A Preliminary Study on the Inversion Method for the Refraction Structure Parameter from Vortex Electromagnetic Waves
Abstract
:1. Introduction
2. Simulations and Inversion Methods
2.1. Vortex Waves Simulation
2.2. Phase-Screen Simulating Turbulence
2.3. Scintillation Index
2.4. Genetic Algorithm
- (1)
- Initialization: one-hundred solution sets were randomly generated in the range of 10−12 to 10−14 m−2/3 as the first generation population.
- (2)
- Fitness evaluation: after initialization, the fitness function value of each chromosome in the current population was calculated according to the fitness function.
- (3)
- Crossover and mutation evolution: binary conversion was performed on each gene, followed by crossover and mutation with a probability of 0.2, followed by conversion to decimal values.
- (4)
- Iteration: If the fitness values of all chromosomes were greater than the minimum value in the previous iteration, the chromosome with the smallest fitness value was replaced by the ones in the previous iteration so that the algorithm converged. The iteration was repeated until the maximum number of iterations was reached.
3. Results
3.1. Simulation of Vortex Waves Propagating in a Turbulent Flow
3.2. Retrieving the Structural Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wacławczyk, M.; Nowak, J.L.; Siebert, H.; Malinowski, S.P. Detecting Nonequilibrium States in Atmospheric Turbulence. J. Atmos. Sci. 2022, 79, 2757–2772. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, H.; Zhang, X.; Wu, B.; Cai, X.; Song, Y.; Zhu, T. Coupled-decoupled turbulence structures of stable boundary layer during heavy haze pollution events. Atmos. Res. 2022, 281, 106465. [Google Scholar] [CrossRef]
- Dutton, J.A.; Panofsky, H.A. Clear Air Turbulence: A Mystery May Be Unfolding: High altitude turbulence poses serious problems for aviation and atmospheric science. Science 1970, 167, 937–944. [Google Scholar] [CrossRef]
- Storer, L.N.; Williams, P.D.; Gill, P.G. Aviation turbulence: Dynamics, forecasting, and response to climate change. Pure Appl. Geophys. 2019, 176, 2081–2095. [Google Scholar] [CrossRef]
- Williams, J.K. Using random forests to diagnose aviation turbulence. Mach. Learn. 2014, 95, 51–70. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Guo, J.; Li, J.; Cao, L.; Chen, T.; Wang, D.; Chen, D.; Han, Y.; Guo, X.; Xu, H.; et al. Spatiotemporal characteristics of atmospheric turbulence over China estimated using operational high-resolution soundings. Environ. Res. Lett. 2021, 16, 054050. [Google Scholar] [CrossRef]
- O’connor, E.J.; Illingworth, A.J.; Brooks, I.; Westbrook, C.; Hogan, R.; Davies, F.; Brooks, B.J. A Method for Estimating the turbulent kinetic energy dissipation rate from a vertically pointing doppler lidar, and independent evaluation from balloon-borne in Situ measurements. J. Atmos. Ocean. Technol. 2010, 27, 1652–1664. [Google Scholar] [CrossRef]
- Shupe, M.D.; Brooks, I.M.; Canut, G. Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar. Atmos. Meas. Tech. 2012, 5, 1375–1385. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; Sheng, Z.; He, M.; Feng, Y. Observations of Inertia Gravity Waves in the Western Pacific and Their Characteristic in the 2015/2016 Quasi-biennial Oscillation Disruption. J. Geophys. Res. Atmos. 2022, 127, 037208. [Google Scholar] [CrossRef]
- Peña, A.; Dellwik, E.; Mann, J. A method to assess the accuracy of sonic anemometer measurements. Atmos. Meas. Tech. 2019, 12, 237–252. [Google Scholar] [CrossRef]
- Ko, H.-C.; Chun, H.-Y. Potential sources of atmospheric turbulence estimated using the Thorpe method and operational radiosonde data in the United States. Atmos. Res. 2022, 265, 105891. [Google Scholar] [CrossRef]
- Ji, Q.; Zhu, X.; Sheng, Z.; Tian, T. Spectral Analysis of Gravity Waves in the Martian Thermosphere during Low Solar Activity Based on MAVEN/NGIMS Observations. Astrophys. J. 2022, 938, 97. [Google Scholar] [CrossRef]
- Shepherd, H.W.; Osborn, J.; Wilson, R.W.; Butterley, T.; Avila, R.; Dhillon, V.S.; Morris, T.J. Stereo-SCIDAR: Optical turbulence profiling with high sensitivity using a modified SCIDAR instrument. Mon. Not. R. Astron. Soc. 2013, 437, 3568–3577. [Google Scholar] [CrossRef]
- Butterley, T.; Wilson, R.W.; Sarazin, M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data. Mon. Not. R. Astron. Soc. 2006, 369, 835–845. [Google Scholar] [CrossRef]
- Kornilov, V.; Tokovinin, A.; Shatsky, N.; Voziakova, O.; Potanin, S.; Safonov, B. Combined MASS-DIMM instruments for atmospheric turbulence studies. Mon. Not. R. Astron. Soc. 2007, 382, 1268–1278. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Kong, L.; Bao, H.; Guo, Y.; Rao, X.; Zhong, L.; Zhu, L.; Rao, C. A modified S-DIMM+: Applying additional height grids for characterizing daytime seeing profiles. Mon. Not. R. Astron. Soc. 2018, 478, 1459–1467. [Google Scholar] [CrossRef]
- Sathe, A.; Mann, J. Measurement of turbulence spectra using scanning pulsed wind lidars. J. Geophys. Res. Atmos. 2012, 117, D01201. [Google Scholar] [CrossRef]
- Kovadlo, P.G.; Shikhovtsev, A.Y.; Kopylov, E.A.; Kiselev, A.V.; Russkikh, I.V. Study of the Optical Atmospheric Distortions using Wavefront Sensor Data. Russ. Phys. J. 2021, 63, 1952–1958. [Google Scholar] [CrossRef]
- Manninen, A.J.; Marke, T.; Tuononen, M.; O’Connor, E.J. Atmospheric Boundary Layer Classification with Doppler Lidar. J. Geophys. Res. Atmos. 2018, 123, 8172–8189. [Google Scholar] [CrossRef]
- Griffiths, R.; Osborn, J.; Farley, O.; Butterley, T.; Townson, M.J.; Wilson, R. Demonstrating 24-hour continuous vertical monitoring of atmospheric optical turbulence. Opt. Express 2023, 31, 6730. [Google Scholar] [CrossRef]
- Zheng, F.; Chen, Y.; Ji, S.; Duan, G. Research status and prospects of orbital angular momentum technology in wireless communication. Prog. Electromagn. Res. 2020, 168, 113–132. [Google Scholar] [CrossRef]
- Ren, J.; Leung, K.W.; Liu, D.Q.; Luk, K.M.; Mao, J.-F. Orbital angular momentum radiator multiplexing electromagnetic waves in free space. Opt. Express 2020, 28, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, S.M.; Daldorff, L.K.S.; Bergman, J.E.S.; Karlsson, R.L.; Thide, B.; Forozesh, K.; Carozzi, T.D.; Isham, B. Orbital angular momentum in radio—A system study. IEEE Trans. Antennas Propag. 2009, 58, 565–572. [Google Scholar] [CrossRef]
- Tamburini, F.; Mari, E.; Sponselli, A.; Thidé, B.; Bianchini, A.; Romanato, F. Encoding many channels on the same frequency through radio vorticity: First experimental test. New J. Phys. 2012, 14, 033001. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, Y. Orbital angular momentum nondegenerate index mapping for long distance transmission. IEEE Trans. Wirel. Commun. 2019, 18, 5027–5036. [Google Scholar] [CrossRef]
- Mabena, C.M.; Roux, F.S. Optical orbital angular momentum under strong scintillation. Phys. Rev. A 2019, 99, 013828. [Google Scholar] [CrossRef]
- Ruffato, G.; Massari, M.; Romanato, F. Generation of high-order Laguerre-Gaussian modes by means of spiral phase plates. Opt. Lett. 2014, 39, 5094–5097. [Google Scholar] [CrossRef]
- Blaunstein, N.; Kopeika, N. Optical Waves and Laser Beams in the Irregular Atmosphere; CRC Press: Boca Raton, FL, USA, 2017; pp. 1–26. [Google Scholar] [CrossRef]
- Dipankar, A.; Sagaut, P. A new phase-screen method for electromagnetic wave propagation in turbulent flows using large-eddy simulation. J. Comput. Phys. 2009, 228, 7729–7741. [Google Scholar] [CrossRef]
- Andrews, L.C.; Phillips, R.L. Laser Beam Propagation Through Random Media, 2nd ed.; SPIE Optical Engineering Press: Bellingham, WA, USA, 2005; pp. 47–50. [Google Scholar]
- Baykal, Y. Scintillation index in strong oceanic turbulence. Opt. Commun. 2016, 375, 15–18. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, W.; Qian, X.; Rao, R. Simulation of the scintillation index of plane wave propagating through general non-Kolmogorov atmospheric turbulence path. Acta Opt. Sin. 2015, 35, 33–39. [Google Scholar] [CrossRef]
- Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Kwiecień, J. The effects of atmospheric turbulence on laser beam propagation in a closed space—An analytic and experimental approach. Opt. Commun. 2019, 433, 200–208. [Google Scholar] [CrossRef]
- Cheng, W.; Joseph, W.H.; Zhan, Q. Propagation of scalar and vector vortex beams through turbulent atmosphere. In Proceedings of the SPIE 7200, Atmospheric Propagation of Electromagnetic Waves III, San Jose, CA, USA, 24 February 2009. [Google Scholar]
- Zhang, J.; Ji, Q.; Sheng, Z.; He, M.; He, Y.; Zuo, X.; He, Z.; Qin, Z.; Wu, G. Observation based climatology Martian atmospheric waves perturbation Datasets. Sci. Data 2022, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.; Cai, D.; Wang, D.; Basden, A. Simulation of atmospheric turbulence phase screen for large telescope and optical interferometer. Mon. Not. R. Astron. Soc. 2015, 447, 3467–3474. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, Q.; Sheng, Z.; Zhou, S.; Guo, P.; Long, Z.; He, M.; Guan, J. A Preliminary Study on the Inversion Method for the Refraction Structure Parameter from Vortex Electromagnetic Waves. Remote Sens. 2023, 15, 3140. https://doi.org/10.3390/rs15123140
Liao Q, Sheng Z, Zhou S, Guo P, Long Z, He M, Guan J. A Preliminary Study on the Inversion Method for the Refraction Structure Parameter from Vortex Electromagnetic Waves. Remote Sensing. 2023; 15(12):3140. https://doi.org/10.3390/rs15123140
Chicago/Turabian StyleLiao, Qixiang, Zheng Sheng, Shudao Zhou, Peng Guo, Zhiyong Long, Mingyuan He, and Jiping Guan. 2023. "A Preliminary Study on the Inversion Method for the Refraction Structure Parameter from Vortex Electromagnetic Waves" Remote Sensing 15, no. 12: 3140. https://doi.org/10.3390/rs15123140
APA StyleLiao, Q., Sheng, Z., Zhou, S., Guo, P., Long, Z., He, M., & Guan, J. (2023). A Preliminary Study on the Inversion Method for the Refraction Structure Parameter from Vortex Electromagnetic Waves. Remote Sensing, 15(12), 3140. https://doi.org/10.3390/rs15123140