Comprehensive In-Situ Observations. (n.d.). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/insitu-observations-surface-land?tab=overview (accessed on 9 May 2022).
- Historical Environmental Monitoring Data. (n.d.). Wood Buffalo Environmental Association. Available online: https://wbea.org/historical-monitoring-data/ (accessed on 9 May 2022).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayne, J.V.; Smith, L.C. How Does Wind Influence Near-Nadir and Low-Incidence Ka-Band Radar Backscatter and Coherence from Small Inland Water Bodies? Remote Sens. 2023, 15, 3361. https://doi.org/10.3390/rs15133361
Fayne JV, Smith LC. How Does Wind Influence Near-Nadir and Low-Incidence Ka-Band Radar Backscatter and Coherence from Small Inland Water Bodies? Remote Sensing. 2023; 15(13):3361. https://doi.org/10.3390/rs15133361
Chicago/Turabian StyleFayne, Jessica V., and Laurence C. Smith. 2023. "How Does Wind Influence Near-Nadir and Low-Incidence Ka-Band Radar Backscatter and Coherence from Small Inland Water Bodies?" Remote Sensing 15, no. 13: 3361. https://doi.org/10.3390/rs15133361
APA StyleFayne, J. V., & Smith, L. C. (2023). How Does Wind Influence Near-Nadir and Low-Incidence Ka-Band Radar Backscatter and Coherence from Small Inland Water Bodies? Remote Sensing, 15(13), 3361. https://doi.org/10.3390/rs15133361