Toward Real-Time GNSS Single-Frequency Precise Point Positioning Using Ionospheric Corrections
Abstract
:1. Introduction
2. Methodology
3. Data and Forecast
3.1. Preprocessing
3.2. RMS GIM Predictions and Assimilation
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Afraimovich, E.L.; Altynsev, A.T.; Grechnev, V.V.; Leonovich, L.A. The response of the ionosphere to faint and bright solar flares as deduced from global GPS network data. Ann. Geophys. 2009, 45, 3480. [Google Scholar] [CrossRef]
- Demyanov, V.; Yasyukevich, Y. Space weather: Risk factors for Global Navigation Satellite Systems. Sol.-Terr. Phys. 2021, 7, 28–47. [Google Scholar] [CrossRef]
- Kelley, M.C. The Earth’s Ionosphere: Plasma Physics and Electrodynamics; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Reuveni, Y.; Price, C. A new approach for monitoring the 27-day solar rotation using VLF radio signals on the Earth’s surface. J. Geophys. Res. Space Phys. 2009, 114, A10306. [Google Scholar] [CrossRef] [Green Version]
- Reuveni, Y.; Price, C.; Greenberg, E.; Shuval, A. Natural atmospheric noise statistics from VLF measurements in the eastern Mediterranean. Radio Sci. 2010, 45, RS5015. [Google Scholar] [CrossRef]
- Giannattasio, F. Ionosphere Monitoring with Remote Sensing. Remote. Sens. 2022, 14, 5325. [Google Scholar] [CrossRef]
- Landa, V.; Reuveni, Y. Low-dimensional Convolutional Neural Network for Solar Flares GOES Time-series Classification. Astrophys. J. Suppl. Ser. 2022, 258, 12. [Google Scholar] [CrossRef]
- Klobuchar, J. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 325–331. [Google Scholar] [CrossRef]
- Prieto-Cerdeira, R.; Orús-Pérez, R.; Breeuwer, E.; Lucas-Rodriguez, R.; Falcone, M. Performance of the Galileo single-frequency ionospheric correction during in-orbit validation. GPS World 2014, 25, 53–58. [Google Scholar]
- Reuveni, Y.; Bock, Y.; Tong, X.; Moore, A.W. Calibrating interferometric synthetic aperture radar (InSAR) images with regional GPS network atmosphere models. Geophys. J. Int. 2015, 202, 2106–2119. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Wang, N.; Li, Z.; Huo, X. The BeiDou global broadcast ionospheric delay correction model (BDGIM) and its preliminary performance evaluation results. Navigation 2019, 66, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Ou, J. An improvement to ionospheric delay correction for single-frequency GPS users - the APR-I scheme. J. Geod. 2001, 75, 331–336. [Google Scholar] [CrossRef]
- Yuan, Y.; Tscherning, C.C.; Knudsen, P.; Xu, G.; Ou, J. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS. J. Geod. 2007, 82, 1–8. [Google Scholar] [CrossRef]
- Siemuri, A.; Selvan, K.; Kuusniemi, H.; Valisuo, P.; Elmusrati, M.S. A Systematic Review of Machine Learning Techniques for GNSS Use Cases. IEEE Trans. Aerosp. Electron. Syst. 2022, 58, 5043–5077. [Google Scholar] [CrossRef]
- Kaselimi, M.; Voulodimos, A.; Doulamis, N.; Doulamis, A.; Delikaraoglou, D. Deep Recurrent Neural Networks for Ionospheric Variations Estimation Using GNSS Measurements. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 5800715. [Google Scholar] [CrossRef]
- Natras, R.; Soja, B.; Schmidt, M. Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting. Remote. Sens. 2022, 14, 3547. [Google Scholar] [CrossRef]
- Gomez, A.R.; Pi, X. Applying Machine Learning to Predict Alaskan Ionospheric Irregularities. In Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2021), Institute of Navigation, St. Louis, MO, USA, 20–24 September 2021. [Google Scholar] [CrossRef]
- Schaer, S.; Beutler, G.; Rothacher, M.; Springer, T.A. Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE Analysis Center. In Proceedings of the IGS Analysis Center Workshop 1996, Silver Spring, MD, USA, 19–21 March 1996. [Google Scholar]
- Schaer, S.; Société helvétique des sciences naturelles. Commission géodésique. Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System; Institut für Geodäsie und Photogrammetrie, Eidg; Technische Hochschule: Zürich, Switzerland, 1999; Volume 59. [Google Scholar]
- Roma-Dollase, D.; Hernández-Pajares, M.; Krankowski, A.; Kotulak, K.; Ghoddousi-Fard, R.; Yuan, Y.; Li, Z.; Zhang, H.; Shi, C.; Wang, C.; et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod. 2017, 92, 691–706. [Google Scholar] [CrossRef] [Green Version]
- Asaly, S.; Gottlieb, L.A.; Reuveni, Y. Using Support Vector Machine (SVM) and Ionospheric Total Electron Content (TEC) Data for Solar Flare Predictions. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 1469–1481. [Google Scholar] [CrossRef]
- Asaly, S.; Gottlieb, L.A.; Inbar, N.; Reuveni, Y. Using Support Vector Machine (SVM) with GPS Ionospheric TEC Estimations to Potentially Predict Earthquake Events. Remote. Sens. 2022, 14, 2822. [Google Scholar] [CrossRef]
- Cai, C.; Gong, Y.; Gao, Y.; Kuang, C. An approach to speed up single-frequency PPP convergence with quad-constellation GNSS and GIM. Sensors 2017, 17, 1302. [Google Scholar] [CrossRef] [Green Version]
- Su, K.; Jin, S.; Hoque, M.M. Evaluation of ionospheric delay effects on multi-GNSS positioning performance. Remote. Sens. 2019, 11, 171. [Google Scholar] [CrossRef] [Green Version]
- Jerez, G.O.; Hernández-Pajares, M.; Goss, A.; da Silva, C.M.; Alves, D.B.; Monico, J.F. Impact and synergies of GIM error estimates on the VTEC interpolation and single-frequency PPP at low latitude region. GPS Solut. 2022, 26, 40. [Google Scholar] [CrossRef]
- Nie, Z.; Yang, H.; Zhou, P.; Gao, Y.; Wang, Z. Quality assessment of CNES real-time ionospheric products. GPS Solut. 2018, 23, 11. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Liu, A.; Yuan, Y.; Wang, L.; Hernández-Pajares, M.; Krankowski, A.; Yuan, H. Status of CAS global ionospheric maps after the maximum of solar cycle 24. Satell. Navig. 2021, 2, 19. [Google Scholar] [CrossRef]
- Dow, J.; Neilan, R.; Gendt, G. The International GPS Service: Celebrating the 10th anniversary and looking to the next decade. Adv. Space Res. 2005, 36, 320–326. [Google Scholar] [CrossRef]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The ionosphere map exchange format version 1. In Proceedings of the IGS AC Workshop, Darmstadt, Germany, 9–11 February 1998; Volume 9. [Google Scholar]
- Zhao, J.; Hernández-Pajares, M.; Li, Z.; Wang, N.; Yuan, H. Integrity investigation of global ionospheric TEC maps for high-precision positioning. J. Geod. 2021, 95, 35. [Google Scholar] [CrossRef]
- Landa, V.; Reuveni, Y. Assessment of Dynamic Mode Decomposition (DMD) Model for Ionospheric TEC Map Predictions. Remote. Sens. 2023, 15, 365. [Google Scholar] [CrossRef]
- Ibanez, D.; Rovira-Garcia, A.; Sanz, J.; Juan, J.; Gonzalez-Casado, G.; Jimenez-Banos, D.; Lopez-Echazarreta, C.; Lapin, I. The GNSS Laboratory Tool Suite (gLAB) updates: SBAS, DGNSS and Global Monitoring System. In Proceedings of the 2018 9th ESA Workshop on Satellite NavigationTechnologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), IEEE, Noordwijk, The Netherlands, 5–7 December 2018. [Google Scholar] [CrossRef]
- SCHMID, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Heifetz, E.; Methven, J. Relating optimal growth to counterpropagating Rossby waves in shear instability. Phys. Fluids 2005, 17, 064107. [Google Scholar] [CrossRef]
- Heifetz, E.; Reuveni, Y.; Gelfgat, A.; Kit, E.; Methven, J. The counterpropagating Rossby wave perspective on Kelvin Helmholtz instability as a limiting case of a Rayleigh shear layer with zero width. Phys. Fluids 2006, 18, 018101. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, A.J.; Wilson, B.D.; Edwards, C.D. A New Method for Monitoring the Earth’s Ionospheric Total Electron Content Using the GPS Global Network. In Proceedings of the A New Method for Monitoring the Earth’s Ionospheric Total Electron Content Using the GPS Global Network, Salt Lake City, UT, USA, 22–24 September 1993. [Google Scholar]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orus, R.; Garcia-Rigo, A.; Feltens, J.; Komjathy, A.; Schaer, S.C.; Krankowski, A. The IGS VTEC maps: A reliable source of ionospheric information since 1998. J. Geod. 2009, 83, 263–275. [Google Scholar] [CrossRef]
Evaluated Case Study | |||||
---|---|---|---|---|---|
Quiet Events | X-ray Class | Disturbance Events | X-ray Class | CME Record | Max Kp Index |
23 August 2014 | C6.0 | 25 February 2014 | X4.9 | 17 March 2015 | 8− |
25 January 2014 | C1.0 | 24 October 2014 | X3.1 | 22 June 2015 | 8+ |
15 February 2014 | C2.3 | 10 June 2014 | X2.2 | 23 June 2015 | 8− |
26 March 2014 | C1.5 | 27 October 2014 | X2.0 | 8 September 2017 | 8+ |
9 April 2014 | C2.1 | 26 October 2014 | X2.0 | 28 September 2017 | 7− |
29 May 2014 | C1.4 | 20 December 2014 | X1.8 | 25 August 2018 | 4+ |
23 June 2014 | C1.0 | 7 November 2014 | X1.6 | 26 August 2018 | 7+ |
22 July 2014 | B2.8 | 22 October 2014 | X1.6 | 20 August 2018 | 6 |
20 September 2014 | C1.1 | 10 September 2014 | X1.6 | 1 September 2019 | 5+ |
11 October 2014 | C1.8 | 25 April 2014 | X1.3 | –/–/– | – |
Cases Studies Statistics Analysis of Absolute NEU Errors [Meter] | |||||||||
---|---|---|---|---|---|---|---|---|---|
Period | Stat | Error | IGS | C1P | Klobuchar | WHU | JPL | ESA | DMD (IGSG-RMS-CODE) |
Disturbed | AVG | North | 1.6 | 1.9 | 2.6 | 1.7 | 1.8 | 1.7 | 1.4 |
East | 1.3 | 2.6 | 4.0 | 1.5 | 1.6 | 1.1 | 1.4 | ||
Up | 2.1 | 3.7 | 5.2 | 3.6 | 3.8 | 2.1 | 2.6 | ||
STD | North | 1.7 | 2.7 | 3.4 | 1.8 | 2.0 | 1.5 | 1.6 | |
East | 1.7 | 5.2 | 6.7 | 2.0 | 2.1 | 1.7 | 2.2 | ||
Up | 3.1 | 5.3 | 6.4 | 3.7 | 4.2 | 2.5 | 2.7 | ||
Quiet | AVG | North | 1.2 | 1.7 | 2.1 | 1.4 | 1.4 | 1.4 | 1.4 |
East | 0.9 | 1.8 | 2.6 | 1.1 | 1.1 | 0.9 | 1.2 | ||
Up | 1.8 | 3.3 | 4.1 | 3.0 | 3.4 | 1.9 | 2.7 | ||
STD | North | 1.3 | 2.2 | 2.5 | 1.6 | 1.7 | 1.4 | 1.6 | |
East | 1.2 | 2.7 | 3.8 | 1.4 | 1.5 | 1.3 | 1.6 | ||
Up | 2.6 | 4.6 | 5.2 | 3.2 | 3.5 | 2.4 | 3.4 | ||
CME | AVG | North | 1.7 | 1.8 | 2.0 | 1.6 | 1.6 | 1.9 | 1.8 |
East | 0.6 | 0.6 | 0.7 | 0.8 | 0.9 | 0.5 | 0.6 | ||
Up | 1.1 | 1.5 | 2.2 | 2.2 | 2.7 | 1.3 | 1.6 | ||
STD | North | 1.0 | 1.1 | 1.5 | 1.2 | 1.3 | 1.0 | 1.1 | |
East | 0.8 | 0.9 | 1.1 | 1.1 | 1.2 | 0.7 | 0.8 | ||
Up | 1.8 | 1.9 | 2.5 | 2.5 | 2.9 | 1.9 | 1.9 |
Case Studies Absolute IGRG−RMS−CODE Model NEU Errors [Meter] Statistics | ||||||
---|---|---|---|---|---|---|
Period | Stat | Error | IGS | C1P | DMD (IGSG−RMS−CODE) | DMD (IGRG−RMS−CODE) |
Disturbed | AVG | North | 1.6 | 1.9 | 1.4 | 1.4 |
East | 1.3 | 2.6 | 1.4 | 1.2 | ||
Up | 2.1 | 3.7 | 2.6 | 2.7 | ||
STD | North | 1.7 | 2.7 | 1.6 | 1.5 | |
East | 1.7 | 5.2 | 2.2 | 2.0 | ||
Up | 3.1 | 5.3 | 2.7 | 2.9 | ||
Quiet | AVG | North | 1.2 | 1.7 | 1.4 | 1.4 |
East | 0.9 | 1.8 | 1.2 | 1.2 | ||
Up | 1.8 | 3.3 | 2.7 | 2.5 | ||
STD | North | 1.3 | 2.2 | 1.6 | 1.7 | |
East | 1.2 | 2.7 | 1.6 | 1.7 | ||
Up | 2.6 | 4.6 | 3.4 | 2.8 | ||
CME | AVG | North | 1.7 | 1.8 | 1.8 | 1.8 |
East | 0.6 | 0.6 | 0.6 | 0.7 | ||
Up | 1.1 | 1.5 | 1.6 | 1.9 | ||
STD | North | 1.0 | 1.1 | 1.1 | 1.2 | |
East | 0.8 | 0.9 | 0.8 | 1.1 | ||
Up | 1.8 | 1.9 | 1.9 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landa, V.; Reuveni, Y. Toward Real-Time GNSS Single-Frequency Precise Point Positioning Using Ionospheric Corrections. Remote Sens. 2023, 15, 3333. https://doi.org/10.3390/rs15133333
Landa V, Reuveni Y. Toward Real-Time GNSS Single-Frequency Precise Point Positioning Using Ionospheric Corrections. Remote Sensing. 2023; 15(13):3333. https://doi.org/10.3390/rs15133333
Chicago/Turabian StyleLanda, Vlad, and Yuval Reuveni. 2023. "Toward Real-Time GNSS Single-Frequency Precise Point Positioning Using Ionospheric Corrections" Remote Sensing 15, no. 13: 3333. https://doi.org/10.3390/rs15133333
APA StyleLanda, V., & Reuveni, Y. (2023). Toward Real-Time GNSS Single-Frequency Precise Point Positioning Using Ionospheric Corrections. Remote Sensing, 15(13), 3333. https://doi.org/10.3390/rs15133333