Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = vortex electromagnetic waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4582 KiB  
Review
Review on Rail Damage Detection Technologies for High-Speed Trains
by Yu Wang, Bingrong Miao, Ying Zhang, Zhong Huang and Songyuan Xu
Appl. Sci. 2025, 15(14), 7725; https://doi.org/10.3390/app15147725 - 10 Jul 2025
Viewed by 547
Abstract
From the point of view of the intelligent operation and maintenance of high-speed train tracks, this paper examines the research status of high-speed train rail damage detection technology in the field of high-speed train track operation and maintenance detection in recent years, summarizes [...] Read more.
From the point of view of the intelligent operation and maintenance of high-speed train tracks, this paper examines the research status of high-speed train rail damage detection technology in the field of high-speed train track operation and maintenance detection in recent years, summarizes the damage detection methods for high-speed trains, and compares and analyzes different detection technologies and application research results. The analysis results show that the detection methods for high-speed train rail damage mainly focus on the research and application of non-destructive testing technology and methods, as well as testing platform equipment. Detection platforms and equipment include a new type of vortex meter, integrated track recording vehicles, laser rangefinders, thermal sensors, laser vision systems, LiDAR, new ultrasonic detectors, rail detection vehicles, rail detection robots, laser on-board rail detection systems, track recorders, self-moving trolleys, etc. The main research and application methods include electromagnetic detection, optical detection, ultrasonic guided wave detection, acoustic emission detection, ray detection, vortex detection, and vibration detection. In recent years, the most widely studied and applied methods have been rail detection based on LiDAR detection, ultrasonic detection, eddy current detection, and optical detection. The most important optical detection method is machine vision detection. Ultrasonic detection can detect internal damage of the rail. LiDAR detection can detect dirt around the rail and the surface, but the cost of this kind of equipment is very high. And the application cost is also very high. In the future, for high-speed railway rail damage detection, the damage standards must be followed first. In terms of rail geometric parameters, the domestic standard (TB 10754-2018) requires a gauge deviation of ±1 mm, a track direction deviation of 0.3 mm/10 m, and a height deviation of 0.5 mm/10 m, and some indicators are stricter than European standard EN-13848. In terms of damage detection, domestic flaw detection vehicles have achieved millimeter-level accuracy in crack detection in rail heads, rail waists, and other parts, with a damage detection rate of over 85%. The accuracy of identifying track components by the drone detection system is 93.6%, and the identification rate of potential safety hazards is 81.8%. There is a certain gap with international standards, and standards such as EN 13848 have stricter requirements for testing cycles and data storage, especially in quantifying damage detection requirements, real-time damage data, and safety, which will be the key research and development contents and directions in the future. Full article
Show Figures

Figure 1

15 pages, 16414 KiB  
Article
Application of Near-Far Field Conversion to Measurement of Scattering on Bessel Vortex Electromagnetic Wave
by Zhe Wu, Yu Yun, Nengwu Liu, Jiaji Wu, Zhensen Wu, Lingkun Ma and Agostino Monorchio
Appl. Sci. 2025, 15(3), 1029; https://doi.org/10.3390/app15031029 - 21 Jan 2025
Cited by 1 | Viewed by 841
Abstract
The measurement and analysis of the interaction between Bessel vortex electromagnetic (EM) and several standard targets are presented in this paper. With the aid of the angular spectrum expansion (ASE) method and physics optics (PO) theorem, scattering results on the plates (metal and [...] Read more.
The measurement and analysis of the interaction between Bessel vortex electromagnetic (EM) and several standard targets are presented in this paper. With the aid of the angular spectrum expansion (ASE) method and physics optics (PO) theorem, scattering results on the plates (metal and dielectric) and a sphere could be derived. Furthermore, plane near-field scanning and near-far field conversion methods were implemented to compare the theoretical radar cross section (RCS). In the experiment, the quasi Bessel vortex wave was generated by a holographic metasurface antenna, and the whole measurement was performed in an anechoic chamber. The results of both the theory and measurement show that the scattered fields of the plate and sphere still had characteristics of the vortex EM wave, and the scientificity and accuracy of the measured RCS were verified. Our work involved a vortex scattering experiment in the microwave frequency band, which provides strong support for the application of vortex waves in radar detection and target recognition. Full article
Show Figures

Figure 1

11 pages, 2811 KiB  
Article
Biaxial Gaussian Beams, Hermite–Gaussian Beams, and Laguerre–Gaussian Vortex Beams in Isotropy-Broken Materials
by Maxim Durach
Photonics 2024, 11(11), 1062; https://doi.org/10.3390/photonics11111062 - 13 Nov 2024
Viewed by 977
Abstract
We have developed the paraxial approximation for electromagnetic fields in arbitrary isotropy-broken media in terms of the ray–wave tilt and the curvature of materials’ Fresnel wave surfaces. We have obtained solutions of the paraxial equation in the form of biaxial Gaussian beams, which [...] Read more.
We have developed the paraxial approximation for electromagnetic fields in arbitrary isotropy-broken media in terms of the ray–wave tilt and the curvature of materials’ Fresnel wave surfaces. We have obtained solutions of the paraxial equation in the form of biaxial Gaussian beams, which is a novel class of electromagnetic field distributions in generic isotropy-broken materials. Such beams have been previously observed experimentally and numerically in hyperbolic metamaterials but have evaded theoretical analysis in the literature up to now. Biaxial Gaussian beams have two axes: one in the direction of the Abraham momentum, corresponding to the ray propagation, and another in the direction of the Minkowski momentum, corresponding to the wave propagation, in agreement with the recent theory of refraction, ray–wave tilt, and hidden momentum [Durach, 2024]. We show that the curvature of the wavefronts in the biaxial Gaussian beams correspond to the curvature of the Fresnel wave surface at the central wave vector of the beam. We obtain the higher-order modes of the biaxial beams, including the biaxial Hermite–Gaussian and Laguerre–Gaussian vortex beams, which opens avenues toward studies of the optical angular momentum (OAM) in isotropy-broken media, including generic anisotropic and bianisotropic materials. Full article
(This article belongs to the Special Issue Emerging Trends in Metamaterials and Metasurfaces Research)
Show Figures

Figure 1

21 pages, 1006 KiB  
Article
Parameter Extraction of Accelerated Moving Targets under Non-Quasi-Axial Incidence Conditions Based on Vortex Electromagnetic Wave Radar
by Lingling Zhang, Yongzhong Zhu, Yijun Chen, Wenxuan Xie and Hang Yuan
Remote Sens. 2024, 16(11), 1931; https://doi.org/10.3390/rs16111931 - 27 May 2024
Cited by 1 | Viewed by 1202
Abstract
Vortex electromagnetic wave radar carrying orbital angular momentum can compensate for the deficiency of planar electromagnetic wave radar in detecting motion parameters perpendicular to the direction of electromagnetic wave propagation, thus providing more information for target recognition, which has become a hot research [...] Read more.
Vortex electromagnetic wave radar carrying orbital angular momentum can compensate for the deficiency of planar electromagnetic wave radar in detecting motion parameters perpendicular to the direction of electromagnetic wave propagation, thus providing more information for target recognition, which has become a hot research field in recent years. However, existing research makes it difficult to obtain the acceleration and rotation centers of targets under non-quasi-axial incidence conditions of vortex electromagnetic waves. Based on this, this article proposes a variable speed motion target parameter extraction method that combines single element and total element echoes. This method can achieve three-dimensional information extraction of radar targets based on a uniform circular array (UCA). Firstly, we establish a non-quasi-axis detection echo model for variable-speed moving targets and extract echoes from different array elements. Then, a single element echo is used to extract the target’s range slow time profile and obtain the target’s rotation center z coordinate. We further utilize the target linear, angular Doppler frequency shift extremum, and median information to extract parameters such as target acceleration, tilt angle, rotation radius, and rotation center x and y coordinates. We analyzed the impact of different signal-to-noise ratios and motion states on parameter extraction. The simulation results have verified the effectiveness of the proposed algorithm. Full article
(This article belongs to the Topic Radar Signal and Data Processing with Applications)
Show Figures

Graphical abstract

23 pages, 10066 KiB  
Article
Scattering Field Intensity and Orbital Angular Momentum Spectral Distribution of Vortex Electromagnetic Beams Scattered by Electrically Large Targets Comprising Different Materials
by Minghao Sun, Songhua Liu and Lixin Guo
Remote Sens. 2024, 16(5), 754; https://doi.org/10.3390/rs16050754 - 21 Feb 2024
Viewed by 2023
Abstract
In this study, we obtained the intensity and orbital angular momentum (OAM) spectral distribution of the scattering fields of vortex electromagnetic beams illuminating electrically large targets composed of different materials. We used the angular spectral decomposition method to decompose a vortex beam into [...] Read more.
In this study, we obtained the intensity and orbital angular momentum (OAM) spectral distribution of the scattering fields of vortex electromagnetic beams illuminating electrically large targets composed of different materials. We used the angular spectral decomposition method to decompose a vortex beam into plane waves in the spectral domain at different elevations and azimuths. We combined this method with the physical optics algorithm to calculate the scattering field distribution. The OAM spectra of the scattering field along different observation radii were analyzed using the spiral spectrum expansion method. The numerical results indicate that for beams with different parameters (such as polarization, topological charge, half-cone angle, and frequency) and targets with different characteristics (such as composition), the scattering field intensity distribution and OAM spectral characteristics varied considerably. When the beam parameters change, the results of scattering from different materials show similar changing trends. Compared with beams scattered by uncoated metal and dielectric targets, the scattering field of the coating target can better maintain the shape and OAM mode of beams from the incident field. The scattering characteristics of metal targets were the most sensitive to beam-parameter changes. The relationship between the beam parameters, target parameters, the scattering field intensity, and the OAM spectra of the scattering field was constructed, confirming that the spiral spectrum of the scattering field carries the target information. These findings can be used in remote sensing engineering to supplement existing radar imaging, laying the foundation for further identification of beam or target parameters. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

13 pages, 8568 KiB  
Communication
A Preliminary Study on the Inversion Method for the Refraction Structure Parameter from Vortex Electromagnetic Waves
by Qixiang Liao, Zheng Sheng, Shudao Zhou, Peng Guo, Zhiyong Long, Mingyuan He and Jiping Guan
Remote Sens. 2023, 15(12), 3140; https://doi.org/10.3390/rs15123140 - 15 Jun 2023
Cited by 3 | Viewed by 1766
Abstract
When vortex electromagnetic waves propagate through a turbulent atmosphere, the amplitude and phase of the electromagnetic waves are disturbed, creating the scintillation effect. According to the scintillation index of vortex waves, a new method of retrieving the turbulent refraction structure parameter was proposed [...] Read more.
When vortex electromagnetic waves propagate through a turbulent atmosphere, the amplitude and phase of the electromagnetic waves are disturbed, creating the scintillation effect. According to the scintillation index of vortex waves, a new method of retrieving the turbulent refraction structure parameter was proposed using a genetic algorithm, and the feasibility of this method was verified by simulated experiments. The numerical results showed that the inversed value obtained by the genetic algorithm was close to the real parameter when the turbulent inner scale and outer scale were fixed. However, there was a gap between the inversed value and the real parameter when only the turbulent outer scale was fixed. These results suggest that vortex wave data can be used for turbulent refraction structure parameter inversion, and they provide new research directions for atmospheric remote sensing. Full article
Show Figures

Figure 1

19 pages, 4752 KiB  
Article
Three-Dimensional Imaging of Vortex Electromagnetic Wave Radar with Integer and Fractional Order OAM Modes
by Jia Liang, Yijun Chen, Qun Zhang, Ying Luo and Xiaohui Li
Remote Sens. 2023, 15(11), 2903; https://doi.org/10.3390/rs15112903 - 2 Jun 2023
Cited by 7 | Viewed by 2321
Abstract
Vortex electromagnetic (EM) waves, with different orbital angular momentum (OAM) modes, have the ability to distinguish the azimuth of radar targets, and then the two-dimensional reconstruction of the targets can be achieved. However, the vortex EM wave imaging methods in published research have [...] Read more.
Vortex electromagnetic (EM) waves, with different orbital angular momentum (OAM) modes, have the ability to distinguish the azimuth of radar targets, and then the two-dimensional reconstruction of the targets can be achieved. However, the vortex EM wave imaging methods in published research have no ability to obtain the elevation of the targets, and thus, the three-dimensional spatial structure and richer feature information of the radar target cannot be obtained. Therefore, a three-dimensional imaging method of vortex EM waves with integer- and fractional-order OAM modes is proposed in this paper, which can realize a three-dimensional reconstruction of a radar target based on a uniform circular array (UCA) with two-step imaging. First, the vortex EM wave with integer- and fractional-order OAM modes is generated, and the echo model with different OAM mode types is established. Thereafter, the echo with integer order is processed to obtain the range-azimuth image by fast Fourier transform (FFT). Then, in order to realize the three-dimensional reconstruction, the echo with fractional order is processed by utilizing the butterfly operation and analyzing the characteristics of the fractional Bessel function. Moreover, the resolution and reconstruction precision of the azimuth and elevation are analyzed. Finally, the effectiveness of the proposed method is verified by simulation experiments. Full article
Show Figures

Figure 1

20 pages, 5643 KiB  
Article
Micromotion Feature Extraction with VEMW Radar Based on Rotational Doppler Effect
by Kun Lv, Hui Ma, Xinrui Jiang, Jian Bai and Hongwei Liu
Remote Sens. 2023, 15(11), 2847; https://doi.org/10.3390/rs15112847 - 30 May 2023
Cited by 5 | Viewed by 1861
Abstract
Micro-Doppler (m-D) analysis is the most effective mechanism for detecting rotating targets or components; however, it fails when the target rotation plane is perpendicular to the radar line of sight (LOS). The vortex electromagnetic wave (VEMW) provides a unconventional structure of wavefront phase [...] Read more.
Micro-Doppler (m-D) analysis is the most effective mechanism for detecting rotating targets or components; however, it fails when the target rotation plane is perpendicular to the radar line of sight (LOS). The vortex electromagnetic wave (VEMW) provides a unconventional structure of wavefront phase modulation on the cross-plane of the radar LOS, on which the radial m-D vanishes while the rotational Doppler (RD) appears. In the absence of the position of rotation center, this paper focuses on the micromotion parameters estimation based on RD effect for rotating target, and then proposes an estimation procedure, referred to as the two-step method. The micromotion parameters of the rotating target include the rotation attitude, the rotation radius and the position of the rotation center while the latter is coupled to the former two. Firstly, the micromotion parameters are roughly estimated based on the RD curve parameters obtained from the time-frequency (TF) spectrum of the received signal. Secondly, the maximum likelihood estimation (MLE) is used to accurately estimate the micromotion parameters. In addition, the Cramér–Rao bound (CRB) of parameter estimation is derived. The simulation studies the influencing factors of estimation performance and verifies that the proposed estimation method can provide excellent estimation accuracy of the micromotion parameters. Full article
Show Figures

Figure 1

13 pages, 2807 KiB  
Article
A Fast Design Method of Anisotropic Dielectric Lens for Vortex Electromagnetic Wave Based on Deep Learning
by Bingyang Liang, Yonghua Zhang, Yuanguo Zhou, Weiqiang Liu, Tao Ni, Anyi Wang and Yanan Fan
Materials 2023, 16(6), 2254; https://doi.org/10.3390/ma16062254 - 10 Mar 2023
Viewed by 1805
Abstract
Orbital angular momentum (OAM) has made it possible to regulate classical waves in novel ways, which is more energy- or information-efficient than conventional plane wave technology. This work aims to realize the transition of antenna radiation mode through the rapid design of an [...] Read more.
Orbital angular momentum (OAM) has made it possible to regulate classical waves in novel ways, which is more energy- or information-efficient than conventional plane wave technology. This work aims to realize the transition of antenna radiation mode through the rapid design of an anisotropic dielectric lens. The deep learning neural network (DNN) is used to train the electromagnetic properties of dielectric cell structures. Nine variable parameters for changing the dielectric unit structure are present in the input layer of the DNN network. The trained network can predict the transmission phase of the unit cell structure with greater than 98% accuracy within a specific range. Then, to build the corresponding relationship between the phase and the parameters, the gray wolf optimization algorithm is applied. In less than 0.3 s, the trained network can predict the transmission coefficients of the 31 × 31 unit structure in the arrays with great accuracy. Finally, we provide two examples of neural network-based rapid anisotropic dielectric lens design. Dielectric lenses produce the OAM modes +1, −1, and −1, +2 under TE and TM wave irradiation, respectively. This approach resolves the difficult phase matching and time-consuming design issues associated with producing a dielectric lens. Full article
(This article belongs to the Special Issue 3D Printing Techniques in Construction Materials)
Show Figures

Figure 1

9 pages, 2983 KiB  
Communication
Generation of Vector Vortex Beams Based on the Optical Integration of Dynamic Phase and Geometric Phase
by Kuiming Zeng, Shanshan He, Xianping Wang and Hailu Luo
Photonics 2023, 10(2), 214; https://doi.org/10.3390/photonics10020214 - 15 Feb 2023
Cited by 6 | Viewed by 3157
Abstract
The phase and polarization of electromagnetic waves can be conveniently manipulated by the dynamic phase and geometric phase elements. Here, we propose a compact optical integration of dynamic phase and geometric phase to generate arbitrary vector vortex beams on a hybrid-order Poincaré sphere. [...] Read more.
The phase and polarization of electromagnetic waves can be conveniently manipulated by the dynamic phase and geometric phase elements. Here, we propose a compact optical integration of dynamic phase and geometric phase to generate arbitrary vector vortex beams on a hybrid-order Poincaré sphere. Two different technologies have been applied to integrate dynamic and geometric phase elements into a single glass plate to modulate the phase and polarization of light simultaneously. A spiral phase structure is made on one side of a glass substrate with optical lithography and a geometric phase metasurface structure is designed on the other side by femtosecond laser writing. The vector polarization is realized by the metasurface structure, while the vortex phase is generated by the spiral phase plate. Therefore, any desirable vector vortex beams on the hybrid-order Poincaré sphere can be generated. We believe that our scheme may have potential applications in future integrated optical devices for the generation of vector vortex beams due to its the high transmission efficiency and conversion efficiency. Full article
(This article belongs to the Special Issue Vortex Beams: Fundamentals and Applications)
Show Figures

Figure 1

10 pages, 10075 KiB  
Communication
Design of the Polarization-Independent Wavelength Multiplexing Holographic Metasurface
by Tianyu Zhao, Yihui Wu, Yi Xing, Yue Wang, Jie Wu and Wenchao Zhou
Photonics 2023, 10(2), 139; https://doi.org/10.3390/photonics10020139 - 30 Jan 2023
Cited by 3 | Viewed by 2765
Abstract
Metasurface regulates the polarization, phase, amplitude, frequency, and other characteristics of electromagnetic waves through the subwavelength microstructure. By using its polarization characteristics, it can realize the functions of optical rotation and vector beam generation. It is the most widely used method of regulation. [...] Read more.
Metasurface regulates the polarization, phase, amplitude, frequency, and other characteristics of electromagnetic waves through the subwavelength microstructure. By using its polarization characteristics, it can realize the functions of optical rotation and vector beam generation. It is the most widely used method of regulation. However, parallel optical manipulation, imaging, and communication usually require polarization-insensitive focused (or vortex) arrays of beams, so polarization-independent wavelength multiplexing optical systems need to be considered. In this paper, the genetic algorithm combined with the computer-generated hologram (CGH) is used to control the transmission phase of the structure itself, and on the basis of wavelength multiplexing, the corresponding array of focused or vortex beams without the polarization selection property is realized. The simulation software results show that the method has a huge application prospect in optical communication and optical manipulation. Full article
(This article belongs to the Special Issue Active/Reconfigurable Metasurfaces)
Show Figures

Figure 1

8 pages, 1558 KiB  
Communication
High-Order Orbital and Spin Hall Effects at the Tight Focus of Laser Beams
by Victor V. Kotlyar, Sergey S. Stafeev, Elena S. Kozlova and Muhammad A. Butt
Photonics 2022, 9(12), 970; https://doi.org/10.3390/photonics9120970 - 11 Dec 2022
Cited by 10 | Viewed by 2200
Abstract
In this paper, using a Richards–Wolf method, which describes the behavior of electromagnetic waves at the sharp focus, we show that high-order spin and orbital Hall effects take place at the focal plane of tightly focused laser beams. We reveal that four local [...] Read more.
In this paper, using a Richards–Wolf method, which describes the behavior of electromagnetic waves at the sharp focus, we show that high-order spin and orbital Hall effects take place at the focal plane of tightly focused laser beams. We reveal that four local subwavelength regions are formed at the focus of a linearly polarized optical vortex with unit topological charge, where the spin angular momentum behaves in a special way. Longitudinal projections of the spin angular momentum are oppositely directed in the adjacent regions. We conclude that this is because photons falling into the neighboring regions at the focus have the opposite spin. This newly observed phenomenon may be called a spin Hall effect of the 4-th order. We also show that tightly focusing the superposition of cylindrical vector beams of the m-th and zero-order produces 2m subwavelength regions in the focal plane, such that longitudinal projections of the orbital angular momentum are oppositely directed in the neighboring regions. This occurs because photons falling into the neighboring regions at the focus have the opposite signs of the on-axis projections of the orbital angular momentum. This phenomenon may be termed an orbital Hall effect of the 2m-th order. Full article
(This article belongs to the Special Issue Vortex Beams: Fundamentals and Applications)
Show Figures

Figure 1

14 pages, 3198 KiB  
Article
Transfer of Orbital Angular Momentum of Light Using Autler-Townes Splitting
by Seyyed Hossein Asadpour, Hamid Reza Hamedi and Emmanuel Paspalakis
Photonics 2022, 9(12), 954; https://doi.org/10.3390/photonics9120954 - 9 Dec 2022
Cited by 11 | Viewed by 2045
Abstract
We propose a scheme to exchange optical vortices beyond electromagnetically induced transparency (EIT) but based on four-wave mixing (FWM) in a five-level atomic system consisting of two Λ subsystems linked via a weak driving field. When the laser fields are strong enough, the [...] Read more.
We propose a scheme to exchange optical vortices beyond electromagnetically induced transparency (EIT) but based on four-wave mixing (FWM) in a five-level atomic system consisting of two Λ subsystems linked via a weak driving field. When the laser fields are strong enough, the quantum interference responsible for the EIT in each Λ subsystem is washed out, giving rise to the Autler-Townes splitting (ATS). When only one of the control fields carries an optical vortex, it is shown that the generated FWM field obtains the vorticity of the vortex control. We distinguish between three different regimes, i.e., a pure EIT, a joint EIT-ATS, and a dual-ATS, where the optical angular momentum (OAM) translation can take place. Elaborating on the distinction between three regimes through numerical analysis, we find that the maximum energy conversion efficiency is obtained in the joint EIT-ATS and dual-ATS regimes. The latter is more favorable as the absorption losses vanish as the beam propagates into the atomic cloud. The results may find applications in the implementation of high-efficient frequency and OAM conversion devices for quantum information processing. Full article
(This article belongs to the Special Issue Light Control and Particle Manipulation)
Show Figures

Figure 1

18 pages, 5367 KiB  
Article
Micro-Motion Parameter Extraction of Multi-Scattering-Point Target Based on Vortex Electromagnetic Wave Radar
by Lijun Bu, Yongzhong Zhu, Yijun Chen, Xiaoou Song, Yufei Yang and Yadan Zang
Remote Sens. 2022, 14(23), 5908; https://doi.org/10.3390/rs14235908 - 22 Nov 2022
Cited by 10 | Viewed by 2381
Abstract
In addition to traditional linear Doppler shift, the angular Doppler shift in vortex electromagnetic wave (VEMW) radar systems carrying orbital angular momentum (OAM) can provide more accurate target identification micro-motion parameters, especially the detailed features perpendicular to the radar line-of-sight (LOS) direction. In [...] Read more.
In addition to traditional linear Doppler shift, the angular Doppler shift in vortex electromagnetic wave (VEMW) radar systems carrying orbital angular momentum (OAM) can provide more accurate target identification micro-motion parameters, especially the detailed features perpendicular to the radar line-of-sight (LOS) direction. In this paper, a micro-motion feature extraction method for a spinning target with multiple scattering points based on VEMW radar is proposed. First, a multi-scattering-point spinning target detection model using vortex radar is established, and the mathematical mechanism of echo signal flash shift in time-frequency (TF) domain is deduced. Then, linear Doppler shift is eliminated by interference processing with opposite dual-mode VEMW. Subsequently, the shift in TF flicker is focused on the reference zero frequency by the iterative phase compensation method, and the number of scattering points is estimated according to the focusing effect. After this, through the constructed compensation phase, the angular Doppler shift is separated, then the angular velocity, rotation radiusand initial phase of the target are estimated. Theoretical and simulation results verify the effectiveness of the proposed method, and more accurate rotation parameters can be obtained in the case of multiple scattering points using the VEMW radar system. Full article
(This article belongs to the Special Issue SAR Images Processing and Analysis)
Show Figures

Figure 1

19 pages, 8939 KiB  
Article
Real Micro-Doppler Parameters Extraction of Spinning Targets Based on Rotating Interference Antenna
by Zhihao Wang, Yijun Chen, Hang Yuan, Ying Luo and Qun Zhang
Remote Sens. 2022, 14(21), 5300; https://doi.org/10.3390/rs14215300 - 23 Oct 2022
Cited by 8 | Viewed by 2478
Abstract
Micro-Doppler is a unique characteristic of targets with micro-motions, which can provide significant information for target classification and recognition. However, the monostatic radar has the shortcoming of only obtaining the radial micro-motion characteristics. Although the vortex-electromagnetic-wave-based radar has the potential to obtain real [...] Read more.
Micro-Doppler is a unique characteristic of targets with micro-motions, which can provide significant information for target classification and recognition. However, the monostatic radar has the shortcoming of only obtaining the radial micro-motion characteristics. Although the vortex-electromagnetic-wave-based radar has the potential to obtain real micro-motion parameters, it has a high dependence on the mode number and purity of the orbital angular momentum, which greatly restricts its application in the micro-motion parameter extraction. To overcome the above problems, a new radar configuration based on the rotating interference antenna is proposed in this paper. Through the interference processing of the micro-Doppler curves of the rotating and fixed antenna, the curves containing the real micro-motion information of the target can be obtained. Then the real micro-motion characteristics of the spinning target can be reconstructed by the orthogonal matching pursuit algorithm. The effectiveness and robustness of the proposed method are validated by simulations. Full article
(This article belongs to the Special Issue Microwave Remote Sensing for Object Detection)
Show Figures

Figure 1

Back to TopTop