Spaceborne Relative Radiometer: Instrument Design and Pre-Flight Test
Abstract
:1. Introduction
2. Instrument Design
2.1. Overview
2.2. Sensitivity Analysis of the Design
2.3. Optical Design
2.4. Electronic System
3. Working Principle and Measurement Model
3.1. Working Principle
3.2. Measurement Model of Detector with 180° FOV
3.3. Measurement Model of Detector with Limited FOV
4. Pre-Flight Tests of SRR
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
AMP | Amplifier |
BOS | Bolometric Oscillation Sensor |
CERES | Clouds and the Earth’s Radiant Energy System |
COTS | Commercial Off-The-Shelf |
CTIM-FD | Compact Total Irradiance Monitor Flight Demonstration |
DARA | Digital Absolute Radiometer |
DIARAD | Differential Absolute Radiometer |
EB | Electronic Box |
ECT | Equatorial Crossing Time |
ECVs | Essential Climate Variables |
EEI | Earth Energy Imbalance |
EOR | Earth’s Outgoing Radiation |
ER | Earth Radiometer Channel |
ERM | Earth Radiation Measurement |
FM | Flight Module |
FOV | Field of View |
FY | Feng Yun |
GCOS | Global Climate Observing System |
GERB | Geostationary Earth Radiation Budget |
IPCC | Intergovernmental Panel on Climate Change |
ISS | International Space Station |
JTSIM | Joint Total Solar Irradiance Monitor |
LW | Long-Wave |
NFOV | Narrow Field of View |
NIM | National Institute of Metrology, China |
NOAA | National Oceanic and Atmospheric Administration |
NPP | National Polar-orbiting Partnership |
NTC | Negative Temperature Coefficient |
OLR | Outgoing Long-wave Radiation |
PMO | Physikalisches und Meteorologisches Observatorium |
PRT | Platinum Resistance Thermometers |
RSR | Reflected Shortwave Radiation |
SATP | Standard Ambient Temperature and Pressure |
SIAR | Solar Irradiance Absolute Radiometer |
SIM-II | Solar Irradiance Monitor-II |
SOHO | Solar and Heliospheric Observatory |
SR | Solar Radiometer Channel |
SRR | Spaceborne Relative Radiometer |
SW | Short-Wave |
TIM | Total Irradiance Monitor |
TOA | Top of the Atmosphere |
TOR | Terrestrial Outgoing Radiation |
TSI | Total Solar Irradiance |
TSIS | Total and Spectral Solar Irradiance Sensor |
VIRGO | Variability of Irradiance and Gravity Oscillations |
WFOV | Wide Field of View |
WRR | World Radiometric Reference |
References
- Al-Ghussain, L. Global Warming: Review on Driving Forces and Mitigation: Global Warming: Review on Driving Forces and Mitigation. Environ. Prog. Sustain. Energy 2019, 38, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Schmutz, W.K. Changes in the Total Solar Irradiance and Climatic Effects. J. Space Weather Space Clim. 2021, 11, 40. [Google Scholar] [CrossRef]
- Matus, A.V.; L’Ecuyer, T.S. The Role of Cloud Phase in Earth’s Radiation Budget. J. Geophys. Res. Atmos. 2017, 122, 2559–2578. [Google Scholar] [CrossRef]
- Trenberth, K.E. Understanding Climate Change through Earth’s Energy Flows. J. R. Soc. N. Z. 2020, 50, 331–347. [Google Scholar] [CrossRef]
- Andrews, T.; Forster, P.M. Energy Budget Constraints on Historical Radiative Forcing. Nat. Clim. Chang. 2020, 10, 313–316. [Google Scholar] [CrossRef]
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 923–1054. [Google Scholar] [CrossRef]
- GCOS. The Status of the Global Climate Observing System 2021: The GCOS Status Report (GCOS-240); WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Loeb, N.G.; Johnson, G.C.; Thorsen, T.J.; Lyman, J.M.; Rose, F.G.; Kato, S. Satellite and Ocean Data Reveal Marked Increase in Earth’s Heating Rate. Geophys. Res. Lett. 2021, 48, e2021GL093047. [Google Scholar] [CrossRef]
- Marti, F.; Blazquez, A.; Meyssignac, B.; Ablain, M.; Barnoud, A.; Fraudeau, R.; Jugier, R.; Chenal, J.; Larnicol, G.; Pfeffer, J.; et al. Monitoring the Ocean Heat Content Change and the Earth Energy Imbalance from Space Altimetry and Space Gravimetry. Earth Syst. Sci. Data 2022, 14, 229–249. [Google Scholar] [CrossRef]
- IPCC. 2018: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R.S., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; p. 616. [CrossRef]
- Finsterle, W.; Montillet, J.P.; Schmutz, W.; Šikonja, R.; Kolar, L.; Treven, L. The Total Solar Irradiance during the Recent Solar Minimum Period Measured by SOHO/VIRGO. Sci. Rep. 2021, 11, 7835. [Google Scholar] [CrossRef] [PubMed]
- Kopp, G. Science Highlights and Final Updates from 17 Years of Total Solar Irradiance Measurements from the SOlar Radiation and Climate Experiment/Total Irradiance Monitor (SORCE/TIM). Sol. Phys. 2021, 296, 133. [Google Scholar] [CrossRef]
- Song, B.; Ye, X.; Finsterle, W.; Gyo, M.; Gander, M.; Remesal Oliva, A.; Pfiffner, D.; Zhao, Y.; Fang, W. Correction to: The Fengyun-3E/Joint Total Solar Irradiance Absolute Radiometer: Instrument Design, Characterization, and Calibration. Sol. Phys. 2022, 297, 111. [Google Scholar] [CrossRef]
- Montillet, J.P.; Finsterle, W.; Haberreiter, M.; Schmutz, W.; Pfiffner, D.; Koller, S.; Gyo, M.; Fang, W.; Ye, X.; Yang, D.; et al. Total Solar Irradiance Monitored by DARA/JTSIM: First Light Observations. In Proceedings of the EGU General Assembly Conference, Vienna, Austria, 23–27 May 2022; p. EGU22-616. [Google Scholar]
- Harber, D.M.; Castleman, Z.; Drake, G.; Van Dreser, S.; Farber, N.; Heuerman, K.; Miller, M.; Rutkowski, J.; Sims, A.; Sprunck, J.; et al. Compact Total Irradiance Monitor Flight Demonstration. In Proceedings of the CubeSats and SmallSats for Remote Sensing III, San Diego, CA, USA, 11–12 August 2019. [Google Scholar]
- Ye, X.; Yi, X.; Lin, C.; Fang, W.; Wang, K.; Xia, Z.; Ji, Z.; Zheng, Y.; Sun, D.; Quan, J. Instrument Development: Chinese Radiometric Benchmark of Reflected Solar Band Based on Space Cryogenic Absolute Radiometer. Remote Sens. 2020, 12, 2856. [Google Scholar] [CrossRef]
- Smith, G.L.; Priestley, K.J.; Loeb, N.G.; Wielicki, B.A.; Charlock, T.P.; Minnis, P.; Doelling, D.R.; Rutan, D.A. Clouds and Earth Radiant Energy System (CERES), a Review: Past, Present and Future. Adv. Space Res. 2011, 48, 254–263. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, P.; Lu, N.; Yang, Z.; Shi, J.; Dong, C. Improvements on Global Meteorological Observations from the Current Fengyun 3 Satellites and Beyond. Int. J. Digit. Earth 2012, 5, 251–265. [Google Scholar] [CrossRef]
- Brindley, H.E.; Russell, J.E. GERB Project Status. In Proceedings of the 38th CERES-II Science Team Meeting, Hamburg, Germany, 12–14 October 2022. [Google Scholar]
- Gristey, J.J.; Su, W.; Loeb, N.G.; Vonder Haar, T.H.; Tornow, F.; Schmidt, K.S.; Hakuba, M.Z.; Pilewskie, P.; Russell, J.E. Shortwave Radiance to Irradiance Conversion for Earth Radiation Budget Satellite Observations: A Review. Remote Sens. 2021, 13, 2640. [Google Scholar] [CrossRef]
- Zhu, P.; Wild, M.; Van Ruymbeke, M.; Thuillier, G.; Meftah, M.; Karatekin, O. Interannual variation of global net radiation flux as measured from space. J. Geophys. Res. Atmos. 2016, 121, 6877–6891. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Van Ruymbeke, M.; Karatekin, Ö.; Noël, J.P.; Thuillier, G.; Dewitte, S.; Chevalier, A.; Conscience, C.; Janssen, E.; Meftah, M.; et al. A high dynamic radiation measurement instrument: The Bolometric Oscillation Sensor (BOS). Geosci. Instrum. Methods Data Syst. 2015, 4, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Naraghi, M.H.N.; Warna, J.P. Radiation Configuration Factors from Axisymmetric Bodies to Plane Surfaces. Int. J. Heat Mass Transf. 1988, 31, 1537–1539. [Google Scholar] [CrossRef]
- Buschman, A.J.; Pittman, C.M. Configuration Factors for Exchange of Radiant Energy between Axisymmetrical Sections of Cylinders, Cones, and Hemispheres and Their Bases; National Aeronautics and Space Administration: Washington, DC, USA, 1961. [Google Scholar]
- Thuillier, G.; Zhu, P.; Snow, M.; Zhang, P.; Ye, X. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach. Light Sci. Appl. 2022, 11, 79. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Thermal conductivity, k | 238 W/m/K |
Length of heat rod, l | 94.5 mm |
Diameter of heat rod, d | 6 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, D.; Fang, W.; Wang, K.; Ye, X.; Jia, R.; Yang, D.; Song, B.; Luo, Z.; Wang, Y.; Xia, Z.; et al. Spaceborne Relative Radiometer: Instrument Design and Pre-Flight Test. Remote Sens. 2023, 15, 3085. https://doi.org/10.3390/rs15123085
Wu D, Fang W, Wang K, Ye X, Jia R, Yang D, Song B, Luo Z, Wang Y, Xia Z, et al. Spaceborne Relative Radiometer: Instrument Design and Pre-Flight Test. Remote Sensing. 2023; 15(12):3085. https://doi.org/10.3390/rs15123085
Chicago/Turabian StyleWu, Duo, Wei Fang, Kai Wang, Xin Ye, Ruidong Jia, Dongjun Yang, Baoqi Song, Zhitao Luo, Yuwei Wang, Zhiwei Xia, and et al. 2023. "Spaceborne Relative Radiometer: Instrument Design and Pre-Flight Test" Remote Sensing 15, no. 12: 3085. https://doi.org/10.3390/rs15123085
APA StyleWu, D., Fang, W., Wang, K., Ye, X., Jia, R., Yang, D., Song, B., Luo, Z., Wang, Y., Xia, Z., Zhu, P., & Ruymbeke, M. v. (2023). Spaceborne Relative Radiometer: Instrument Design and Pre-Flight Test. Remote Sensing, 15(12), 3085. https://doi.org/10.3390/rs15123085