Long-Term Measurements of the Atmospheric Boundary Layer Height in Central Amazonia Using Remote Sensing Instruments
Abstract
:1. Introduction
2. Methodology
2.1. Experimental Site
2.2. Data
2.3. Methods
3. Results and Discussion
3.1. Average ABL Daily Cycle
3.2. Monthly ABL Maximum Heights and Growth Rates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Springer Science & Business Media: Berlin, Germany, 1988; Volume 13. [Google Scholar]
- Garratt, J. Extreme maximum land surface temperatures. J. Appl. Meteorol. Climatol. 1992, 31, 1096–1105. [Google Scholar] [CrossRef]
- Wang, B.; Abdalla, E.; Atrio-Barandela, F.; Pavon, D. Dark matter and dark energy interactions: Theoretical challenges, cosmological implications and observational signatures. Rep. Prog. Phys. 2016, 79, 096901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grass, A.; Stuart, R.; Mansour-Tehrani, M. Vortical structures and coherent motion in turbulent flow over smooth and rough boundaries. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1991, 336, 35–65. [Google Scholar]
- Su, T.; Li, Z.; Kahn, R. Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: Regional pattern and influencing factors. Atmos. Chem. Phys. 2018, 18, 15921–15935. [Google Scholar] [CrossRef] [Green Version]
- Camarinha-Neto, G.F.; Cohen, J.C.P.; Dias-Júnior, C.Q.; Sörgel, M.; Cattanio, J.H.; Araújo, A.; Wolff, S.; Kuhn, P.A.F.; Souza, R.A.F.; Rizzo, L.V.; et al. The friagem event in the central Amazon and its influence on micrometeorological variables and atmospheric chemistry. Atmos. Chem. Phys. 2021, 21, 339–356. [Google Scholar] [CrossRef]
- Beyrich, F. Mixing height estimation from sodar data—A critical discussion. Atmos. Environ. 1997, 31, 3941–3953. [Google Scholar] [CrossRef]
- Eresmaa, N.; Karppinen, A.; Joffre, S.; Räsänen, J.; Talvitie, H. Mixing height determination by ceilometer. Atmos. Chem. Phys. Discuss. 2005, 5, 12697–12722. [Google Scholar] [CrossRef] [Green Version]
- van der Kamp, D.; McKendry, I. Diurnal and seasonal trends in convective mixed-layer heights estimated from two years of continuous ceilometer observations in Vancouver, BC. Bound.-Layer Meteorol. 2010, 137, 459–475. [Google Scholar] [CrossRef]
- Sawyer, V.; Li, Z. Detection, variations and intercomparison of the planetary boundary layer depth from radiosonde, lidar and infrared spectrometer. Atmos. Environ. 2013, 79, 518–528. [Google Scholar] [CrossRef]
- Jordan, N.S.; Hoff, R.M.; Bacmeister, J.T. Validation of Goddard Earth Observing System-version 5 MERRA planetary boundary layer heights using CALIPSO. J. Geophys. Res. Atmos. 2010, 115, 24218. [Google Scholar] [CrossRef] [Green Version]
- Dias-Júnior, C.Q.; Carneiro, R.G.; Fisch, G.; D’Oliveira, F.A.F.; Sörgel, M.; Botía, S.; Machado, L.A.T.; Wolff, S.; Santos, R.M.N.d.; Pöhlker, C. Intercomparison of planetary boundary layer heights using remote sensing retrievals and ERA5 reanalysis over Central Amazonia. Remote Sens. 2022, 14, 4561. [Google Scholar] [CrossRef]
- Saha, S.; Sharma, S.; Kumar, K.N.; Kumar, P.; Lal, S.; Kamat, D. Investigation of atmospheric boundary layer characteristics using ceilometer lidar, COSMIC GPS RO satellite, radiosonde and ERA-5 reanalysis dataset over Western Indian region. Atmos. Res. 2022, 268, 105999. [Google Scholar] [CrossRef]
- Carneiro, R.G.; Fisch, G. Observational analysis of the daily cycle of the planetary boundary layer in the central Amazon during a non-El Niño year and El Niño year (GoAmazon project 2014/5). Atmos. Chem. Phys. 2020, 20, 5547–5558. [Google Scholar] [CrossRef]
- Wang, D.; Stachlewska, I.S.; Song, X.; Heese, B.; Nemuc, A. Variability of the boundary layer over an urban continental site based on 10 years of active remote sensing observations in Warsaw. Remote Sens. 2020, 12, 340. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.; Miller, E.; Kamardin, A.; Nevzorova, I.; Troitsky, A.; Schröder, M. Investigation of the mixing height in the planetary boundary layer by using sodar and microwave radiometer data. Environments 2021, 8, 115. [Google Scholar] [CrossRef]
- de Arruda Moreira, G.; de Oliveira, A.P.; Sánchez, M.P.; Codato, G.; da Silva Lopes, F.J.; Landulfo, E.; Marques Filho, E.P. Performance assessment of aerosol-lidar remote sensing skills to retrieve the time evolution of the urban boundary layer height in the Metropolitan Region of São Paulo City, Brazil. Atmos. Res. 2022, 277, 106290. [Google Scholar] [CrossRef]
- Tzadok, T.; Ronen, A.; Rostkier-Edelstein, D.; Agassi, E.; Avisar, D.; Berkovic, S.; Manor, A. Profiling the Planetary Boundary Layer Wind with a StreamLine XR Doppler LiDAR: Comparison to In-Situ Observations and WRF Model Simulations. Remote Sens. 2022, 14, 4264. [Google Scholar] [CrossRef]
- Fisch, G.; Tota, J.; Machado, L.; Silva Dias, M.A.F.d.; Da, F. Lyra, R.; Nobre, C.; Dolman, A.; Gash, J. The convective boundary layer over pasture and forest in Amazonia. Theor. Appl. Climatol. 2004, 78, 47–59. [Google Scholar] [CrossRef] [Green Version]
- De Santana, R.; Dias-Júnior, C.; Tóta, J.; da Silva, R.; do Vale, R.; de Andrade, A.; Tapajós, R.; Mota, B.; Vieira, K.; de Santana, L. Estimating the atmospheric boundary layer height above multiple surfaces of the amazon region. Ciência e Natura 2020, 42, 25. [Google Scholar]
- Andreae, M.O.; Acevedo, O.C.; Araùjo, A.; Artaxo, P.; Barbosa, C.G.; Barbosa, H.; Brito, J.; Carbone, S.; Chi, X.; Cintra, B.; et al. The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmos. Chem. Phys. 2015, 15, 10723–10776. [Google Scholar] [CrossRef] [Green Version]
- Dias-Júnior, C.Q.; Dias, N.L.; dos Santos, R.M.N.; Sörgel, M.; Araújo, A.; Tsokankunku, A.; Ditas, F.; de Santana, R.A.; von Randow, C.; Sá, M.; et al. Is there a classical inertial sublayer over the Amazon forest? Geophys. Res. Lett. 2019, 46, 5614–5622. [Google Scholar] [CrossRef]
- Martins, L.G.N.; Acevedo, O.C.; Puhales, F.S.; Degrazia, G.A.; Oliveira, P.E. Vertical profiles of turbulence parameters in the thermal internal boundary layer. Bound.-Layer Meteorol. 2021, 179, 423–446. [Google Scholar] [CrossRef]
- Zhou, Y.; Sühring, M.; Li, X. Evaluation of energy balance closure adjustment and imbalance prediction methods in the convective boundary layer—A large eddy simulation study. Agric. For. Meteorol. 2023, 333, 109382. [Google Scholar] [CrossRef]
- Chu, Y.; Li, J.; Li, C.; Tan, W.; Su, T.; Li, J. Seasonal and diurnal variability of planetary boundary layer height in Beijing: Intercomparison between MPL and WRF results. Atmos. Res. 2019, 227, 1–13. [Google Scholar] [CrossRef]
- Uzan, L.; Egert, S.; Khain, P.; Levi, Y.; Vadislavsky, E.; Alpert, P. Ceilometers as planetary boundary layer height detectors and a corrective tool for COSMO and IFS models. Atmos. Chem. Phys. 2020, 20, 12177–12192. [Google Scholar] [CrossRef]
- Geiß, A.; Wiegner, M.; Bonn, B.; Schäfer, K.; Forkel, R.; von Schneidemesser, E.; Münkel, C.; Chan, K.L.; Nothard, R. Mixing layer height as an indicator for urban air quality? Atmos. Meas. Tech. 2017, 10, 2969–2988. [Google Scholar] [CrossRef] [Green Version]
- Fitch, K.E.; Garrett, T.J. Measurement and Analysis of the Microphysical Properties of Arctic Precipitation Showing Frequent Occurrence of Riming. J. Geophys. Res. Atmos. 2022, 127, e2021JD035980. [Google Scholar] [CrossRef]
- Caicedo, V.; Rappenglück, B.; Lefer, B.; Morris, G.; Toledo, D.; Delgado, R. Comparison of aerosol lidar retrieval methods for boundary layer height detection using ceilometer aerosol backscatter data. Atmos. Meas. Tech. 2017, 10, 1609–1622. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, R.; Fisch, G.; Neves, T.; Santos, R.; Santos, C.; Borges, C. Nocturnal boundary layer erosion analysis in the Amazon using large-eddy simulation during GoAmazon project 2014/5. Atmosphere 2021, 12, 240. [Google Scholar] [CrossRef]
- Macedo, A.d.S.; Fisch, G. Temporal variability of solar radiation during the GOAmazon 2014/15 experiment. Rev. Bras. Meteorol. 2018, 33, 353–365. [Google Scholar] [CrossRef]
- Newman, M.; Wittenberg, A.T.; Cheng, L.; Compo, G.P.; Smith, C.A. The extreme 2015/16 El Niño, in the context of historical climate variability and change. Bull. Am. Meteorol. Soc. 2018, 99, S16–S20. [Google Scholar] [CrossRef] [Green Version]
- Moura, M.M.; Dos Santos, A.R.; Pezzopane, J.E.M.; Alexandre, R.S.; da Silva, S.F.; Pimentel, S.M.; de Andrade, M.S.S.; Silva, F.G.R.; Branco, E.R.F.; Moreira, T.R.; et al. Relation of El Niño and La Niña phenomena to precipitation, evapotranspiration and temperature in the Amazon basin. Sci. Total Environ. 2019, 651, 1639–1651. [Google Scholar] [CrossRef] [PubMed]
Year | Number of Days Collected | Number of Days Used | Period | % |
---|---|---|---|---|
2014 | 18 | 16 | December (wet) | 88.9 |
2015 | 273 | 218 | January–December (wet and dry) | 79.9 |
2016 | 64 | 28 | January–April (wet) | 43.8 |
2018 | 291 | 211 | January–November (wet and dry) | 72.5 |
2019 | 99 | 66 | July–Dec (dry) | 66.7 |
2020 | 328 | 246 | January–December (wet and dry) | 75.0 |
Year | RMSE (m) | r | Intercept (m) | Slope (h) |
---|---|---|---|---|
2015 | 213 | 0.58 | 733 | 4.19 |
2018 | 203 | 0.54 | 886 | 2.77 |
2020 | 223 | 0.45 | 925 | 2.75 |
All | 311 | 0.51 | 875 | 3.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, C.M.A.; Dias-Júnior, C.Q.; D’Oliveira, F.A.F.; Martins, H.S.; Carneiro, R.G.; Portela, B.T.T.; Fisch, G. Long-Term Measurements of the Atmospheric Boundary Layer Height in Central Amazonia Using Remote Sensing Instruments. Remote Sens. 2023, 15, 3261. https://doi.org/10.3390/rs15133261
Souza CMA, Dias-Júnior CQ, D’Oliveira FAF, Martins HS, Carneiro RG, Portela BTT, Fisch G. Long-Term Measurements of the Atmospheric Boundary Layer Height in Central Amazonia Using Remote Sensing Instruments. Remote Sensing. 2023; 15(13):3261. https://doi.org/10.3390/rs15133261
Chicago/Turabian StyleSouza, Carla Maria Alves, Cléo Quaresma Dias-Júnior, Flávio Augusto F. D’Oliveira, Hardiney Santos Martins, Rayonil Gomes Carneiro, Bruno Takeshi Tanaka Portela, and Gilberto Fisch. 2023. "Long-Term Measurements of the Atmospheric Boundary Layer Height in Central Amazonia Using Remote Sensing Instruments" Remote Sensing 15, no. 13: 3261. https://doi.org/10.3390/rs15133261
APA StyleSouza, C. M. A., Dias-Júnior, C. Q., D’Oliveira, F. A. F., Martins, H. S., Carneiro, R. G., Portela, B. T. T., & Fisch, G. (2023). Long-Term Measurements of the Atmospheric Boundary Layer Height in Central Amazonia Using Remote Sensing Instruments. Remote Sensing, 15(13), 3261. https://doi.org/10.3390/rs15133261