Significant Stratospheric Moistening Following Extreme El Niño Events
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.1.1. ERA5
2.1.2. MERRA-2
2.1.3. TOMCAT
2.2. Methods
3. Results
3.1. Water Vapor Response to Extreme and Moderate El Niño
3.2. Mechanisms of Water Vapor Response to Extreme and Moderate El Niño
4. Discussion
5. Conclusions
- (1)
- From the perspective of tropical averaging, extreme El Niño events lead to significant moistening in the tropical lower stratosphere, while moderate El Niño events have little effect on water vapor in the lower stratosphere;
- (2)
- This is because strong convective activities excited by extreme El Niño release large amounts of latent heat, which warms the tropical tropopause temperature and thus increases the content of water vapor in the lower stratosphere;
- (3)
- The strong seasonality in the stratospheric water vapor response occurs only during moderate El Niño events when the content of water vapor does not vary in winter and increases slightly in spring. In contrast, the robust wetting effect of extreme El Niño events occurs in all seasons.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rieckh, T.; Anthes, R.; Randel, W.; Ho, S.P.; Foelsche, U. Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series. Atmos. Meas. Tech. 2018, 11, 3091–3109. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Zhou, Y.; Alexander, M.A. Changes in atmospheric rivers and moisture transport over the Northeast Pacific and western North America in response to ENSO diversity. Clim. Dyn. 2019, 52, 7375–7388. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.W.; Huang, Y.; Hu, Y.Y.; Bian, J.C.; Zhao, C.F.; Sun, C. Significant Contribution of Stratospheric Water Vapor to the Poleward Expansion of the Hadley Circulation in Autumn Under Greenhouse Warming. Geophys. Res. Lett. 2021, 48, 10. [Google Scholar] [CrossRef]
- Dessler, A.E.; Schoeberl, M.R.; Wang, T.; Davis, S.M.; Rosenlof, K.H. Stratospheric water vapor feedback. Proc. Natl. Acad. Sci. USA 2013, 110, 18087–18091. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J.; Wu, F.; Vomel, H.; Nedoluha, G.E.; Forster, P. Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer-Dobson circulation. J. Geophys. Res.-Atmos. 2006, 111, 11. [Google Scholar] [CrossRef] [Green Version]
- Stenke, A.; Grewe, V. Simulation of stratospheric water vapor trends: Impact on stratospheric ozone chemistry. Atmos. Chem. Phys. 2005, 5, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
- Chipperfield, M.P. New version of the TOMCAT/SLIMCAT off-line chemical transport model: Intercomparison of stratospheric tracer experiments. Q. J. R. Meteorol. Soc. 2006, 132, 1179–1203. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S.; Rosenlof, K.H.; Portmann, R.W.; Daniel, J.S.; Davis, S.M.; Sanford, T.J.; Plattner, G.K. Contributions of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science 2010, 327, 1219–1223. [Google Scholar] [CrossRef] [Green Version]
- Ovarlez, J.; van Velthoven, P.; Schlager, H. Water vapor measurements from the troposphere to the lowermost stratosphere: Some signatures of troposphere to stratosphere exchanges. J. Geophys. Res.-Atmos. 1999, 104, 16973–16978. [Google Scholar] [CrossRef]
- Randel, W.J.; Park, M. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS). J. Geophys. Res.-Atmos. 2006, 111, 13. [Google Scholar] [CrossRef]
- Dhomse, S.; Weber, M.; Burrows, J. The relationship between tropospheric wave forcing and tropical lower stratospheric water vapor. Atmos. Chem. Phys. 2008, 8, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Brewer, A.W. Evidence for a world circulation provided by the measurements of helium and water vapour distribution in the stratosphere. Q. J. R. Meteorol. Soc. 1949, 75, 351–363. [Google Scholar] [CrossRef]
- Rosenlof, K.H.; Reid, G.C. Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection. J. Geophys. Res.-Atmos. 2008, 113, 15. [Google Scholar] [CrossRef] [Green Version]
- Grise, K.M.; Thompson, D.W.J. Equatorial Planetary Waves and Their Signature in Atmospheric Variability. J. Atmos. Sci. 2012, 69, 857–874. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Birner, T.; Eyring, V.; Akiyoshi, H.; Bekki, S.; Bruhl, C.; Dameris, M.; Kinnison, D.E.; Lefevre, F.; Lott, F.; et al. The Tropical Tropopause Layer 1960–2100. Atmos. Chem. Phys. 2009, 9, 1621–1637. [Google Scholar] [CrossRef] [Green Version]
- Grise, K.M.; Thompson, D.W.J. On the Signatures of Equatorial and Extratropical Wave Forcing in Tropical Tropopause Layer Temperatures. J. Atmos. Sci. 2013, 70, 1084–1102. [Google Scholar] [CrossRef]
- Konopka, P.; Ploeger, F.; Tao, M.C.; Riese, M. Zonally resolved impact of ENSO on the stratospheric circulation and water vapor entry values. J. Geophys. Res.-Atmos. 2016, 121, 11486–11501. [Google Scholar] [CrossRef] [Green Version]
- Calvo, N.; Garcia, R.R.; Randel, W.J.; Marsh, D.R. Dynamical Mechanism for the Increase in Tropical Upwelling in the Lowermost Tropical Stratosphere during Warm ENSO Events. J. Atmos. Sci. 2010, 67, 2331–2340. [Google Scholar] [CrossRef] [Green Version]
- Fueglistaler, S.; Liu, Y.S.; Flannaghan, T.J.; Ploeger, F.; Haynes, P.H. Departure from Clausius-Clapeyron scaling of water entering the stratosphere in response to changes in tropical upwelling. J. Geophys. Res.-Atmos. 2014, 119, 1962–1972. [Google Scholar] [CrossRef]
- Xia, Y.; Huang, Y.; Hu, Y.Y.; Yang, J. Impacts of tropical tropopause warming on the stratospheric water vapor. Clim. Dyn. 2019, 53, 3409–3418. [Google Scholar] [CrossRef]
- Highwood, E.J.; Hoskins, B.J. The tropical tropopause. Q. J. R. Meteorol. Soc. 1998, 124, 1579–1604. [Google Scholar] [CrossRef]
- Oman, L.; Waugh, D.W.; Pawson, S.; Stolarski, R.S.; Nielsen, J.E. Understanding the changes of stratospheric water vapor in coupled Chemistry-Climate Model simulations. J. Atmos. Sci. 2008, 65, 3278–3291. [Google Scholar] [CrossRef]
- Bjerknes, J.A. Atmospheric Teleconnections from the Equatorial PACIFIC1. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Horel, J.D.; Wallace, J.M. Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon. Weather Rev. 1981, 109, 813–829. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.C.; Ropelewski, C. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res.-Oceans 1998, 103, 14291–14324. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Caron, J.M.; Stepaniak, D.P.; Worley, S. Evolution of El Nino-Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res.-Atmos. 2002, 107, 22. [Google Scholar] [CrossRef]
- Yulaeva, E.; Wallace, J.M. Signature of ENSO in global temperature and precipitation fields derived from the microwave sounding unit. J. Clim. 1994, 7, 1719–1736. [Google Scholar] [CrossRef]
- Scaife, A.A.; Butchart, N.; Jackson, D.R.; Swinbank, R. Can changes in ENSO activity help to explain increasing stratospheric water vapor? Geophys. Res. Lett. 2003, 30, 4. [Google Scholar] [CrossRef]
- Scherllin-Pirscher, B.; Deser, C.; Ho, S.P.; Chou, C.; Randel, W.; Kuo, Y.H. The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements. Geophys. Res. Lett. 2012, 39, 6. [Google Scholar] [CrossRef] [Green Version]
- Johnston, B.R.; Randel, W.J.; Braun, J.J. Interannual Variability of Tropospheric Moisture and Temperature and Relationships to ENSO Using COSMIC-1 GNSS-RO Retrievals. J. Clim. 2022, 35, 3509–3525. [Google Scholar] [CrossRef]
- Xie, F.; Tian, W.; Li, J. The Effect of ENSO Activity on Lower Stratospheric Water Vapor and Circulation. Atmos. Chem. Phys. Discuss. 2012, 11, 4141–4166. [Google Scholar]
- Gu, G.J.; Adler, R.F. Precipitation, temperature, and moisture transport variations associated with two distinct ENSO flavors during 1979–2014. Clim. Dyn. 2019, 52, 7249–7265. [Google Scholar] [CrossRef]
- Guan, B.; Nigam, S. Pacific sea surface temperatures in the twentieth century: An evolution-centric analysis of variability and trend. J. Clim. 2008, 21, 2790–2809. [Google Scholar] [CrossRef] [Green Version]
- Capotondi, A. ENSO diversity in the NCAR CCSM4 climate model. J. Geophys. Res.-Oceans 2013, 118, 4755–4770. [Google Scholar] [CrossRef]
- Gettelman, A.; Randel, W.J.; Massie, S.; Wu, F.; Read, W.G.; Russell, J.M. El Nino as a natural experiment for studying the tropical tropopause region. J. Clim. 2001, 14, 3375–3392. [Google Scholar] [CrossRef]
- Sassi, F.; Kinnison, D.; Boville, B.A.; Garcia, R.R.; Roble, R. Effect of El Nino-Southern Oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J. Geophys. Res.-Atmos. 2004, 109, 12. [Google Scholar] [CrossRef] [Green Version]
- Manzini, E.; Giorgetta, M.A.; Esch, M.; Kornblueh, L.; Roeckner, E. The influence of sea surface temperatures on the northern winter stratosphere: Ensemble simulations with the MAECHAM5 model. J. Clim. 2006, 19, 3863–3881. [Google Scholar] [CrossRef] [Green Version]
- Calvo, N.; Garcia, R.R.; Herrera, R.G.; Puyol, D.G.; Gimeno, L.; Martin, E.H.; Rodriguez, P.R. Analysis of the ENSO signal in tropospheric and stratospheric temperatures observed by MSU, 1979–2000. J. Clim. 2004, 17, 3934–3946. [Google Scholar]
- Free, M.; Seidel, D.J. Observed El Nino-Southern Oscillation temperature signal in the stratosphere. J. Geophys. Res.-Atmos. 2009, 114, 11. [Google Scholar] [CrossRef]
- Randel, W.J.; Garcia, R.R.; Calvo, N.; Marsh, D. ENSO influence on zonal mean temperature and ozone in the tropical lower stratosphere. Geophys. Res. Lett. 2009, 36, 5. [Google Scholar] [CrossRef] [Green Version]
- Garfinkel, C.I.; Gordon, A.; Oman, L.D.; Li, F.; Davis, S.; Pawson, S. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO. Atmos. Chem. Phys. 2018, 18, 4597–4615. [Google Scholar] [CrossRef] [Green Version]
- Fueglistaler, S.; Haynes, P.H. Control of interannual and longer-term variability of stratospheric water vapor. J. Geophys. Res.-Atmos. 2005, 110, 14. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.J.; Chen, Q.L.; Zhou, X. Seasonal evolution of the effects of the El Nino-Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring. Earth Planet. Phys. 2019, 3, 489–500. [Google Scholar] [CrossRef]
- Dawson, A.; Matthews, A.J.; Stevens, D.P. Rossby wave dynamics of the North Pacific extra-tropical response to El Nino: Importance of the basic state in coupled GCMs. Clim. Dyn. 2011, 37, 391–405. [Google Scholar] [CrossRef] [Green Version]
- Hatsushika, H.; Yamazaki, K. Stratospheric drain over Indonesia and dehydration within the tropical tropopause layer diagnosed by air parcel trajectories. J. Geophys. Res.-Atmos. 2003, 108, 13. [Google Scholar] [CrossRef]
- Kao, H.Y.; Yu, J.Y. Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Garfinkel, C.I.; Hurwitz, M.M.; Oman, L.D.; Waugh, D.W. Contrasting Effects of Central Pacific and Eastern Pacific El Nino on stratospheric water vapor. Geophys. Res. Lett. 2013, 40, 4115–4120. [Google Scholar] [CrossRef] [Green Version]
- Stephens, D.J.; van Loon, H.; Lamond, M.H.; Telcik, N.P. Differences in atmospheric circulation between the development of weak and strong warm events in the Southern Oscillation. J. Clim. 2007, 20, 2191–2209. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R.C. Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 1. Observations. J. Geophys. Res.-Atmos. 2016, 121, 9000–9016. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; Ren, R.C. Asymmetry and nonlinearity of the influence of ENSO on the northern winter stratosphere: 2. Model study with WACCM. J. Geophys. Res.-Atmos. 2016, 121, 9017–9032. [Google Scholar] [CrossRef]
- Rao, J.; Ren, R.C. A decomposition of ENSO’s impacts on the northern winter stratosphere: Competing effect of SST forcing in the tropical Indian Ocean. Clim. Dyn. 2016, 46, 3689–3707. [Google Scholar] [CrossRef]
- Tao, M.C.; Konopka, P.; Ploeger, F.; Yan, X.L.; Wright, J.S.; Diallo, M.; Fueglistaler, S.; Riese, M. Multitimescale variations in modeled stratospheric water vapor derived from three modern reanalysis products. Atmos. Chem. Phys. 2019, 19, 6509–6534. [Google Scholar] [CrossRef] [Green Version]
- Gan, R.; Liu, Q.; Huang, G.; Hu, K.; Li, X. Greenhouse warming and internal variability increase extreme and central Pacific El Nino frequency since 1980. Nat. Commun. 2023, 14, 394. [Google Scholar] [CrossRef] [PubMed]
- Santoso, A.; McPhaden, M.J.; Cai, W.J. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Nino. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
- Cai, W.J.; Wang, G.J.; Santoso, A.; Lin, X.P.; Wu, L.X. Definition of Extreme El Nino and Its Impact on Projected Increase in Extreme El Nino Frequency. Geophys. Res. Lett. 2017, 44, 11184–11190. [Google Scholar] [CrossRef]
- Ham, Y.G.; Kug, J.S.; Yang, W.H.; Cai, W.J. Future Changes in Extreme El Nino Events Modulated by North Tropical Atlantic Variability. Geophys. Res. Lett. 2018, 45, 6646–6653. [Google Scholar] [CrossRef]
- Cai, W.J.; Borlace, S.; Lengaigne, M.; van Rensch, P.; Collins, M.; Vecchi, G.; Timmermann, A.; Santoso, A.; McPhaden, M.J.; Wu, L.X.; et al. Increasing frequency of extreme El Nino events due to greenhouse warming. Nat. Clim. Chang. 2014, 4, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.; Ren, R.C. Parallel comparison of the 1982/83, 1997/98 and 2015/16 super El Ninos and their effects on the extratropical stratosphere. Adv. Atmos. Sci. 2017, 34, 1121–1133. [Google Scholar] [CrossRef]
- Zhou, X.; Li, J.P.; Xie, F.; Chen, Q.L.; Ding, R.Q.; Zhang, W.X.; Li, Y. Does Extreme El Nino Have a Different Effect on the Stratosphere in Boreal Winter Than Its Moderate Counterpart? J. Geophys. Res.-Atmos. 2018, 123, 3071–3086. [Google Scholar] [CrossRef]
- Avery, M.A.; Davis, S.M.; Rosenlof, K.H.; Ye, H.; Dessler, A.E. Large anomalies in lower stratospheric water vapour and ice during the 2015–2016 El Nino. Nat. Geosci. 2017, 10, 405–409. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suarez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Monks, S.A.; Arnold, S.R.; Hollaway, M.J.; Pope, R.J.; Wilson, C.; Feng, W.H.; Emmerson, K.M.; Kerridge, B.J.; Latter, B.L.; Miles, G.M.; et al. The TOMCAT global chemical transport model v1.6: Description of chemical mechanism and model evaluation. Geosci. Model Dev. 2017, 10, 3025–3057. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Chipperfield, M.P.; Dhomse, S.; Monge-Sanz, B.M.; Yang, X.; Zhang, K.; Ramonet, M. Evaluation of cloud convection and tracer transport in a three-dimensional chemical transport model. Atmos. Chem. Phys. 2011, 11, 5783–5803. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.H.; Dhomse, S.S.; Arosio, C.; Weber, M.; Burrows, J.P.; Santee, M.L.; Chipperfield, M.P. Arctic Ozone Depletion in 2019/20: Roles of Chemistry, Dynamics and the Montreal Protocol. Geophys. Res. Lett. 2021, 48, 10. [Google Scholar] [CrossRef]
- Feng, W.; Chipperfield, M.P.; Davies, S.; Mann, G.W.; Carslaw, K.S.; Dhomse, S.; Harvey, L.; Randall, C.; Santee, M.L. Modelling the effect of denitrification on polar ozone depletion for Arctic winter 2004/2005. Atmos. Chem. Phys. 2011, 11, 6559–6573. [Google Scholar] [CrossRef] [Green Version]
- Dhomse, S.S.; Arosio, C.; Feng, W.H.; Rozanov, A.; Weber, M.; Chipperfield, M.P. ML-TOMCAT: Machine-learning-based satellite-corrected global stratospheric ozone profile data set from a chemical transport model. Earth Syst. Sci. Data 2021, 13, 5711–5729. [Google Scholar] [CrossRef]
- Dhomse, S.S.; Chipperfield, M.P.; Feng, W.; Hossaini, R.; Mann, G.W.; Santee, M.L. Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study. Geophys. Res. Lett. 2015, 42, 3038–3047. [Google Scholar] [CrossRef]
- Dhomse, S.S.; Chipperfield, M.P.; Damadeo, R.P.; Zawodny, J.M.; Ball, W.T.; Feng, W.; Hossaini, R.; Mann, G.W.; Haigh, J.D. On the ambiguous nature of the 11 year solar cycle signal in upper stratospheric ozone. Geophys. Res. Lett. 2016, 43, 7241–7249. [Google Scholar] [CrossRef]
- Hossaini, R.; Atlas, E.; Dhomse, S.S.; Chipperfield, M.P.; Bernath, P.F.; Fernando, A.M.; Muhle, J.; Leeson, A.A.; Montzka, S.A.; Feng, W.H.; et al. Recent Trends in Stratospheric Chlorine from Very Short-Lived Substances. J. Geophys. Res.-Atmos. 2019, 124, 2318–2335. [Google Scholar] [CrossRef] [Green Version]
- Chipperfield, M.P.; Dhomse, S.S.; Feng, W.; McKenzie, R.L.; Velders, G.J.M.; Pyle, J.A. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol. Nat. Commun. 2015, 6, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, J.J.; Chipperfield, M.P.; Boone, C.D.; Dhomse, S.S.; Bernath, P.F. Fifteen Years of HFC-134a Satellite Observations: Comparisons with SLIMCAT Calculations. J. Geophys. Res.-Atmos. 2021, 126, 11. [Google Scholar] [CrossRef]
- Hossaini, R.; Chipperfield, M.P.; Feng, W.; Breider, T.J.; Atlas, E.; Montzka, S.A.; Miller, B.R.; Moore, F.; Elkins, J. The contribution of natural and anthropogenic very short-lived species to stratospheric bromine. Atmos. Chem. Phys. 2012, 12, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Vaiciulis, V.; Vencloviene, J.; Kaciene, G.; Tamosiunas, A.; Kiznys, D.; Luksiene, D.; Radisauskas, R. Association between El Nino-Southern Oscillation events and stroke: A case-crossover study in Kaunas city, Lithuania, 2000–2015. Int. J. Biometeorol. 2022, 66, 769–779. [Google Scholar] [CrossRef]
- Randel, W.J.; Wu, F.; Oltmans, S.J.; Rosenlof, K.; Nedoluha, G.E. Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J. Atmos. Sci. 2004, 61, 2133–2148. [Google Scholar] [CrossRef]
- Hurst, D.F.; Oltmans, S.J.; Vomel, H.; Rosenlof, K.H.; Davis, S.M.; Ray, E.A.; Hall, E.G.; Jordan, A.F. Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record. J. Geophys. Res.-Atmos. 2011, 116, 12. [Google Scholar] [CrossRef] [Green Version]
- Fueglistaler, S.; Bonazzola, M.; Haynes, P.H.; Peter, T. Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res.-Atmos. 2005, 110, 10. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.L.; Randel, W.J.; Massie, S.T.; Kanzawa, H.; Sasano, Y.; Nakajima, H.; Yokota, T.; Sugita, T. Variability of polar stratospheric water vapor observed by ILAS. J. Geophys. Res.-Atmos. 2002, 107, 13. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.P.; Xie, F.; Sun, C.; Luo, J.L.; Cai, Q.F.; Zhang, J.K.; Li, J.; Tian, H.Y. Analysis of factors influencing tropical lower stratospheric water vapor during 1980–2017. npj Clim. Atmos. Sci. 2020, 3, 11. [Google Scholar] [CrossRef]
- Loffler, M.; Brinkop, S.; Jockel, P. Impact of major volcanic eruptions on stratospheric water vapour. Atmos. Chem. Phys. 2016, 16, 6547–6562. [Google Scholar] [CrossRef] [Green Version]
- Garfinkel, C.I.; Harari, O.; Ziskin Ziv, S.; Rao, J.; Morgenstern, O.; Zeng, G.; Tilmes, S.; Kinnison, D.; O’Connor, F.M.; Butchart, N.; et al. Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models. Atmos. Chem. Phys. 2021, 21, 3725–3740. [Google Scholar] [CrossRef]
- Chiodi, A.M.; Harrison, D.E. El Nino Impacts on Seasonal U.S. Atmospheric Circulation, Temperature, and Precipitation Anomalies: The OLR-Event Perspective. J. Clim. 2013, 26, 822–837. [Google Scholar] [CrossRef] [Green Version]
Composite | Year |
---|---|
Extreme El Niño | 1982/1983, 1997/1998, 2015/2016 |
Moderate El Niño | 1979/1980, 1986/1987, 1987/1988, 1991/1992, 1994/1995, 2002/2003, 2006/2007, 2009/2010, 2018/2019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Liao, Y.; Zhou, X.; Duan, T.; Xue, X.; Zhang, Z.; Dong, D.; Feng, W. Significant Stratospheric Moistening Following Extreme El Niño Events. Remote Sens. 2023, 15, 3346. https://doi.org/10.3390/rs15133346
Chen Q, Liao Y, Zhou X, Duan T, Xue X, Zhang Z, Dong D, Feng W. Significant Stratospheric Moistening Following Extreme El Niño Events. Remote Sensing. 2023; 15(13):3346. https://doi.org/10.3390/rs15133346
Chicago/Turabian StyleChen, Quanliang, Yujing Liao, Xin Zhou, Ting Duan, Xiaotian Xue, Ziqi Zhang, Dandan Dong, and Wuhu Feng. 2023. "Significant Stratospheric Moistening Following Extreme El Niño Events" Remote Sensing 15, no. 13: 3346. https://doi.org/10.3390/rs15133346
APA StyleChen, Q., Liao, Y., Zhou, X., Duan, T., Xue, X., Zhang, Z., Dong, D., & Feng, W. (2023). Significant Stratospheric Moistening Following Extreme El Niño Events. Remote Sensing, 15(13), 3346. https://doi.org/10.3390/rs15133346