Integrated Spatiotemporal Analysis of Vegetation Condition in a Complex Post-Mining Area: Lignite Mine Case Study
Abstract
:1. Introduction
1.1. Post-Mining Reclamation
1.2. Remote Sensing of Post-Mining Areas
1.3. Summary
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Sentinel-2 Data
2.2.2. GIS Data and Software
2.3. Methodology
2.3.1. Satellite Data Pre-Processing
2.3.2. GIS Based Spatiotemporal Analysis
- Map algebra
- Combinatorial class change detection
- class 1: NDVI ≤ 0.0—representing water,
- class 2: 0.0 < NDVI ≤ 0.2—representing barren land, roads and sparse vegetation,
- class 3: 0.2 < NDVI—representing low vegetation and forest.
- class 1: EVI ≤ 0.0—representing water,
- class 2: 0.0 < NDVI ≤ 0.1—representing barren land, roads and sparse vegetation,
- class 3: 0.1 < EVI—representing low vegetation and forest.
- 1—change from class 1 to class 2,
- 2—change from class 1 to class 3,
- 3—change from class 2 to class 3,
- 4—change from class 2 to class 1,
- 5—change from class 3 to class 2,
- 6—change from class 3 to class 1,
- 7—unchanged class 1,
- 8—unchanged class 2,
- 9—unchanged class 3.
- Emerging Hot Spot Analysis
3. Results
3.1. General Descriptive Statistics
3.2. Spatial Pattern of NDVI and EVI Values
3.3. Spatiotemporal Pattern of Hot and Cold Spots
3.4. Combinatorial Temporal Class Change Detection
3.5. Field Examination
4. Discussion and Comments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostręga, A.; Uberman, R. Reclamation and Land Development Directions—Selection Method, Classification and Examples. Min. Geoengin. 2010, 34, 445–461. (In Polish) [Google Scholar]
- Naworyta, W. Once Again about the Directions of Reclamation and Their Choice, Critically. Min. Sci. 2013, 136, 141–155. [Google Scholar]
- Stottmeister, U.; Mudroch, A.; Kennedy, C.; Matiova, Z.; Sanecki, J.; Svoboda, I. Reclamation and Regeneration of Landscapes after Brown Coal Opencast Mining in Six Different Countries. In Remediation of Abandoned Surface Coal Mining Sites: A NATO-Project; Mudroch, A., Stottmeister, U., Kennedy, C., Klapper, H., Eds.; Environmental Engineering; Springer: Berlin/Heidelberg, Germany, 2002; pp. 4–36. ISBN 978-3-662-04734-7. [Google Scholar]
- Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest Restoration Following Surface Mining Disturbance: Challenges and Solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef] [Green Version]
- Molenda, T. Mining anthropogenic environments—objects of observation of geomorphological and biological processes (on the example of the Silesian Voivodeship). Sci. Work. Min. Inst. Wrocław Univ. Sci. Technol. 2005, 111, 187–196. (In Polish) [Google Scholar]
- Myga-Piątek, U. Landscape Management on Post-Exploitation Land Using the Example of the Silesian Region, Poland. Environ. Socio-Econ. Stud. 2014, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kretschmann, J.; Nguyen, N. Research Areas in Post-Mining—Experiences from German Hard Coal Mining. J. Pol. Miner. Eng. Soc. 2020, 1, 255–262. [Google Scholar] [CrossRef]
- Rudolph, T.; Goerke-Malle, P.; Melchers, C. Geomonitoring Im Alt- Und Nachbergbau. ZfV-Z. Geodäsie Geoinf. Landmanag. 2020, 33, 168–173. (In German) [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the Dynamics of Vegetation Disturbance and Recovery in Surface Mining Area via Landsat Imagery and LandTrendr Algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Blachowski, J.; Kopeć, A.; Milczarek, W.; Owczarz, K. Evolution of Secondary Deformations Captured by Satellite Radar Interferometry: Case Study of an Abandoned Coal Basin in SW Poland. Sustainability 2019, 11, 884. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.; Lechner, A.; Fletcher, A.; Erskine, P.; Mulligan, D.; Bai, Z. SPOTing Long-Term Changes in Vegetation over Short-Term Variability. Int. J. Min. Reclam. Environ. 2014, 28, 2–24. [Google Scholar] [CrossRef]
- Latifovic, R.; Fytas, K.; Chen, J.; Paraszczak, J. Assessing Land Cover Change Resulting from Large Surface Mining Development. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 29–48. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Sedighi, A.; Firozjaei, H.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Makki, M.; Naimi, B.; Alavipanah, S.K. A Historical and Future Impact Assessment of Mining Activities on Surface Biophysical Characteristics Change: A Remote Sensing-Based Approach. Ecol. Indic. 2021, 122, 107264. [Google Scholar] [CrossRef]
- Bandopadhyay, S.; Rastogi, A.; Juszczak, R. Review of Top-of-Canopy Sun-Induced Fluorescence (SIF) Studies from Ground, UAV, Airborne to Spaceborne Observations. Sensors 2020, 20, 1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A Review of Vegetation Indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie, Pawnee National Grasslands, Colorado; Environmental Research Institution of Michigan: Ann Arbor, MI, USA, 1972; p. 1355. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Plummer, S.E.; North, P.R.; Briggs, S.A. The Angular Vegetation Index: An Atmospherically Resistant Index for the Second along Track Scanning Radiometer (ATSR-2); ISPRS: Val d’Isère, France, 1994. [Google Scholar]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Henrich, V.; Krauss, G.; Götze, C.; Sandow, C. IDB—Entwicklung Einer Datenbank Für Fernerkundungsindizes. 2012. Available online: www.Indexdatabase.de (accessed on 22 September 2022). (In German).
- Pawlik, M.; Rudolph, T.; Benndorf, J.; Blachowski, J. Review of Vegetation Indices for Studies of Post-Mining Processes. IOP Conf. Ser. Earth Environ. Sci. 2021, 942, 012034. [Google Scholar] [CrossRef]
- Buczyńska, A. Badania Studies of components of the natural environment on post-mining areas with using high-resolution satellite imagery. Min. Rev. 2020, 1168, 1–8. (In Polish) [Google Scholar]
- Zipper, C.; Donovan, P.; Wynne, R.; Oliphant, A. Character Analysis of Mining Disturbance and Reclamation 786 Trajectory in Surface Coal-Mine Area by Time-Series NDVI. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2015, 31, 251–257. [Google Scholar]
- Karan, S.K.; Samadder, S.R.; Maiti, S.K. Assessment of the Capability of Remote Sensing and GIS Techniques for Monitoring Reclamation Success in Coal Mine Degraded Lands. J. Environ. Manag. 2016, 182, 272–283. [Google Scholar] [CrossRef]
- Yao, Z.; Wei, Z. Correlation Analysis between Vegetation Fraction and Vegetation Indices in Reclaimed Forest: A Case Study in Pingshuo Mining Area. In Proceedings of the 2016 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Guangzhou, China, 4–6 July 2016; pp. 122–126. [Google Scholar]
- Padmanaban, R.; Bhowmik, A.; Cabral, P. A Remote Sensing Approach to Environmental Monitoring in a Reclaimed Mine Area. ISPRS Int. J. Geo-Inf. 2017, 6, 401. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Lei, J.; Wu, J. Analysis of Land Damage and Recovery Process in Rare Earth Mining Area Based on Multi-Source Sequential NDVI. Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng. 2018, 34, 232–240. [Google Scholar]
- Wu, Q.; Liu, K.; Song, C.; Wang, J.; Ke, L.; Ma, R.; Zhang, W.; Pan, H.; Deng, X. Remote Sensing Detection of Vegetation and Landform Damages by Coal Mining on the Tibetan Plateau. Sustainability 2018, 10, 3851. [Google Scholar] [CrossRef] [Green Version]
- Kopeć, A.; Trybała, P.; Głąbicki, D.; Buczyńska, A.; Owczarz, K.; Bugajska, N.; Kozińska, P.; Chojwa, M.; Gattner, A. Application of Remote Sensing, GIS and Machine Learning with Geographically Weighted Regression in Assessing the Impact of Hard Coal Mining on the Natural Environment. Sustainability 2020, 12, 9338. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Nicolau, J.M.; Vicente, E.; Moreno-de las Heras, M. Assessing Vegetation Recovery in Reclaimed Opencast Mines of the Teruel Coalfield (Spain) Using Landsat Time Series and Boosted Regression Trees. Sci. Total Environ. 2020, 717, 137250. [Google Scholar] [CrossRef]
- Vorovencii, I. Changes Detected in the Extent of Surface Mining and Reclamation Using Multitemporal Landsat Imagery: A Case Study of Jiu Valley, Romania. Environ. Monit. Assess. 2021, 193, 30. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, J.; Zhou, W.; Bai, Z.; Cao, Y. Identification of Land Reclamation Stages Based on Succession Characteristics of Rehabilitated Vegetation in the Pingshuo Opencast Coal Mine. J. Environ. Manag. 2022, 305, 114352. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Blachowski, J. Application of GIS Spatial Regression Methods in Assessment of Land Subsidence in Complicated Mining Conditions: Case Study of the Walbrzych Coal Mine (SW Poland). Nat. Hazards 2016, 84, 997–1014. [Google Scholar] [CrossRef] [Green Version]
- Sawut, R.; Kasim, N.; Abliz, A.; Hu, L.; Yalkun, A.; Maihemuti, B.; Qingdong, S. Possibility of Optimized Indices for the Assessment of Heavy Metal Contents in Soil around an Open Pit Coal Mine Area. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 14–25. [Google Scholar] [CrossRef]
- Cao, J.; Ma, F.; Guo, J.; Lu, R.; Liu, G. Assessment of Mining-Related Seabed Subsidence Using GIS Spatial Regression Methods: A Case Study of the Sanshandao Gold Mine (Laizhou, Shandong Province, China). Environ. Earth Sci. 2019, 78, 26. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Partsinevelos, P.; Mitraka, Z. Change Detection of Surface Mining Activity and Reclamation Based on a Machine Learning Approach of Multi-Temporal Landsat TM Imagery. Geocarto Int. 2013, 28, 323–342. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, M.; Xu, L.; Zhou, X.; Ren, J.; Zhou, J. Object-Based Random Forest Classification of Land Cover from Remotely Sensed Imagery for Industrial and Mining Reclamation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–3, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhou, W.; Li, Y. The Analysis of Object-Based Change Detection in Mining Area: A Case Study with Pingshuo Coal. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W7, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- LeClerc, E.; Wiersma, Y. Assessing Post-Industrial Land Cover Change at the Pine Point Mine, NWT, Canada Using Multi-Temporal Landsat Analysis and Landscape Metrics. Environ. Monit. Assess. 2017, 189, 185. [Google Scholar] [CrossRef]
- Szostak, M.; Knapik, K.; Wężyk, P.; Likus-Cieślik, J.; Pietrzykowski, M. Fusing Sentinel-2 Imagery and ALS Point Clouds for Defining LULC Changes on Reclaimed Areas by Afforestation. Sustainability 2019, 11, 1251. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency User Guides—Sentinel-2 MSI—Sentinel Online—Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi (accessed on 22 September 2022).
- Dyjor, S.; Chlebowski, Z. Geological structure of the Polish part of the Muskau Arch. Acta. Univ. Wratislaviensis. Pr. Geol.-Miner. 1973, 192, 3–41. (In Polish) [Google Scholar]
- Kupetz, M. Geologischer Bau Und Genese Der Stauchendmoräne Muskauer Faltenbogen. Brandenbg. Geowiss. Beiträge 1973, 2, 1–20. (In German) [Google Scholar]
- Koźma, J. Anthropogenic landscape changes connected with the old brown coal mining based on the example of the polish part of the Muskau arch area. Opencast Min. 2016, 57, 5–13. (In Polish) [Google Scholar]
- Greinert, H.; Drab, M.; Greinert, A. Studies on the Effectiveness of Forest Restoration of the Phytotoxic Acid Miocene Sands Dumps of the Former Lignite Mine in Łęknica; Publishing House of the University of Zielona Góra: Zielona Góra, Poland, 2009; ISBN 978-83-7481-220-7. (In Polish) [Google Scholar]
- Greinert, A.; Bazan-Krzywoszańska, A.; Drab, M.; Fiszer, J.; Gontaszewska, A.; Jachimko, B.; Jędrczak, A.; Kraiński, A.; Krzaklewski, W.; Maciantowicz, M.; et al. Lignite Mining and Reclamation of Post-Mining Areas in the Lubuskie Region; Institute of Environmental Engineering of the University of Zielona Góra: Zielona Góra, Poland, 2015; ISBN 978-83-937619-2-0. (In Polish) [Google Scholar]
- Kasiński, J.R.; Słodkowska, B. Lignite seams in the Muskau arch—sedimentation conditions, stratigraphic position, deposits importance. Opencast Min. 2017, 58, 20–31. (In Polish) [Google Scholar]
- Oszkinis-Golon, M.; Frankowski, M.; Jerzak, L.; Pukacz, A. Physicochemical Differentiation of the Muskau Arch Pit Lakes in the Light of Long-Term Changes. Water 2020, 12, 2368. [Google Scholar] [CrossRef]
- Koźma, J. Analysis of the Landscape Evolution of the Polish Part of the Muskau Arch and Its Valorisation in the Aspect of Protection of Geological Heritage. Ph.D. Dissertation, The Polish Geological Institute—National Research Institute, Kraków, Poland, 2018. [Google Scholar]
- Blachowski, J.; Warchala, E.; Koźma, J.; Buczyńska, A.; Bugajska, N.; Becker, M.; Janicki, D.; Kujawa, P.; Kwaśny, L.; Wajs, J.; et al. Geophysical Research of Secondary Deformations in the Post Mining Area of the Glaciotectonic Muskau Arch Geopark—Preliminary Results. Appl. Sci. 2022, 12, 1194. [Google Scholar] [CrossRef]
- Suhet; Hoersch, B. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015. [Google Scholar]
- Mueller-Wilm, U.; Devignot, O.; Pessiot, L. S2 MPC Sen2Cor Configuration and User Manual; European Space Agency: Paris, France, 2020; pp. 1–56. [Google Scholar]
- Matejicek, L.; Kopackova, V. Changes in Croplands as a Result of Large Scale Mining and the Associated Impact on Food Security Studied Using Time-Series Landsat Images. Remote Sens. 2010, 2, 1463. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhou, Y.; Yang, Y.; Hou, H.; Zhang, S.; Liu, R. Estimation of the Restored Forest Spatial Structure in Semi-Arid Mine Dumps Using Worldview-2 Imagery. Forests 2020, 11, 695. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1974. [Google Scholar]
- Tucker, C. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The Interpretation of Spectral Vegetation Indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Xu, C.; Liu, W.; Qi, Y.; Wo, X. Vegetation Variation of Mid-Subtropical Forest Based on MODIS NDVI Data—A Case Study of Jinggangshan City, Jiangxi Province. Acta Ecol. Sin. 2014, 34, 7–12. [Google Scholar] [CrossRef]
- Gamon, J.; Field, C.; Goulden, M.; Griffin, K.; Hartley, A.; Joel, G.; Penuelas, J.; Valentini, R. Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types. Ecol. Appl. 1995, 5, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Pettorelli, N. The Normalized Difference Vegetation Index; OUP Oxford: Oxford, UK, 2014; ISBN 978-0-19-969316-0. [Google Scholar]
- Bari, E.; Nipa, N.J.; Roy, B. Association of Vegetation Indices with Atmospheric & Biological Factors Using MODIS Time Series Products. Environ. Chall. 2021, 5, 100376. [Google Scholar] [CrossRef]
- Tomlin, D. Geographic Information Systems and Cartographic Modeling; Prentice Hall: Hoboken, NJ, USA, 1990; ISBN 978-0-13-350927-4. [Google Scholar]
- Statsoft Electronic Statistics Textbook. Available online: https://www.statsoft.pl/textbook/stathome.html (accessed on 3 February 2023).
- Xu, B.; Qi, B.; Ji, K.; Liu, Z.; Deng, L.; Jiang, L. Emerging Hot Spot Analysis and the Spatial–Temporal Trends of NDVI in the Jing River Basin of China. Environ. Earth Sci. 2022, 81, 55. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- ESRI How Hot Spot Analysis (Getis-Ord Gi*) Works—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm (accessed on 22 September 2022).
- Nallan, S.A.; Armstrong, L.J.; Tripathy, A.K.; Teluguntla, P. Hot Spot Analysis Using NDVI Data for Impact Assessment of Watershed Development; IEEE: Mumbai, India, 2015; pp. 1–5. [Google Scholar]
- Zhang, L.; Luo, H.; Zhang, X. Land-Greening Hotspot Changes in the Yangtze River Economic Belt during the Last Four Decades and Their Connections to Human Activities. Land 2022, 11, 605. [Google Scholar] [CrossRef]
- Nejadrekabi, M.; Eslamian, S.; Zareian, M.J. Spatial Statistics Techniques for SPEI and NDVI Drought Indices: A Case Study of Khuzestan Province. Int. J. Environ. Sci. Technol. 2022, 19, 6573–6594. [Google Scholar] [CrossRef]
- Fraser, R.H.; Li, Z.; Cihlar, J. Hotspot and NDVI Differencing Synergy (HANDS): A New Technique for Burned Area Mapping over Boreal Forest. Remote Sens. Environ. 2000, 74, 362–376. [Google Scholar] [CrossRef]
- StatSoft Electronic Manual of Statistics. Available online: https://www.statsoft.pl/textbook/stathome.html (accessed on 22 September 2022). (In Polish).
- ADMS—Agricultural Drought Monitoring System. Available online: https://susza.iung.pulawy.pl/en (accessed on 3 February 2023).
- ESRI How Emerging Hot Spot Analysis Works—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreemerging.htm (accessed on 22 September 2022).
- Jones, J.R.; Fleming, C.S.; Pavuluri, K.; Alley, M.M.; Reiter, M.S.; Thomason, W.E. Influence of Soil, Crop Residue, and Sensor Orientations on NDVI Readings. Precis. Agric 2015, 16, 690–704. [Google Scholar] [CrossRef]
- Bartkowiak, K. Analysis of the Relationship between the State of Vegetation and Former Mining Activity in a Selected Area of the Former Mine “Przyjaźń Narodów—Shaft Babina. Master’s Thesis, Wroclaw University of Science and Technology, Wroclaw, Poland, 2021, (In Polish, unpublished). [Google Scholar]
- Schulz, F.; Wiegleb, G. Development Options of Natural Habitats in a Post-Mining Landscape. Land Degrad. Dev. 2000, 11, 99–110. [Google Scholar] [CrossRef]
- National Forest—Forest Data Bank. Available online: https://www.bdl.lasy.gov.pl/portal/mapy-en (accessed on 22 September 2022).
- Liu, X.; Zhou, W.; Bai, Z. Vegetation coverage change and stability in large open-pit coal mine dumps in China during 1990—2015. Ecol. Eng. 2016, 95, 447–451. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the Satellite-Derived NDVI to Assess Ecological Responses to Environmental Change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-Sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [Green Version]
- Erener, A. Remote sensing of vegetation health for reclaimed areas of Seyitömer open cast coal mine. Int. J. Coal Geol. 2011, 86, 20–26. [Google Scholar] [CrossRef]
- Buczyńska, A.; Blachowski, J.; Bugajska-Jędraszek, N. Analysis of Post-Mining Vegetation Development Using Remote Sensing and Spatial Regression Approach: A Case Study of Former Babina Mine (Western Poland). Remote Sens. 2023, 15, 719. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Z.; Zhang, T.; Fahad, S.; Cui, K.; Nie, L.; Peng, S.; Huang, J. The Effect of Season-Long Temperature Increases on Rice Cultivars Grown in the Central and Southern Regions of China. Front. Plant Sci. 2017, 8, 1908. [Google Scholar] [CrossRef] [Green Version]
- Birhanu, A.; Masih, I.; van der Zaag, P.; Nyssen, J.; Cai, X. Impacts of land use and land cover changes on hydrology of the Gumara catchment, Ethiopia. Phys. Chem. Earth Parts A/B/C 2019, 112, 165–174. [Google Scholar] [CrossRef]
- Lucas, R.; Rowlands, A.; Brown, A.; Keyworth, S.; Bunting, P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 2007, 62, 165–185. [Google Scholar] [CrossRef]
- Hu, Y.; Raza, A.; Syed, N.R.; Acharki, S.; Ray, R.L.; Hussain, S.; Dehghanisanij, H.; Zubair, M.; Elbeltagi, A. Land Use/Land Cover Change Detection and NDVI Estimation in Pakistan’s Southern Punjab Province. Sustainability 2023, 15, 3572. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, M.; Liu, J.; Wang, H.; Chen, B. Vegetation Disturbance and Recovery Dynamics of Different Surface Mining Sites via the LandTrend Algorithm: Case Study in Inner Mongolia, China. Land 2022, 11, 856. [Google Scholar] [CrossRef]
- Lechner, A.M.; Baumgartl, T.; Matthew, P.; Glenn, V. The Impact of Underground Longwall Mining on Prime Agricultural Land: A Review and Research Agenda. Land Degrad. Dev. 2016, 27, 1650–1663. [Google Scholar] [CrossRef]
Year | Month | Day |
---|---|---|
2015 | August | 20 |
2016 | August | 27 |
2017 | August | 29 |
2018 | August | 27 |
2019 | August | 29 |
2020 | August | 6 |
2021 | September * | 5 |
2022 | August | 16 |
Date | With Artificial Lakes | Without Artificial Lakes | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Std Dev. | Min | Max | Mean | Std Dev. | |
August 2015 | −0.16 | 0.78 | 0.56 | 0.13 | −0.10 | 0.79 | 0.59 | 0.08 |
August 2016 | −0.42 | 0.87 | 0.64 | 0.17 | −0.33 | 0.87 | 0.68 | 0.09 |
August 2017 | −0.36 | 0.83 | 0.62 | 0.16 | −0.26 | 0.83 | 0.65 | 0.09 |
August 2018 | −0.21 | 0.78 | 0.57 | 0.13 | −0.07 | 0.78 | 0.60 | 0.08 |
August 2019 | −0.07 | 0.72 | 0.48 | 0.10 | 0.06 | 0.72 | 0.50 | 0.07 |
August 2020 | −0.03 | 0.73 | 0.52 | 0.10 | 0.07 | 0.73 | 0.53 | 0.07 |
August 2021 | −0.23 | 0.82 | 0.61 | 0.13 | 0.03 | 0.82 | 0.63 | 0.07 |
August 2022 | −0.40 | 0.83 | 0.61 | 0.15 | −0.03 | 0.83 | 0.64 | 0.08 |
Date | With Artificial Lakes | Without Artificial Lakes | ||||||
---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Std Dev. | Min | Max | Mean | Std Dev. | |
August 2015 | −0.05 | 0.64 | 0.29 | 0.09 | −0.02 | 0.64 | 0.31 | 0.07 |
August 2016 | −0.12 | 0.78 | 0.30 | 0.10 | −0.06 | 0.78 | 0.32 | 0.08 |
August 2017 | −0.10 | 0.67 | 0.30 | 0.10 | −0.06 | 0.67 | 0.32 | 0.08 |
August 2018 | −0.06 | 0.59 | 0.29 | 0.09 | −0.01 | 0.59 | 0.30 | 0.07 |
August 2019 | −0.03 | 0.54 | 0.26 | 0.07 | 0.02 | 0.54 | 0.27 | 0.05 |
August 2020 | −0.10 | 0.69 | 0.31 | 0.10 | −0.02 | 0.69 | 0.32 | 0.08 |
August 2021 | −0.05 | 0.63 | 0.29 | 0.09 | 0.01 | 0.63 | 0.30 | 0.07 |
August 2022 | −0.08 | 0.53 | 0.24 | 0.08 | 0.00 | 0.53 | 0.25 | 0.06 |
Pattern Type | NDVI | NDVI | EVI | EVI |
---|---|---|---|---|
[km2] | [%] | [km2] | [%] | |
persistent hot spot | 0.5389 | 3.91% | 0.3222 | 2.34% |
consecutive hot spot | 0.8956 | 6.50% | 0.4648 | 3.37% |
intensifying hot spot | 0.3464 | 2.51% | 0.1642 | 1.19% |
diminishing hot spot | 0.0300 | 0.22% | 0.0754 | 0.55% |
new hot spot | 0.4263 | 3.09% | 0.3778 | 2.74% |
oscillating hot spot | 0.1187 | 0.86% | 0.2033 | 1.48% |
sporadic hot spot | 0.1831 | 1.33% | 0.0645 | 0.47% |
historical hot spot | 0.0370 | 0.27% | 0.0038 | 0.03% |
no pattern | 9.6710 | 70.18% | 10.7148 | 77.75% |
persistent cold spot | 0.8088 | 5.87% | 0.5906 | 4.29% |
consecutive cold spot | 0.1407 | 1.02% | 0.0700 | 0.51% |
intensifying cold spot | 0.0246 | 0.18% | 0.0404 | 0.29% |
diminishing cold spot | 0.0394 | 0.29% | 0.0382 | 0.28% |
new cold spot | 0.1910 | 1.39% | 0.3778 | 2.74% |
oscillating cold spot | 0.1231 | 0.89% | 0.1116 | 0.81% |
sporadic cold spot | 0.0038 | 0.03% | 0.0071 | 0.05% |
historical cold spot | 0.2020 | 1.47% | 0.1539 | 1.12% |
Combination | NDVI | EVI |
---|---|---|
[km2] | [km2] | |
1 | 0.0847 | 0.1373 |
2 | 0.0296 | 0.0042 |
3 | 0.0854 | 0.0864 |
4 | 0.0656 | 0.0288 |
5 | 0.0301 | 0.1572 |
6 | 0.0029 | 0.0000 |
7 | 0.4046 | 0.3551 |
8 | 0.0575 | 0.2099 |
9 | 13.0200 | 12.8015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blachowski, J.; Dynowski, A.; Buczyńska, A.; Ellefmo, S.L.; Walerysiak, N. Integrated Spatiotemporal Analysis of Vegetation Condition in a Complex Post-Mining Area: Lignite Mine Case Study. Remote Sens. 2023, 15, 3067. https://doi.org/10.3390/rs15123067
Blachowski J, Dynowski A, Buczyńska A, Ellefmo SL, Walerysiak N. Integrated Spatiotemporal Analysis of Vegetation Condition in a Complex Post-Mining Area: Lignite Mine Case Study. Remote Sensing. 2023; 15(12):3067. https://doi.org/10.3390/rs15123067
Chicago/Turabian StyleBlachowski, Jan, Aleksandra Dynowski, Anna Buczyńska, Steinar L. Ellefmo, and Natalia Walerysiak. 2023. "Integrated Spatiotemporal Analysis of Vegetation Condition in a Complex Post-Mining Area: Lignite Mine Case Study" Remote Sensing 15, no. 12: 3067. https://doi.org/10.3390/rs15123067
APA StyleBlachowski, J., Dynowski, A., Buczyńska, A., Ellefmo, S. L., & Walerysiak, N. (2023). Integrated Spatiotemporal Analysis of Vegetation Condition in a Complex Post-Mining Area: Lignite Mine Case Study. Remote Sensing, 15(12), 3067. https://doi.org/10.3390/rs15123067