Multi-Dimensional Spatial and Temporal Variations of Ecosystem Service Values in the Li River Basin, 1990–2020
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. The Study Area
2.2. Data Information
3. Methods
3.1. Approaches to Estimating Ecosystem Service Values
3.1.1. Ecosystem Service Evaluation and Measurement
3.1.2. Value Coefficient of Ecosystem Services per Unit Area in the Li River Basin
3.2. A Grid-Based Method of Valuing Ecosystem Services
3.3. The Spatial Autocorrelation Analysis of Ecosystem Service Values
4. Results
4.1. Overall Landscape Change in the Li River Basin
4.2. Changes in the Ecosystem Service Value over Time
4.2.1. Variation in Total Ecosystem Service Value
4.2.2. Changes in the Functional Value of Individual Ecosystem Services
4.3. Vertical Spatial Variations in Ecosystem Service Value Based on DEM
4.3.1. Slope Differences in Ecosystem Service Value Changes
4.3.2. Altitude Differences in Ecosystem Service Value Changes
4.4. Spatial Variation in the Ecosystem Service Value Level Based on Grid Cells
4.5. To Analyze the Spatial Autocorrelation of Ecosystem Service Value
4.5.1. Spatial Autocorrelation Analysis on a Global Scale
4.5.2. Analysis of Local Spatial Autocorrelations
5. Discussion
5.1. Effects of Landscape Type Change on the Ecosystem Service Value in the Li River Basin
5.2. Characteristic of the Composite Spatial Pattern of Ecosystem Service Values within the Li River Basin
5.3. Analyses of Research Assessment Methods
5.4. Specific Recommendations
- (1)
- Strengthen the protection and restoration of forest ecosystems: Planners and decision-makers should conduct a scientific assessment of the biodiversity and ecosystem services value in the Li River Basin. They should establish additional nature reserves in key areas, avoiding human interference, and continue to promote forest conservation and restoration projects. Measures such as afforestation, land conversion from agriculture to forests, and forest regeneration should be implemented to increase forest area and maintain the sustainability of forest ecosystem services.
- (2)
- Enhance the function of ecosystem regulation services. Planners and decision-makers should consider regulation services as a critical indicator for ecosystem management and planning decisions in the Li River Basin. They should strengthen the protection and restoration of wetlands, forests, and water bodies; optimize water resource allocation; implement soil and water conservation measures; and undertake targeted water pollution control. This will improve the basin’s capacity for climate regulation, hydrological regulation, and disaster prevention.
- (3)
- Pay attention to spatial differences in ecosystem services. Planners and decision-makers should establish corresponding management goals, measures, and policies based on the ecosystem service requirements and characteristics of different regions to achieve optimal ecosystem service benefits. Additionally, enhanced communication and cooperation between different regions should be promoted, establishing cross-regional ecological conservation organizations. They can jointly develop regional development plans, coordinate resource utilization, share ecosystem services, and achieve sustainable regional development.
- (4)
- Deepen the management decisions regarding ecosystem services: Planners and decision-makers should thoroughly consider the distribution characteristics and ecological functional requirements of ecosystems, formulate long-term ecosystem management and planning measures, and establish a comprehensive ecosystem service assessment system. Regular ecosystem service assessments should be conducted to monitor changes in ecosystem services. Multiple ecosystem service values should be considered to ensure the comprehensive development of regional ecosystem services.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Notte, A.; D’Amato, D.; Mäkinen, H.; Paracchini, M.L.; Liquete, C.; Egoh, B.; Crossman, N.D.; Crossman, N.D. Ecosystem services classification: A systems ecology perspective of the cascade framework. Ecol. Indic. 2017, 74, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Dawson, N.; Martin, A. Assessing the contribution of ecosystem services to human wellbeing: A disaggregated study in western Rwanda. Ecol. Econ. 2015, 117, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Daw, T.M.; Hicks, C.C.; Brown, K.; Chaigneau, T.; Januchowski-Hartley, F.A.; Cheung, W.W.; Rosendo, S.; Crona, B.; Coulthard, S.; Sandbrook, C.; et al. Elasticity in ecosystem services: Exploring the variable relationship between eco-systems and human well-being. Ecol. Soc. 2016, 21, 11. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, D.; Deng, L. Landscape pattern simulation for ecosystem service value regulation of Three Gorges Reservoir Area, China. Environ. Impact Assess. Rev. 2022, 95, 106798. [Google Scholar] [CrossRef]
- Xiao, R.; Lin, M.; Fei, X.; Li, Y.; Zhang, Z.; Meng, Q. Exploring the interactive coercing relationship between urbanization and ecosystem service value in the Shanghai–Hangzhou Bay Metropolitan Region. J. Clean. Prod. 2019, 253, 119803. [Google Scholar] [CrossRef]
- Liu, R.; Dong, X.; Wang, X.-C.; Zhang, P.; Liu, M.; Zhang, Y. Study on the relationship among the urbanization process, ecosystem services and human well-being in an arid region in the context of carbon flow: Taking the Manas river basin as an example. Ecol. Indic. 2021, 132, 108248. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, A.; Shome, A.; Sinha, R.; Sinha, S.; Jha, P.K.; Kumar, R.; Kumar, P.; Shubham; Das, S.; et al. Impacts of Plastic Pollution on Ecosystem Services, Sustainable Development Goals, and Need to Focus on Circular Economy and Policy Interventions. Sustainability 2021, 13, 9963. [Google Scholar] [CrossRef]
- Orimoloye, I.R.; Zhou, L.; Kalumba, A.M. Drought Disaster Risk Adaptation through Ecosystem Services-Based Solutions: Way Forward for South Africa. Sustainability 2021, 13, 4132. [Google Scholar] [CrossRef]
- Chen, S.; Chen, J.; Jiang, C.; Yao, R.T.; Xue, J.; Bai, Y.; Wang, H.; Jiang, C.; Wang, S.; Zhong, Y.; et al. Trends in Research on Forest Ecosystem Services in the Most Recent 20 Years: A Bibliometric Analysis. Forests 2022, 13, 1087. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Wang, X.; Dong, X.; Liu, H.; Wei, H.; Fan, W.; Lu, N.; Xu, Z.; Ren, J.; Xing, K. Linking land use change, ecosystem services and human well-being: A case study of the Manas River Basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Wolff, S.; Schulp, C.J.E.; Verburg, P.H. Mapping ecosystem services demand: A review of current research and future perspectives. Ecol. Indic. 2015, 55, 159–171. [Google Scholar] [CrossRef]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, D.; Fan, X.; Liu, C.; Zhao, G. Landscape dynamics facilitated non-point source pollution control and regional water security of the Three Gorges Reservoir area, China. Environ. Impact Assess. Rev. 2021, 92, 106696. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Aretano, R.; Petrosillo, I.; Zaccarelli, N.; Semeraro, T.; Zurlini, G. People perception of landscape change effects on ecosystem services in small Mediterranean islands: A combination of subjective and objective assessments. Landsc. Urban Plan. 2013, 112, 63–73. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Chen, R.; Huang, C. Landscape Evolution and It’s Impact of Ecosystem Service Value of the Wuhan City, China. Int. J. Environ. Res. Public Health 2021, 18, 13015. [Google Scholar] [CrossRef]
- Camacho, V.V.; Ruiz-Luna, A.; Berlanga-Robles, A.C. Effects of land use changes on ecosystem services value provided by coastal wetlands: Recent and future landscape scenarios. J. Coast Zone Manag. 2016, 19, 418. [Google Scholar]
- Liu, Y.; Yuan, X.; Li, J.; Qian, K.; Yan, W.; Yang, X.; Ma, X. Trade-offs and synergistic relationships of ecosystem services under land use change in Xinjiang from 1990 to 2020: A Bayesian network analysis. Sci. Total Environ. 2023, 858, 160015. [Google Scholar] [CrossRef]
- Biedemariam, M.; Birhane, E.; Demissie, B.; Tadesse, T.; Gebresamuel, G.; Habtu, S. Ecosystem Service Values as Related to Land Use and Land Cover Changes in Ethiopia: A Review. Land 2022, 11, 2212. [Google Scholar] [CrossRef]
- Huang, C.; Zhao, D.; Liao, Q.; Xiao, M. Linking landscape dynamics to the relationship between water purification and soil retention. Ecosyst. Serv. 2023, 59, 101498. [Google Scholar] [CrossRef]
- Van Oudenhoven, A.P.E.; Petz, K.; Alkemade, R.; Hein, L.; De Groot, R.S. Framework for systematic indicator selection to assess effects of land management on ecosystem services. Ecol. Indic. 2012, 21, 110–122. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D. Urban ecosystem services assessment along a rural–urban gradient: A cross-analysis of European cities. Ecol. Indic. 2013, 29, 179–190. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 200915. [Google Scholar] [CrossRef]
- Xiao, Q.; Hu, D.; Xiao, Y. Assessing changes in soil conservation ecosystem services and causal factors in the Three Gorges Reservoir region of China. J. Clean. Prod. 2017, 163, S172–S180. [Google Scholar] [CrossRef]
- Hou, Y.; Burkhard, B.; Müller, F. Uncertainties in landscape analysis and ecosystem service assessment. J. Environ. Manag. 2013, 127, S117–S131. [Google Scholar] [CrossRef]
- White, C.; Halpern, B.S.; Kappel, C.V. Ecosystem service tradeoff analysis reveals the value of marine spatial planning for multiple ocean uses. Proc. Natl. Acad. Sci. USA 2012, 109, 4696–4701. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Chen, D.; Wu, S.; Zhou, S.; Wang, T.; Chen, H. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecol. Indic. 2016, 71, 416–427. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Chen, Y.; Fang, C. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal differentiation and varying importance. Resour. Conserv. Recycl. 2021, 168, 105477. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, Y.; Hao, S.; Xu, W.; Lv, L.; Yu, S. Spatial-temporal variation and tradeoffs/synergies analysis on multiple ecosystem services: A case study in the Three-River Headwaters region of China. Ecol. Indic. 2020, 116, 106494. [Google Scholar] [CrossRef]
- Yapp, G.; Walker, J.; Thackway, R. Linking vegetation type and condition to ecosystem goods and services. Ecol. Complex. 2010, 7, 292–301. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, L.; Xu, Z.; Zhao, Y.; Wei, Y.; Skinner, D. Ecosystem services in changing land use. J. Soils Sediments 2015, 15, 833–843. [Google Scholar] [CrossRef]
- Wen, Z.; Zheng, H.; Smith, J.R.; Zhao, H.; Liu, L.; Ouyang, Z. Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Sci. Total Environ. 2019, 682, 583–590. [Google Scholar] [CrossRef]
- Oehri, J.; Schmid, B.; Schaepman-Strub, G.; Niklaus, P.A. Terrestrial land-cover type richness is positively linked to landscape-level functioning. Nat. Commun. 2020, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Wang, L.; Huang, C.; Fang, L.; Wang, S.; Wang, L. Spatio-temporal variations of ecosystem services in the urban agglomerations in the middle reaches of the Yangtze River, China. Ecol. Indic. 2020, 115, 106394. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, R.; Huang, J.; Yang, W. An analysis of the spatial and temporal changes in Chinese terrestrial ecosystem service functions. Chin. Sci. Bull. 2012, 57, 2120–2131. [Google Scholar] [CrossRef] [Green Version]
- Syrbe, R.-U.; Walz, U. Spatial indicators for the assessment of ecosystem services: Providing, benefiting and connecting areas and landscape metrics. Ecol. Indic. 2012, 21, 80–88. [Google Scholar] [CrossRef]
- Li, B.; Chen, N.; Wang, Y.; Wang, W. Spatio-temporal quantification of the trade-offs and synergies among ecosystem services based on grid-cells: A case study of Guanzhong Basin, NW China. Ecol. Indic. 2018, 94, 246–253. [Google Scholar] [CrossRef]
- Miller, J.A. Species distribution models: Spatial autocorrelation and non-stationarity. Prog. Phys. Geogr. 2012, 36, 681–692. [Google Scholar] [CrossRef]
- Pearson, D.M. The application of local measures of spatial autocorrelation for describing pattern in north Australian landscapes. J. Environ. Manag. 2002, 64, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Qin, K.; Jia, Y.; Yuan, X.; Yang, S. Land use transition and eco-environmental effects in Karst Mountain area based on production-living-ecological space: A case study of Longlin Multinational Autonomous County, Southwest China. Int. J. Environ. Res. Public Health 2022, 19, 7587. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, M.; Wang, C.; Wang, K.; Wang, C.; Li, Y.; Bai, X.; Zhou, Y. Spatial and Temporal Changes of Landscape Patterns and Their Effects on Ecosystem Services in the Huaihe River Basin, China. Land 2022, 11, 513. [Google Scholar] [CrossRef]
- Zou, Z.; Zeng, F.; Wang, K.; Zeng, Z.; Tang, H.; Zhang, H. Evaluation and Tradeoff Analysis of Ecosystem Service for Typical Land-Use Patterns in the Karst Region of Southwest China. Forests 2020, 11, 451. [Google Scholar] [CrossRef] [Green Version]
Ecosystem Type | Farmland | Forest | Grassland | Wetland | Urban | Desert | |
---|---|---|---|---|---|---|---|
Land-Use Type | Cultivated Land | Forestland | Grassland | Water | Built-Up Land | Bare Land | |
Provisioning services | Food production | 1.36 | 0.29 | 0.38 | 0.8 | 0 | 0 |
Raw material production | 0.09 | 0.66 | 0.56 | 0.23 | 0 | 0 | |
Water supply | −2.63 | 0.34 | 0.31 | 8.29 | 0 | 0 | |
Regulating services | Gas regulation | 1.11 | 2.17 | 1.97 | 0.77 | 0 | 0.02 |
Climate regulation | 0.57 | 6.5 | 5.21 | 2.29 | 0 | 0 | |
Environmental purification | 0.17 | 1.93 | 1.72 | 5.55 | −2.46 | 0.1 | |
Hydrological regulation | 2.72 | 4.47 | 3.82 | 102.24 | −7.55 | 0.03 | |
Supporting services | Soil retention | 0.01 | 2.65 | 2.4 | 0.93 | 0 | 0.02 |
Nutrient cycling | 0.19 | 0.2 | 0.18 | 0.07 | 0 | 0 | |
Biodiversity conservation | 0.21 | 2.41 | 2.18 | 2.55 | 0 | 0.02 | |
Cultural services | Aesthetic landscape | 0.09 | 1.06 | 0.96 | 1.89 | 0 | 0.01 |
Ecosystem Type | Farmland | Forest | Grassland | Wetland | Urban | Desert | |
---|---|---|---|---|---|---|---|
Land-Use Type | Cultivated Land | Forestland | Grassland | Water | Built-Up Land | Bare Land | |
Provisioning services | Food production | 3132.18 | 667.89 | 875.17 | 1842.46 | 0.00 | 0.00 |
Raw material production | 207.28 | 1520.03 | 1289.72 | 529.71 | 0.00 | 0.00 | |
Water supply | −6057.07 | 783.04 | 713.95 | 19,092.45 | 0.00 | 0.00 | |
Regulating services | Gas regulation | 2556.41 | 4997.66 | 4537.05 | 1773.36 | 0.00 | 46.06 |
Climate regulation | 1312.75 | 14,969.96 | 11,998.99 | 5274.03 | 0.00 | 0.00 | |
Environmental purification | 391.52 | 4444.93 | 3961.28 | 12,782.04 | −5665.55 | 230.31 | |
Hydrological regulation | 6264.35 | 10,294.72 | 8797.73 | 235,465.88 | −17,388.18 | 69.09 | |
Supporting services | Soil retention | 23.03 | 6103.14 | 5527.37 | 2141.86 | 0.00 | 46.06 |
Nutrient cycling | 437.58 | 460.61 | 414.55 | 161.21 | 0.00 | 0.00 | |
Biodiversity conservation | 483.64 | 5550.40 | 5020.69 | 5872.83 | 0.00 | 46.06 | |
Cultural services | Aesthetic landscape | 207.28 | 2441.25 | 2210.95 | 4352.80 | 0.00 | 23.03 |
—— | Total | 8958.94 | 52,233.63 | 45,347.45 | 289,288.62 | −23,053.7307 | 460.61 |
Landscape Type | 1990 | 2000 | 2010 | 2020 | 1990–2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Area Change (km2) | Area Change (%) | |
Forestland | 4178.61 | 71.58 | 4334.78 | 74.25 | 4527.73 | 77.56 | 4641.23 | 79.50 | 462.62 | 11.07 |
Cultivated Land | 1284.60 | 22.01 | 1102.88 | 18.89 | 834.82 | 14.30 | 553.97 | 9.49 | −730.63 | −56.88 |
Construction land | 82.22 | 1.41 | 119.10 | 2.04 | 176.93 | 3.03 | 378.57 | 6.48 | 296.35 | 360.44 |
Water | 111.72 | 1.91 | 110.64 | 1.90 | 106.01 | 1.82 | 110.66 | 1.90 | −1.06 | −0.95 |
Grassland | 167.77 | 2.87 | 154.80 | 2.65 | 175.11 | 2.99 | 139.55 | 2.39 | −28.22 | −16.82 |
Bare Land | 13.01 | 0.22 | 15.73 | 0.27 | 17.33 | 0.30 | 13.95 | 0.24 | 0.94 | 7.23 |
Year | Type of Statistics | Forestland | Cultivated Land | Construction Land | Water | Grassland | Bare Land | Total |
---|---|---|---|---|---|---|---|---|
1990 | Value (108/year) | 218.26 | 11.51 | −1.90 | 32.32 | 7.61 | 0.01 | 267.81 |
Ratio (%) | 81.50 | 4.29 | −0.71 | 12.07 | 2.84 | 0.01 | 100 | |
2000 | Value (108/year) | 226.42 | 9.88 | −2.75 | 32.01 | 7.02 | 0.01 | 272.59 |
Ratio (%) | 83.06 | 3.62 | −1.01 | 11.74 | 2.58 | 0.01 | 100 | |
2010 | Value (108/year) | 236.50 | 7.48 | −4.08 | 30.67 | 7.94 | 0.01 | 278.52 |
Ratio (%) | 84.91 | 2.68 | −1.46 | 11.01 | 2.85 | 0.01 | 100 | |
2020 | Value (108/year) | 242.43 | 4.96 | −8.73 | 32.01 | 6.33 | 0.01 | 277.01 |
Ratio (%) | 87.51 | 1.79 | −3.15 | 11.55 | 2.29 | 0.01 | 100 | |
1990 –2000 | Value change (108/year) | 8.16 | −1.63 | −0.85 | −0.31 | −0.59 | 0.00 | 4.78 |
Ratio (%) | 3.74 | −14.16 | 47.22 | −0.96 | −7.75 | 0.00 | 1.78 | |
2000 –2010 | Value change (108/year) | 10.08 | −2.40 | −1.33 | −1.34 | 0.92 | 0.00 | 5.93 |
Ratio (%) | 4.45 | −24.29 | 48.36 | −4.19 | 13.11 | 0.00 | 2.18 | |
2010 –2020 | Value change (108/year) | 5.93 | −2.52 | −4.65 | 1.34 | −1.61 | 0.00 | −1.51 |
Ratio (%) | 2.51 | −33.69 | 113.97 | 4.37 | −20.28 | 0.00 | −0.54 | |
1990 –2020 | Value change (108/year) | 24.17 | −6.55 | −6.83 | −0.31 | −1.28 | 0.00 | 9.20 |
Change rate (%) | 11.07 | −56.91 | 359.47 | −0.96 | −16.82 | 0.00 | 3.44 |
Slope | Value per Unit Area (yuan/hm2) | Total Value (108 yuan/year) | ||||||
---|---|---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2020 | 1990 | 2000 | 2010 | 2020 | |
0–3° | 36,620.53 | 36,333.69 | 36,900.49 | 36,610.69 | 48.43 | 48.05 | 48.79 | 48.41 |
3–8° | 43,526.96 | 45,300.31 | 47,646.76 | 46,302.25 | 35.91 | 37.37 | 39.31 | 38.19 |
8–15° | 47,885.09 | 49,291.86 | 50,660.71 | 50,216.54 | 54.08 | 55.67 | 57.27 | 56.72 |
15–25° | 50,253.78 | 51,125.42 | 51,839.59 | 51,959.98 | 81.39 | 82.79 | 83.92 | 84.17 |
>25° | 50,981.57 | 51,722.41 | 52,289.25 | 52,600.07 | 48.01 | 48.69 | 49.23 | 49.53 |
Altitude | Value per Unit Area (yuan/hm2) | Total Value (108 yuan/year) | ||||||
---|---|---|---|---|---|---|---|---|
1990 | 2000 | 2010 | 2020 | 1990 | 2000 | 2010 | 2020 | |
0–200 m | 35,891.85 | 36,637.88 | 37,866.37 | 36,425.41 | 61.26 | 62.54 | 64.63 | 62.17 |
200–500 m | 48,957.53 | 50,408.67 | 51,824.01 | 52,010.42 | 126.15 | 129.89 | 133.53 | 134.02 |
500–800 m | 51,640.34 | 51,499.59 | 51,481.27 | 51,937.11 | 49.37 | 49.24 | 49.22 | 49.65 |
800–1200 m | 51,960.01 | 51,747.49 | 52,002.98 | 52,079.06 | 23.27 | 23.18 | 23.29 | 23.33 |
>1200 m | 51,559.69 | 51,540.95 | 52,107.74 | 52,132.26 | 7.76 | 7.75 | 7.84 | 7.843 |
Types | 1990–2000 | 2000–2010 | 2010–2020 | 1990–2020 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | Area (km2) | Area (%) | |
Grade Drop Zone | 445.06 | 7.62 | 394.70 | 6.76 | 421.16 | 7.21 | 427.52 | 7.32 |
Grade Stability Zone | 4797.64 | 82.18 | 4803.53 | 82.28 | 5177.02 | 88.68 | 4770.46 | 81.71 |
Grade Up Zone | 595.23 | 10.20 | 639.70 | 10.96 | 239.75 | 4.11 | 639.95 | 10.97 |
Total | 5837.93 | 100 | 5837.93 | 100 | 5837.93 | 100 | 5837.93 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Qiu, S.; Luo, N.; Qing, G.; Huang, C. Multi-Dimensional Spatial and Temporal Variations of Ecosystem Service Values in the Li River Basin, 1990–2020. Remote Sens. 2023, 15, 2996. https://doi.org/10.3390/rs15122996
Hu J, Qiu S, Luo N, Qing G, Huang C. Multi-Dimensional Spatial and Temporal Variations of Ecosystem Service Values in the Li River Basin, 1990–2020. Remote Sensing. 2023; 15(12):2996. https://doi.org/10.3390/rs15122996
Chicago/Turabian StyleHu, Jinlong, Sicheng Qiu, Nan Luo, Guo Qing, and Chunbo Huang. 2023. "Multi-Dimensional Spatial and Temporal Variations of Ecosystem Service Values in the Li River Basin, 1990–2020" Remote Sensing 15, no. 12: 2996. https://doi.org/10.3390/rs15122996
APA StyleHu, J., Qiu, S., Luo, N., Qing, G., & Huang, C. (2023). Multi-Dimensional Spatial and Temporal Variations of Ecosystem Service Values in the Li River Basin, 1990–2020. Remote Sensing, 15(12), 2996. https://doi.org/10.3390/rs15122996