The Transport Path and Vertical Structure of Dust Storms in East Asia and the Impacts on Cities in Northern China
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Surface Synoptic Observation (SYNOP) Data
2.3. CALIPSO Data
2.4. NCEP Global Dataset
2.5. Methods
2.5.1. Spatial and Temporal Distribution
2.5.2. Clustering Analysis in Moving Path
2.5.3. Vertical Distribution of Dust Aerosols
3. Results and Analysis
3.1. Distribution Characteristics of Dust Storms
3.2. Dust Storm Trajectory Analysis
3.3. Microphysical Properties of Dust Aerosols
3.3.1. Dust Storm on 5 May 2015
3.3.2. Dust Storm on 12 April 2018
3.3.3. Dust Storm on 15 March 2021
4. Discussion
4.1. Impact Range and Trajectory of Dust Storms
4.2. Vertical Distribution of Dust Storm
5. Conclusions
- (1)
- The DOF analysis reveals that the stations with higher frequency are situated in the southern part of Mongolia and the Taklamakan Desert in China (Figure 2). Since the 1980s, there has been a notable decrease in the magnitude of DO in East Asia. However, the situation in Mongolia is different, as DO have gradually increased in frequency over time. In China, an increasing trend of BD was observed in various stations located in the Taklimakan Desert and the lower reaches of the Yellow River. In Mongolia, the stations with increasing trends of DO are primarily those situated in the northern Gobi Desert region (Figure 3).
- (2)
- The dust storms at the four meteorological stations located on the main propagation paths in China (Guaizihu, Tikanlik, Erlian, and Beijing) originated from the northwest, westward and northward directions of the windward area. Therefore, there are three primary paths for the movement of dust storms in East Asia: the northwestern, westerly, and northerly paths (Figure 4). The dust storms in northern China originated from both distant and near sources, with those from near sources mainly originating in the Taklamakan Desert area. Those from distant source had two areas of origin: one originated from the direction of Kazakhstan, being enhanced through the Taklamakan Desert, while the second originated from the Gobi Desert in Mongolia, in the upwind area of China, with the main transfer path passing over northern China. Thus, the Taklamakan Desert and the Mongolian Gobi Desert can be identified as the primary sources of dust storms.
- (3)
- The vertical structures of dust layers are dependent on both the intensity of the dust event and its source, which can be determined by analyzing the total attenuation backscatter coefficient, depolarization ratio, and color ratio values. Dust storms typically reach their peak intensity when dust particles are distributed vertically at heights exceeding 3 km. In East Asia, the presence of various dust sources and particle sizes often leads to a stratified distribution of dust particles. Ground stations, remote sensing monitoring, and airflow model simulations have revealed that dust storms along the westerly path mainly affect local areas with blowing dust and floating dust. In contrast, dust storms along the northwestern and northerly paths have a wider impact.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yumimoto, K.; Takemura, T. Long-term inverse modeling of Asian dust: Interannual variations of its emission, transport, deposition, and radiative forcing. J. Geophys. Res. Atmos. 2015, 120, 1582–1607. [Google Scholar] [CrossRef]
- Lee, J.-J.; Kim, C.-H. Roles of surface wind, NDVI and snow cover in the recent changes in Asian dust storm occurrence frequency. Atmos. Environ. 2012, 59, 366–375. [Google Scholar] [CrossRef]
- Tan, S.-C.; Li, J.; Che, H.; Chen, B.; Wang, H. Transport of East Asian dust storms to the marginal seas of China and the southern North Pacific in spring 2010. Atmos. Environ. 2017, 148, 316–328. [Google Scholar] [CrossRef]
- Laurent, B.; Marticorena, B.; Bergametti, G.; Mei, F. Modeling mineral dust emissions from Chinese and Mongolian deserts. Glob. Planet. Chang. 2006, 52, 121–141. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, W.; Yang, L. Analysis of dust wet deposition in the mid-latitudes of the Northern Hemisphere. Air Qual. Atmos. Health 2019, 12, 217–227. [Google Scholar] [CrossRef]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Schweitzer, M.D.; Calzadilla, A.S.; Salamo, O.; Sharifi, A.; Kumar, N.; Holt, G.; Campos, M.; Mirsaeidi, M. Lung health in era of climate change and dust storms. Environ. Res. 2018, 163, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.Y.; Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Chang. 2006, 52, 88–104. [Google Scholar] [CrossRef]
- Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian dust transported one full circuit around the globe. Nat. Geosci. 2009, 2, 557–560. [Google Scholar] [CrossRef]
- Song, H.; Zhang, K.; Piao, S.; Liu, L.; Wang, Y.-P.; Chen, Y.; Yang, Z.; Zhu, L.; Wan, S. Soil organic carbon and nutrient losses resulted from spring dust emissions in Northern China. Atmos. Environ. 2019, 213, 585–596. [Google Scholar] [CrossRef]
- Shao, Y.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Kuang, W. 70 years of urban expansion across China: Trajectory, pattern, and national policies. Sci. Bull. 2020, 65, 1970–1974. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W. National urban land-use/cover change since the beginning of the 21st century and its policy implications in China. Land Use Policy 2020, 97, 104747. [Google Scholar] [CrossRef]
- Kuang, W.; Du, G.; Lu, D.; Dou, Y.; Li, X.; Zhang, S.; Chi, W.; Dong, J.; Chen, G.; Yin, Z.; et al. Global observation of urban expansion and land-cover dynamics using satellite big-data. Sci. Bull. 2021, 66, 297–300. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gong, S.L.; Zhao, T.L.; Arimoto, R.; Wang, Y.Q.; Zhou, Z.J. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett. 2003, 30, 2272. [Google Scholar] [CrossRef] [Green Version]
- Kim, J. Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965–2004). Atmos. Environ. 2008, 42, 4778–4789. [Google Scholar] [CrossRef]
- Guo, L.; Fan, B.; Zhang, F.; Jin, Z.; Lin, H. The Clustering of Severe Dust Storm Occurrence in China From 1958 to 2007. J. Geophys. Res. Atmos. 2018, 123, 8035–8046. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Klose, M.; Wyrwoll, K.-H. Recent global dust trend and connections to climate forcing. J. Geophys. Res. Atmos. 2013, 118, 11107–11118. [Google Scholar] [CrossRef]
- Mo, J.; Gong, S.; Zhang, L.; He, J.; Lu, S.; Zhou, Y.; Ke, H.; Zhang, H. Impacts of long-range transports from Central and South Asia on winter surface PM2.5 concentrations in China. Sci. Total Environ. 2021, 777, 146243. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Zhang, X.-X.; Lu, H.; Zhang, X.-Y.; Xu, Z. Weakened dust activity over China and Mongolia from 2001 to 2020 associated with climate change and land-use management. Environ. Res. Lett. 2021, 16, 124056. [Google Scholar] [CrossRef]
- Wang, H.; Jia, X.; Li, K.; Li, Y. Horizontal wind erosion flux and potential dust emission in arid and semiarid regions of China: A major source area for East Asia dust storms. CATENA 2015, 133, 373–384. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, S.-H. Modeling a severe wintertime Asian dust event observed in the East Asia region: Sensitivity of the WRF-Chem dust emission schemes. Atmos. Pollut. Res. 2022, 13, 101599. [Google Scholar] [CrossRef]
- Guo, J.; Lou, M.; Miao, Y.; Wang, Y.; Zeng, Z.; Liu, H.; He, J.; Xu, H.; Wang, F.; Min, M.; et al. Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling. Environ. Pollut. 2017, 230, 1030–1039. [Google Scholar] [CrossRef]
- Vijayakumar, K.; Devara, P.C.S.; Rao, S.V.B.; Jayasankar, C.K. Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data. Aeolian Res. 2016, 21, 75–85. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Shao, Y.; Dong, C.H. A review on East Asian dust storm climate, modelling and monitoring. Glob. Planet. Chang. 2006, 52, 1–22. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Qian, Y.; Zhao, C.; Kang, L.; Yang, B.; Wang, Y.; Liu, Y.; Yuan, T.; Wang, T.; et al. An overview of mineral dust modeling over East Asia. J. Meteorol. Res. 2017, 31, 633–653. [Google Scholar] [CrossRef]
- Huang, L.; Jiang, J.H.; Tackett, J.L.; Su, H.; Fu, R. Seasonal and diurnal variations of aerosol extinction profile and type distribution from CALIPSO 5-year observations. J. Geophys. Res. Atmos. 2013, 118, 4572–4596. [Google Scholar] [CrossRef]
- Proestakis, E.; Amiridis, V.; Marinou, E.; Georgoulias, A.K.; Solomos, S.; Kazadzis, S.; Chimot, J.; Che, H.; Alexandri, G.; Binietoglou, I.; et al. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP. Atmos. Chem. Phys. 2018, 18, 1337–1362. [Google Scholar] [CrossRef] [Green Version]
- Omar, A.H.; Tackett, J.; Al-Dousari, A. CALIPSO Observations of Sand and Dust Storms and Comparisons of Source Types near Kuwait City. Atmosphere 2022, 13, 1946. [Google Scholar] [CrossRef]
- Al-Dousari, A.; Omar, A.; Al-Hemoud, A.; Aba, A.; Alrashedi, M.; Alrawi, M.; Rashki, A.; Petrov, P.; Ahmed, M.; Al-Dousari, N.; et al. A Success Story in Controlling Sand and Dust Storms Hotspots in the Middle East. Atmosphere 2022, 13, 1335. [Google Scholar] [CrossRef]
- Lee, E.-H.; Sohn, B.-J. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change. Atmos. Environ. 2011, 45, 4611–4616. [Google Scholar] [CrossRef]
- Amgalan, G.; Liu, G.-R.; Kuo, T.-H.; Lin, T.-H. Correlation between dust events in Mongolia and surface wind and precipitation. Terr. Atmos. Ocean. Sci. 2017, 28, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Kimura, R.; Bai, L.; Wang, J. Relationships among dust outbreaks, vegetation cover, and surface soil water content on the Loess Plateau of China, 1999–2000. CATENA 2009, 77, 292–296. [Google Scholar] [CrossRef]
- Bao, T.; Li, J.; Chang, I.-S.; Jin, E.; Wu, J.; Bao, Y. The influence of ecological engineering projects on dust events: A case study in the northern China. Environ. Impact Assess. Rev. 2022, 96, 106847. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Mikami, M. Regional Difference in the Characteristic of Dust Event in East Asia: Relationship among Dust Outbreak, Surface Wind, and Land Surface Condition. J. Meteorol. Soc. Jpn. 2005, 83A, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.-Y.; Chun, Y. The characteristics of Asian dust events in Northeast Asia during the springtime from 1993 to 2004. Glob. Planet. Chang. 2006, 52, 231–247. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. 2008, 113, D23212. [Google Scholar] [CrossRef]
- Huang, J.; Wang, T.; Wang, W.; Li, Z.; Yan, H. Climate effects of dust aerosols over East Asian arid and semiarid regions. J. Geophys. Res. Atmos. 2014, 119, 11–398. [Google Scholar] [CrossRef]
- Jia, R.; Liu, Y.; Chen, B.; Zhang, Z.; Huang, J. Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ. 2015, 123, 210–219. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteor. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Zhao, S.; Yin, D.; Qu, J. Identifying sources of dust based on CALIPSO, MODIS satellite data and backward trajectory model. Atmos. Pollut. Res. 2015, 6, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Kimura, R. Factors contributing to dust storms in source regions producing the yellow-sand phenomena observed in Japan from 1993 to 2002. J. Arid. Environ. 2012, 80, 40–44. [Google Scholar] [CrossRef]
- Kurosaki, Y.; Mikami, M. Threshold wind speed for dust emission in east Asia and its seasonal variations. J. Geophys. Res. 2007, 112, D17202. [Google Scholar] [CrossRef]
- Aswini, M.A.; Kumar, A.; Das, S.K. Quantification of long-range transported aeolian dust towards the Indian peninsular region using satellite and ground-based data—A case study during a dust storm over the Arabian Sea. Atmos. Res. 2020, 239, 104910. [Google Scholar] [CrossRef]
- Sekiyama, T.T.; Tanaka, T.Y.; Maki, T.; Mikami, M. The Effects of Snow Cover and Soil Moisture on Asian Dust: II. Emission Estimation by Lidar Data Assimilation. SOLA 2011, 7A, 40–43. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Li, S.; Xiong, Y.; Du, K. Estimation of cross-boundary aerosol flux over the Edmonton-Calgary Corridor in Canada based on CALIPSO and MERRA-2 data during 2011–2017. Atmos. Environ. 2021, 246, 118084. [Google Scholar] [CrossRef]
- Sharifikia, M.; Rabbani, F. Source routing and detection of dust storm in the Salt Lake basin of Qom in Iran. Arab. J. Geosci. 2020, 13, 678. [Google Scholar] [CrossRef]
- Filonchyk, M.; Yan, H.; Shareef, T.M.E.; Yang, S. Aerosol contamination survey during dust storm process in Northwestern China using ground, satellite observations and atmospheric modeling data. Theor. Appl. Climatol. 2019, 135, 119–133. [Google Scholar] [CrossRef]
- Zhao, W.; Sun, Y.; Balsam, W.; Zeng, L.; Lu, H.; Otgonbayar, K.; Ji, J. Clay-sized Hf-Nd-Sr isotopic composition of Mongolian dust as a fingerprint for regional to hemispherical transport. Geophys. Res. Lett. 2015, 42, 5661–5669. [Google Scholar] [CrossRef]
- Xu, C.; Guan, Q.; Lin, J.; Luo, H.; Yang, L.; Wang, Q. Identification and quantitative analysis of dust trajectories in the Hexi Corridor. Agric. For. Meteorol. 2020, 291, 107987. [Google Scholar] [CrossRef]
- Huang, X.-X.; Wang, T.-J.; Jiang, F.; Liao, J.-B.; Cai, Y.-F.; Yin, C.-Q.; Zhu, J.-L.; Han, Y. Studies on a Severe Dust Storm in East Asia and Its Impact on the Air Quality of Nanjing, China. Aerosol. Air Qual. Res. 2013, 13, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Wang, J. A climatology of Northeast Asian dust events. Meteorol. Z. 2003, 12, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Xi, X.; Sokolik, I.N. Dust interannual variability and trend in Central Asia from 2000 to 2014 and their climatic linkages. J. Geophys. Res. Atmos. 2015, 120, 12–175. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Chen, S.; Zhang, X.; Chen, J.; Wang, X.; Gowan, E.J.; Qiang, M.; Dong, G.; Wang, Z.; Li, Y.; et al. Asian dust-storm activity dominated by Chinese dynasty changes since 2000 BP. Nat. Commun. 2020, 11, 992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Zhao, C.; Song, M.; Liu, W.; Chen, F.; Zhang, D.; Liu, Z. Onset of frequent dust storms in northern China at ~AD 1100. Sci. Rep. 2015, 5, 17111. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Bräuning, A.; Zhang, Z.; Dong, Z.; Esper, J. Dust storm frequency and its relation to climate changes in Northern China during the past 1000 years. Atmos. Environ. 2007, 41, 9288–9299. [Google Scholar] [CrossRef]
- Roe, G. On the interpretation of Chinese loess as a paleoclimate indicator. Quat. Res. 2009, 71, 150–161. [Google Scholar] [CrossRef]
- Liu, X. Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J. Geophys. Res. 2004, 109, D16210. [Google Scholar] [CrossRef]
- Fan, B.; Guo, L.; Li, N.; Chen, J.; Lin, H.; Zhang, X.; Shen, M.; Rao, Y.; Wang, C.; Ma, L. Earlier vegetation green-up has reduced spring dust storms. Sci. Rep. 2014, 4, 6749. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.-F.; Inoue, M.; Du, M. Influence of Dust Storm Frequency in Northern China on Fluctuations of Asian Dust Frequency Observed in Japan. SOLA 2007, 3, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Liu, B.; Li, H.; Zou, X.; Wang, J.; Liu, W.; Cheng, H.; Kang, L.; Zhang, C. Variation of strong dust storm events in Northern China during 1978–2007. Atmos. Res. 2017, 183, 166–172. [Google Scholar] [CrossRef]
- Guan, Q.; Sun, X.; Yang, J.; Pan, B.; Zhao, S.; Wang, L. Dust Storms in Northern China: Long-Term Spatiotemporal Characteristics and Climate Controls. J. Clim. 2017, 30, 6683–6700. [Google Scholar] [CrossRef]
- Grigholm, B.; Mayewski, P.A.; Kang, S.; Zhang, Y.; Morgenstern, U.; Schwikowski, M.; Kaspari, S.; Aizen, V.; Aizen, E.; Takeuchi, N.; et al. Twentieth century dust lows and the weakening of the westerly winds over the Tibetan Plateau. Geophys. Res. Lett. 2015, 42, 2434–2441. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bao, T.; Xi, G.; Hao, Y.; Chang, I.-S.; Wu, J.; Xue, Z.; Jin, E.; Zhang, W.; Bao, Y. The Transport Path and Vertical Structure of Dust Storms in East Asia and the Impacts on Cities in Northern China. Remote Sens. 2023, 15, 3183. https://doi.org/10.3390/rs15123183
Bao T, Xi G, Hao Y, Chang I-S, Wu J, Xue Z, Jin E, Zhang W, Bao Y. The Transport Path and Vertical Structure of Dust Storms in East Asia and the Impacts on Cities in Northern China. Remote Sensing. 2023; 15(12):3183. https://doi.org/10.3390/rs15123183
Chicago/Turabian StyleBao, Tana, Guilin Xi, Yanling Hao, I-Shin Chang, Jing Wu, Zhichao Xue, Erdemtu Jin, Wenxing Zhang, and Yuhai Bao. 2023. "The Transport Path and Vertical Structure of Dust Storms in East Asia and the Impacts on Cities in Northern China" Remote Sensing 15, no. 12: 3183. https://doi.org/10.3390/rs15123183
APA StyleBao, T., Xi, G., Hao, Y., Chang, I. -S., Wu, J., Xue, Z., Jin, E., Zhang, W., & Bao, Y. (2023). The Transport Path and Vertical Structure of Dust Storms in East Asia and the Impacts on Cities in Northern China. Remote Sensing, 15(12), 3183. https://doi.org/10.3390/rs15123183