Near-Surface Structure Investigation Using Ambient Noise in the Water Environment Recorded by Fiber-Optic Distributed Acoustic Sensing
Abstract
:1. Introduction
2. Method
2.1. Surface Waves Reconstruction Using Seismic Interferometry
2.2. Shear-Wave Velocity Inversion Using the Multichannel Analysis of Surface Waves
3. Data and Results
3.1. DAS Data Acquisition and Analysis
3.2. Surface Waves Reconstruction and Inversion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siderius, M.; Harrison, C.H.; Porter, M.B. A passive fathometer technique for imaging seabed layering using ambient noise. J. Acoust. Soc. Am. 2006, 120, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Draganov, D.; Campman, X.; Thorbecke, J.; Verdel, A.; Wapenaar, K. Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz). J. Geophys. Res. Solid Earth 2013, 118, 4345–4360. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Stehly, L.; Brossier, R.; Paul, A.; AlpArray Working Group. Imaging Alpine crust using ambient noise wave-equation tomography. Geophys. J. Int. 2020, 222, 69–85. [Google Scholar] [CrossRef] [Green Version]
- Mohamadian Sarvandani, M.; Kästle, E.; Boschi, L.; Leroy, S.; Cannat, M. Seismic Ambient Noise Imaging of a Quasi-Amagmatic Ultra-Slow Spreading Ridge. Remote Sens. 2021, 13, 2811. [Google Scholar] [CrossRef]
- Albert, D.G.; Decato, S.N. Acoustic and seismic ambient noise measurements in urban and rural areas. Appl. Acoust. 2017, 119, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Dean, T.; Hasani, M.A.A. Seismic noise in an urban environment. Lead. Edge 2020, 39, 639–645. [Google Scholar] [CrossRef]
- Quiros, D.A.; Brown, L.D.; Kim, D. Seismic interferometry of railroad induced ground motions: Body and surface wave imaging. Geophys. J. Int. 2016, 205, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, Y.E.; Zhang, H.; Ku, T. Near-surface site investigation by seismic interferometry using urban traffic noise in Singapore. Geophysics 2019, 84, B169–B180. [Google Scholar] [CrossRef]
- Brenguier, F.; Boué, P.; Ben-Zion, Y.; Vernon, F.; Johnson, C.W.; Mordret, A.; Coutant, O.; Share, P.E.; Beaucé, E.; Hollis, D.; et al. Train traffic as a powerful noise source for monitoring active faults with seismic interferometry. Geophys. Res. Lett. 2019, 46, 9529–9536. [Google Scholar] [CrossRef] [Green Version]
- Zakarauskas, P. Ambient noise in shallow water: A literature review. Can. Acoust. 1986, 14, 3–17. [Google Scholar]
- Olofsson, B. Marine ambient seismic noise in the frequency range 1–10 Hz. Lead. Edge 2010, 29, 418–435. [Google Scholar] [CrossRef]
- Hermannsen, L.; Beedholm, K.; Tougaard, J.; Madsen, P.T. High frequency components of ship noise in shallow water with a discussion of implications for harbor porpoises (Phocoena phocoena). J. Acoust. Soc. Am. 2014, 136, 1640–1653. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Yang, X.; Zhang, Y.; Luo, W.; Gan, W. Passive ocean acoustic tomography in shallow water. J. Acoust. Soc. Am. 2019, 145, 2823–2830. [Google Scholar] [CrossRef]
- Tan, T.W.; Godin, O.A.; Katsnelson, B.G.; Yarina, M. Passive geoacoustic inversion in the Mid-Atlantic Bight in the presence of strong water column variability. J. Acoust. Soc. Am. 2020, 147, EL453–EL459. [Google Scholar] [CrossRef]
- Skarsoulis, E.K.; Cornuelle, B.D. Cross-correlation of shipping noise: Refraction and receiver-motion effects. J. Acoust. Soc. Am. 2019, 145, 3003–3010. [Google Scholar] [CrossRef]
- He, Z.; Liu, Q. Optical fiber distributed acoustic sensors: A review. J. Light. Technol. 2021, 39, 3671–3686. [Google Scholar] [CrossRef]
- Bakulin, A.; Silvestrov, I.; Pevzner, R. Surface seismics with DAS: An emerging alternative to modern point-sensor acquisition. Lead. Edge 2020, 39, 808–818. [Google Scholar] [CrossRef]
- Harris, K.; White, D.; Samson, C. Imaging the Aquistore reservoir after 36 kilotonnes of CO2 injection using distributed acoustic sensingAquistore CO2-injection VSP results. Geophysics 2017, 82, M81–M96. [Google Scholar] [CrossRef]
- Ellmauthaler, A.; LeBlanc, M.; Bush, J.; Willis, M.E.; Maida, J.L.; Wilson, G.A. Real-time DAS VSP acquisition and processing on single-and multi-mode fibers. IEEE Sens. J. 2020, 21, 14847–14852. [Google Scholar] [CrossRef]
- Lindsey, N.J.; Martin, E.R.; Dreger, D.S.; Freifeld, B.; Cole, S.; James, S.R.; Biondi, B.L.; Ajo-Franklin, J.B. Fiber-optic network observations of earthquake wavefields. Geophys. Res. Lett. 2017, 44, 11–792. [Google Scholar] [CrossRef] [Green Version]
- Walter, F.; Gräff, D.; Lindner, F.; Paitz, P.; Köpfli, M.; Chmiel, M.; Fichtner, A. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun. 2020, 11, 2436. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.; Jin, G.; Stanek, F. Near-field strain in distributed acoustic sensing-based microseismic observation. Geophysics 2021, 86, P49–P60. [Google Scholar] [CrossRef]
- Song, Z.; Zeng, X.; Thurber, C.H. Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by distributed acoustic sensing. Geophysics 2021, 86, EN1–EN12. [Google Scholar] [CrossRef]
- Song, Z.; Zeng, X.; Xie, J.; Bao, F.; Zhang, G. Sensing shallow structure and traffic noise with fiber-optic internet cables in an urban area. Surv. Geophys. 2021, 42, 1401–1423. [Google Scholar] [CrossRef]
- Dou, S.; Lindsey, N.; Wagner, A.M.; Daley, T.M.; Freifeld, B.; Robertson, M.; Peterson, J.; Ulrich, C.; Martin, E.R.; Ajo-Franklin, J.B. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study. Sci. Rep. 2017, 7, 11620. [Google Scholar] [CrossRef] [Green Version]
- Wapenaar, K. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys. Rev. Lett. 2004, 93, 254301. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Luo, Y.; Schuster, G.T. Interferometric interpolation of missing seismic data. Geophysics 2009, 74, SI37–SI45. [Google Scholar] [CrossRef] [Green Version]
- Park, C.B.; Miller, R.D.; Xia, J. Multichannel analysis of surface waves. Geophysics 1999, 64, 800–808. [Google Scholar] [CrossRef] [Green Version]
- Park, C.B.; Miller, R.D.; Xia, J. Imaging dispersion curves of surface waves on multi-channel record. In SEG Technical Program Expanded Abstracts of the Society of Exploration Geophysicists (SEG) International Exposition and 68th Annual Meeting, New Orleans, LA, USA, 13–18 September 1998; Society of Exploration Geophysicists: Tulsa, OK, USA, 1998; pp. 1377–1380. [Google Scholar]
- Yilmaz, Ö. Seismic Data Processing; Society of Exploration Geophysicists: Tulsa, OK, USA, 1987. [Google Scholar]
- McMechan, G.A.; Yedlin, M.J. Analysis of dispersive waves by wave field transformation. Geophysics 1981, 46, 869–874. [Google Scholar] [CrossRef]
- Kausel, E.; Roesset, J.M. Stiffness matrices for layered soils. Bull. Seismol. Soc. Am. 1981, 71, 1743–1761. [Google Scholar] [CrossRef]
- Socco, L.V.; Boiero, D. Improved Monte Carlo inversion of surface wave data. Geophys. Prospect. 2008, 56, 357–371. [Google Scholar] [CrossRef]
- Bensen, G.D.; Ritzwoller, M.H.; Barmin, M.P.; Levshin, A.L.; Lin, F.; Moschetti, M.P.; Shapiro, N.M.; Yang, Y. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int. 2007, 169, 1239–1260. [Google Scholar] [CrossRef] [Green Version]
- Schimmel, M.; Paulssen, H. Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys. J. Int. 1997, 130, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Tong, L.; Che, H.; Zhang, M.; Li, H. Review of shear-wave velocity prediction equations based on piezocone penetration test data: Example from Yangtze River floodplain deposits at Nanjing, Jiangsu Province, China. Q. J. Eng. Geol. Hydrogeol. 2018, 51, 229–246. [Google Scholar] [CrossRef]
- Strobbia, C.; Boaga, J.; Cassiani, G. Double-array refraction microtremors. J. Appl. Geophys. 2015, 121, 31–41. [Google Scholar] [CrossRef]
- Strobbia, C.; Cassiani, G. Refraction microtremors (ReMi): Data analysis and diagnostics of key hypotheses. Geophysics 2011, 76, MA11–MA20. [Google Scholar] [CrossRef]
- Le Feuvre, M.; Joubert, A.; Leparoux, D.; Côte, P. Passive multi-channel analysis of surface waves with cross-correlations and beamforming. Application to a sea dike. J. Appl. Geophys. 2015, 114, 36–51. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, J.; Wang, Y.; Zhang, C.; Zhang, X.; Zhang, Y. Near-Surface Structure Investigation Using Ambient Noise in the Water Environment Recorded by Fiber-Optic Distributed Acoustic Sensing. Remote Sens. 2023, 15, 3329. https://doi.org/10.3390/rs15133329
Shao J, Wang Y, Zhang C, Zhang X, Zhang Y. Near-Surface Structure Investigation Using Ambient Noise in the Water Environment Recorded by Fiber-Optic Distributed Acoustic Sensing. Remote Sensing. 2023; 15(13):3329. https://doi.org/10.3390/rs15133329
Chicago/Turabian StyleShao, Jie, Yibo Wang, Chi Zhang, Xuping Zhang, and Yixin Zhang. 2023. "Near-Surface Structure Investigation Using Ambient Noise in the Water Environment Recorded by Fiber-Optic Distributed Acoustic Sensing" Remote Sensing 15, no. 13: 3329. https://doi.org/10.3390/rs15133329
APA StyleShao, J., Wang, Y., Zhang, C., Zhang, X., & Zhang, Y. (2023). Near-Surface Structure Investigation Using Ambient Noise in the Water Environment Recorded by Fiber-Optic Distributed Acoustic Sensing. Remote Sensing, 15(13), 3329. https://doi.org/10.3390/rs15133329