Holistic 3D Model of an Urban Area in Norway: An Integration of Geophysical, Geotechnical, Remote Sensing, and Geological Methods
Abstract
:1. Introduction
- What methodological approach is required to combine remote sensing, geotechnical data, geological survey, and geophysical tools to create a holistic 3D model in a highly urbanized area?
- How can a holistic model be created that incorporates the different remote sensing, geological, geotechnical, and geophysical data from onshore to offshore and from subsurface to surface?
- What are the determining factors to identify anthropogenic landscape changes in the Mosvatnet area?
- What are the identifiable geologic units in the area?
2. Geological Setting and Location
3. Materials and Methods
3.1. Aerial Imagery
- Mosaicking: Consists of merging orthophotos with the same characteristics into a raster dataset.
- Image classification: Water body and terrain pixels were separated based on the spectral characteristics of each area. These characteristics are defined by the attributes inherent to each color band. The image-supervised classification workflow was applied in the ArcGIS Desktop (version 10.7.1) [35]. The output was a classified raster with two classes: water body and ground. The water body was extracted from the classified raster by using the polygon that outlines the water body.
- Image Enhancing: Application of image analysis tools in ArcGIS [36] to enhance the appearance of the extracted raster data representing the water body. Three parameters were equally adjusted in the red, green, and blue bands: the gamma correction, the contrast stretch, and the display resampling.
- Image denoising: Noise filtering was required to remove random brightness variations. The image from step 3 was imported into Matlab (version R2021a) [37] and separated into RGB bands. Then, a pre-trained denoising neural network, DnCNN, was applied individually to each band. After applying the filter, the bands were recombined to deliver the final image, which was used for further interpretation (Section 4.5).
3.2. Airborne Laser Scanning (ALS) Derived DTM
3.3. Groundwater and Geotechnical Borehole Data
3.4. Geologic Observation Points (GOP)
3.5. Ground-Penetrating Radar (GPR)
- Extraction of data from .rd3 and .cor files;
- Binning to 12.5 cm distance intervals using the median of traces and coordinates;
- Interpolation to regular distance intervals (12.5 cm);
- Subtraction of mean trace (Dewow);
- Application of surface-related multiple elimination (SRME) [61];
- Application of the amplitude gain function to preserve anomalies;
- Kirchhoff migration taking care of time-zero correction and topographic values relative to a specific datum. Two dielectric permittivity constants, 80 (33.52 m/µs) for the lake (water and ice) and 25 (60 m/µs) for the land, were used to migrate the data with a summation width of 40 traces; and finally
- Writing SEG-Y files to be imported into the geological interpretation software.
3.6. Data Integration and Digital Mapping
4. Results
4.1. Geotechnical Boreholes
4.2. Interpretation of Geologic Observation Points
4.3. Interpretation of GPR Data
4.3.1. Bedrock Unit
4.3.2. Till Unit
4.3.3. Fluvioglacial Unit
4.3.4. Lacustrine Unit
4.3.5. Infill Material Unit
4.4. Aerial Imagery Enhancing
4.5. Integrated Data Interpretation within the Lake
4.6. Onshore Integrated Data Interpretation
4.7. Holistic Model of Mosvatnet
5. Discussion
5.1. Interpretation of Mosvatnet Model
5.2. Advantages and Limitations of the Employed Techniques and Model Uncertainty
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPR | ground-penetrating radar |
DTM | digital terrain model |
ALS | aerial laser scanning |
GOP | geologic observation point |
References
- Olsen, L.; Fredin, O.; Olesen, O. Quaternary Geology of Norway, Special Publication Volume 13; Norges Geologiske Undersøkelse (Geological Survey of Norway): Trondheim, Norway, 2013; p. 3.
- Stamnes, A.; Gustavsen, L. Archaeological Use of Geophysical Methods in Norwegian Cultural Heritage Management—A Review. In A Sense of the Past. Studies in Current Archaeological Applications of Remote Sensing and Non-Invasive Prospection Methods; Kamermans, H., Gojda, M., Posluschny, A., Eds.; Archaeopress, BAR International: Oxford, UK, 2014; pp. 17–31. [Google Scholar]
- Gustavsen, L.; Gjesvold, P.E.; Gundersen, S.M.; Hinterleitner, A.; Nau, E.; Paasche, K. Gjellestad: A newly discovered ‘central place’ in south-east Norway. Antiquity 2020, 94, 1520–1537. [Google Scholar] [CrossRef]
- Lønne, I.; Lauritsen, T. The architecture of a modern push-moraine at Svalbard as inferred from ground-penetrating radar measurements. Arct. Alp. Res. 1996, 28, 488–495. [Google Scholar] [CrossRef]
- Saintenoy, A.; Friedt, J.-M.; Booth, A.D.; Tolle, F.; Bernard, E.; Laffly, D.; Marlin, C.; Griselin, M. Deriving ice thickness, glacier volume and bedrock morphology of Austre Lovénbreen (Svalbard) using GPR. Surf. Geophys. 2013, 11, 253–262. [Google Scholar] [CrossRef]
- Sauvin, G.; Lecomte, I.; Bazin, S.; L’Heureux, J.; Vanneste, M.; Solberg, I.; Dalsegg, E. Towards geophysical and geotechnical integration for quick-clay mapping in Norway. Surf. Geophys. 2013, 11, 613–624. [Google Scholar] [CrossRef]
- Lalagüe, A.; Lebens, M.A.; Hoff, I.; Grøv, E. Detection of rockfall on a tunnel concrete lining with ground-penetrating radar (GPR). Rock Mech. Rock Eng. 2016, 49, 2811–2823. [Google Scholar] [CrossRef]
- Quinteros, S.; Gundersen, A.; L’Heureux, J.; Carraro, A.H.; Jardine, R. Øysand Research Site: Geotechnical Characterisation of Deltaic Sandy-Silty Soils; Norges Geotekniske Institutt: Oslo, Norway, 2019; pp. 6–47. [Google Scholar]
- Eide, E.S.; Hjelmstad, J.F. 3D utility mapping using electronically scanned antenna array. In Proceedings of the 9th International Conference on Ground Penetrating Radar, Santa Barbara, CA, USA, 29 April–2 May 2002; Volume 478, pp. 192–196. [Google Scholar]
- Smith, D.G.; Jol, H.M. Ground penetrating radar: Antenna frequencies and maximum probable depths of penetration in Quaternary sediments. J. Appl. Geophys. 1995, 33, 93–100. [Google Scholar] [CrossRef]
- Schneidhofer, P.; Tonning, C.; Cannell, R.J.S.; Nau, E.; Hinterleitner, A.; Verhoeven, G.J.; Gustavsen, L.; Paasche, K.; Neubauer, W.; Gansum, T. The Influence of Environmental Factors on the Quality of GPR Data: The Borre Monitoring Project. Remote Sens. 2022, 14, 3289. [Google Scholar] [CrossRef]
- Pellicer, X.M.; Gibson, P. Electrical resistivity and Ground Penetrating Radar for the characterisation of the internal architecture of Quaternary sediments in the Midlands of Ireland. J. Appl. Geophys. 2011, 75, 638–647. [Google Scholar] [CrossRef]
- Sauvin, G.; Lecomte, I.; Bazin, S.; Hansen, L.; Vanneste, M.; L’Heureux, J. On the integrated use of geophysics for quick-clay mapping: The Hvittingfoss case study, Norway. J. Appl. Geophys. 2014, 106, 1–13. [Google Scholar] [CrossRef]
- Eilertsen, R.S.; Corner, G.D.; Aasheim, O.; Hansen, L. Facies characteristics and architecture related to palaeodepth of Holocene fjord–delta sediments. Sedimentology 2011, 58, 1784–1809. [Google Scholar] [CrossRef]
- Regli, C.; Huggenberger, P.; Rauber, M. Interpretation of drill core and georadar data of coarse gravel deposits. J. Hydrol. 2002, 255, 234–252. [Google Scholar] [CrossRef]
- Burki, V.; Larsen, E.; Fredin, O.; Margreth, A. The formation of sawtooth moraine ridges in Bødalen, western Norway. Geomorphology 2009, 10, 182–192. [Google Scholar] [CrossRef]
- Lerche, H.; Jakobsen, P.R.; Pedersen, S.A.S. Ribbed moraines formed during the retreat of the Scandinavian ice sheet from eastern Himmerland, NE Jylland, Denmark. GEUS Bull. 2014, 31, 39–42. [Google Scholar] [CrossRef]
- Fredin, O.; Bergstrøm, B.; Eilertsen, R.; Hansen, L.; Longva, O.; Nesje, A.; Sveian, H. Glacial landforms and Quaternary landscape development in Norway. In Quaternary Geology of Norway, Special Publication Volume 13; Olsen, L., Fredin, O., Olesen, O., Eds.; Norges Geologiske Undersøkelse (Geological Survey of Norway): Trondheim, Norway, 2013; pp. 5–26. [Google Scholar]
- Olsen, L.; Sveian, H.; Ottesen, D.; Rise, L. Quaternary glacial, interglacial and interstadial deposits of Norway and adjacent onshore and offshore areas. In Quaternary Geology of Norway, Special Publication Volume 13; Olsen, L., Fredin, O., Olesen, O., Eds.; Norges Geologiske Undersøkelse (Geological Survey of Norway): Trondheim, Norway, 2013; pp. 79–123. [Google Scholar]
- Church, M.; Ryder, J.M. Paraglacial sedimentation: A consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull. 1972, 83, 3059–3072. [Google Scholar] [CrossRef]
- Ballantyne, C.K. Paraglacial geomorphology. Quat. Sci. Rev. 2002, 21, 1935–2017. [Google Scholar] [CrossRef]
- Norges Geologiske Undersøkelse (NGU). Løsmasser—Nasjonal Løsmassedatabase. Available online: https://geo.ngu.no/kart/losmasse_mobil/ (accessed on 27 December 2020).
- Janocko, J.; Landvik, J.Y.; Larsen, E.; Sejrup, H.P. Stratigraphy and sedimentology of Middle to Upper Pleistocene sediments in the new Grødeland borehole at Jæren, SW Norway. Nor. Geol. Tidsskr. 1997, 77, 87–100. [Google Scholar]
- Olsen, L.; Sveian, H.; Bergstrøm, B.; Ottesen, D.; Rise, L. Quaternary glaciations and their variations in Norway and on the Norwegian continental shelf. In Quaternary Geology of Norway, Special Publication Volume 13; Olsen, L., Fredin, O., Olesen, O., Eds.; Norges Geologiske Undersøkelse (Geological Survey of Norway): Trondheim, Norway, 2013; pp. 27–78. [Google Scholar]
- Andersen, B.G.; Wangen, O.P.; Østmo, S.-R. Quaternary Geology of Jæren and Adjacent Areas, Southwestern Norway; Norges Geologiske Undersøkelse Bulletin: Trondheim, Norway, 1987; Volume 411, pp. 1–55. [Google Scholar]
- Riis, F. Stavanger: Landskapet og Geologien. Byhistorisk Foren. Stavanger 2016, 3, 7–21. Available online: https://byhistoriskforening.org/wp-content/uploads/2022/01/Stavangeren-3-2016-web.pdf (accessed on 30 April 2021).
- Norges Vassdrags og Energidirektorat (NVE). Available online: https://www.nve.no/om-nve/ (accessed on 24 February 2021).
- Birkeland, T. The geology of Jæren and adjacent districts. A contribution to the Caledonian nappe tectonics of Rogaland, southwest Norway. Norsk Geologisk Tidsskrift 1981, 61, 213–235. [Google Scholar]
- Smit, M.A.; Scherer, E.E.; Bröcker, M.; Van Roermund, H.L. Timing of eclogite facies metamorphism in the southernmost Scandinavian Caledonides by Lu–Hf and Sm–Nd geochronology. Contrib. Mineral. Petrol. 2010, 159, 521–539. [Google Scholar] [CrossRef]
- Smit, M.; Bröcker, M.; Kooijman, E.; Scherer, E. Provenance and exhumation of an exotic eclogite-bearing nappe in the Caledonides: A U–Pb and Rb–Sr study of the Jæren nappe, SW Norway. J. Geol. Soc. 2011, 168, 423–439. [Google Scholar] [CrossRef]
- Bennett, M.M.; Glasser, N.F. Glacial Geology: Ice Sheets and Landforms, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2009; pp. 1–385. [Google Scholar]
- Benn, D.; Evans, D.J. Glaciers and Glaciation, 2nd ed.; Hodder Education: London, UK, 2010; pp. 1–802. [Google Scholar]
- Ottesen, D.; Dowdeswell, J.; Rise, L. Submarine landforms and the reconstruction of fast-flowing ice streams within a large Quaternary ice sheet: The 2500-km-long Norwegian-Svalbard margin (57–80 N). Geol. Soc. Am. Bull. 2005, 117, 1033–1050. [Google Scholar] [CrossRef]
- Statens Vegvesen; Norsk Institutt for Bioøkonomi (NIBIO); og Statens Kartverk. Norge i Bilder. Available online: https://norgeibilder.no/ (accessed on 24 February 2021).
- ESRI. Image Classification Using the ArcGIS Spatial Analyst Extension. Available online: https://desktop.arcgis.com/en/arcmap/latest/extensions/spatial-analyst/image-classification/image-classification-using-spatial-analyst.htm (accessed on 15 April 2021).
- ESRI. Image Analysis Window: Display Section. Available online: https://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-images/image-analysis-window-display-section.htm (accessed on 15 April 2021).
- The MathWorks, Inc. Remove Noise from Color Image Using pre-trained Neural Network. Available online: https://se.mathworks.com/help/images/remove-noise-from-color-image-using-pre-trained-neural-network.html (accessed on 15 April 2021).
- Kartverket. Høydedata. Available online: https://hoydedata.no/LaserInnsyn2/ (accessed on 10 December 2020).
- Norges Geologiske Undersøkelse (NGU). GRANADA—Nasjonal Grunnvannsdatabase. Available online: https://geo.ngu.no/kart/granada_mobil/ (accessed on 27 December 2020).
- Statens vegvesen (SVV); Norconsult. Geoteknisk Datarapport E04 Eiganestunnelen m/del av Hundvågtunnelen; Norconsult: Sandvika, Norway, 2013. [Google Scholar]
- Norsk Geoteknisk Forening (1994). Melding nr. 9, Rev. nr. 1. 2018. Veiledning for Utførelse av Totalsondering. Available online: https://ngf.no/publikasjoner/melding-nr-9-veiledning-for-utforelse-av-totalsondering-1994/ (accessed on 2 March 2021).
- Norsk Geoteknisk Forening (1982). Melding nr. 2, Rev. nr. 2. 2011. Veiledning for symboler og definisjoner i geoteknikk. Identifisering og Klassifisering av Jord. Available online: https://ngf.no/publikasjoner/melding-nr-2-veiledning-for-symboler-og-definisjoner-i-geoteknikk-1982/ (accessed on 2 March 2021).
- Norsk Geoteknisk Forening (1994). Melding nr. 10, Rev. nr. 1, 2008, Rev. nr. 2. 2020. NGFs Beskrivelsestekst for Grunnundersøkelser. Available online: https://ngf.no/publikasjoner/melding-nr-10-mengdeliste-2020/ (accessed on 2 March 2021).
- Norsk Geoteknisk Forening (1997). Melding nr. 11. Rev. 2013. Veiledning for Prøvetaking. Available online: https://ngf.no/publikasjoner/melding-nr-11-veiledning-for-provetaking-2013/ (accessed on 2 March 2021).
- Haugen, E.; Degago, S.A.; Kirkevollen, O.V.; Nigussie, D.; Yu, X. A preliminary attempt towards soil classification chart from total sounding. In Proceedings of the 17th Nordic Geotechnical Meeting. Challenges in Nordic Geotechnic, Reykjavik, Iceland, 25 May 2016. [Google Scholar]
- Folk, R.L. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J. Geol. 1954, 62, 344–359. [Google Scholar] [CrossRef]
- Asprion, U.; Aigner, T. Towards realistic aquifer models: Three-dimensional georadar surveys of Quaternary gravel deltas (Singen Basin, SW Germany). Sediment. Geol. 1999, 129, 281–297. [Google Scholar] [CrossRef]
- Augustinus, P.C.; Nichol, S. Ground-penetrating radar imaging of Pleistocene sediments, Boco Plain, western Tasmania. Aust. J. Earth Sci. 1999, 46, 275–282. [Google Scholar] [CrossRef]
- Bakker, M.A.J.; Van Der Meer, J.J.M. Structure of a Pleistocene push moraine revealed by GPR: The eastern Veluwe Ridge, The Netherlands. Geol. Soc. Lond. Spec. Publ. 2003, 211, 143–151. [Google Scholar] [CrossRef]
- Dehls, J.F.; Olesen, O.; Olsen, L.; Blikra, L.H. Neotectonic faulting in northern Norway; the Stuoragurra and Nordmannvikdalen postglacial faults. Quat. Sci. Rev. 2000, 19, 1447–1460. [Google Scholar] [CrossRef]
- Gross, R.; Green, A.G.; Horstmeyer, H.; Begg, J.H. Location and geometry of the Wellington fault (New Zealand) defined by detailed three-dimensional georadar data. J. Geophys. Res. Solid Earth 2004, 109. [Google Scholar] [CrossRef]
- Annan, A.P. Radio interferometry depth sounding: Part I-Theoretical discussion. Geophysics 2008, 38, 557–580. [Google Scholar] [CrossRef]
- Annan, A.P. GPR—History, trends, and future developments. Subsurf. Sens. Technol. Appl. 2002, 3, 253–270. [Google Scholar] [CrossRef]
- Bachrach, R.; Rickett, J. Ultra shallow seismic reflection in depth: Examples from 3D and 2D ultra shallow surveys with application to joint seismic and GPR imaging. SEG Tech. Program Expand. Abstr. 1999, 488–491. [Google Scholar]
- Davis, J.L.; Annan, A.P. Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy 1. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Fisher, S.C.; Stewart, R.R.; Jol, H.M. Ground penetrating radar (GPR) data enhancement using seismic techniques. J. Environ. Eng. Geophys. 1996, 1, 89–96. [Google Scholar] [CrossRef]
- Mehdi, S. Ground Penetrating Radar. In In Situ Assessment of Structural Timber; Kasal, B., Tannert, T., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; pp. 25–37. [Google Scholar]
- Morey, R.M. Detection of subsurface cavities by ground penetrating radar. Highw. Geol. Symp. Proc. 1974, 27, 28–30. [Google Scholar]
- Neal, A. Ground-penetrating radar and its use in sedimentology: Principles, problems and progress. Earth-Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Slob, E.; Sato, M.; Olhoeft, G. Surface and borehole ground-penetrating-radar developments. Geophysics 2010, 75, 75A103–75A120. [Google Scholar] [CrossRef]
- Verschuur, D.J. Surface-Related Multiple Elimination, an Inversion Approach. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands, 1991. [Google Scholar]
- Dondurur, D. Acquisition and Processing of Marine Seismic Data; Elsevier: Amsterdam, The Netherlands, 2008; pp. 272–286. [Google Scholar]
- Yilmaz, Ö. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data, 2nd ed.; Society of Exploration Geophysicists: Tulsa, OK, USA, 2001; pp. 81–89. [Google Scholar]
- Schlumberger. Petrel E&P Software Platform, Version 2021.5.0, Help Center, Geophysics, Attribute Generation. 2021. Available online: https://www.software.slb.com/products/petrel (accessed on 18 February 2021).
- Claerbout, J.F. Fundamentals of Geophysical Data Processing, 1st ed.; Blackwell Scientific Publications: London, UK, 1985; pp. 20–23. [Google Scholar]
- Gawthorpe, R.L.; Collier, R.E.L.; Alexander, J.; Bridge, J.S.; Leeder, M.R. Ground penetrating radar: Application to sandbody geometry and heterogeneity studies. Geol. Soc. Lond. Spec. Publ. 1993, 73, 421–432. [Google Scholar] [CrossRef]
- Jol, H.M.; Smith, D.G. Ground penetrating radar of northern lacustrine deltas. Can. J. Earth Sci. 1991, 28, 1939–1947. [Google Scholar] [CrossRef]
- Neal, A.; Richards, J.; Pye, K. Structure and development of shell cheniers in Essex, southeast England, investigated using high-frequency ground-penetrating radar. Mar. Geol. 2002, 185, 435–469. [Google Scholar] [CrossRef]
- Petroleum Experts. MOVE Software, Version 2022.1.0.345. 2022. Available online: https://www.petex.com/products/move-suite/ (accessed on 8 February 2023).
- Gutierrez, I.; Weibull, W.; Watson, L.; Olsen, T.M.; Escalona, A. Processed GPR data of Mosvatnet, Norway [Data set]. Zenodo 2023. [Google Scholar] [CrossRef]
Borehole Type | Quantity | Geotechnical Plots | Lab. Essay | Temporality | Source |
---|---|---|---|---|---|
Groundwater | 9 | - | - | 2004–2021 | NVA, 2021 |
Geotechnical | TS 1: 40 | 9 | 7 | 1999–2013 | SVV, 2013 |
SS 1: 8 | - | 1 |
Survey | On-Water | On-Ice | On-Land |
---|---|---|---|
Temporality | October 2020 | February 2021 | |
Length (km) | 4.6 | 2.4 | 1.6 |
Positioning | Built-in DGPS | External GNSS (RTK-correction) | |
Frequency (MHz) | 80 MHz | ||
Trace Interval (m) | 0.125 | ||
Time window (ns) | 778.125 | ||
Sample/trace | 996 |
GOP | Easting | Northing | Elevation | Exposure | Lithology | Structure | Dip Dir 1 | Dip | Unit |
---|---|---|---|---|---|---|---|---|---|
1 | 311,291.35 | 6,539,807.76 | 36.47 | non-in situ | Gneiss | Massive | - | - | Till |
2 | 311,299.51 | 6,539,794.83 | 36.57 | In situ | Phyllite | Foliation | 286 | 38 | Bedrock |
3 | 311,300.59 | 6,539,814.40 | 36.31 | non-in situ | Phyllite | Foliation | - | - | Till |
4 | 311,290.05 | 6,539,828.49 | 36.21 | In situ | Phyllite | Foliation | - | - | Bedrock |
5 | 311,300.25 | 6,539,835.10 | 35.93 | non-in situ | Gneiss | Massive | - | - | Till |
6 | 311,178.26 | 6,540,045.38 | 36.29 | non-in situ | Gneiss | Massive | - | - | Till |
7 | 311,083.19 | 6,540,131.59 | 37.02 | non-in situ | Gneiss | Massive | - | - | Till |
8 | 310,998.16 | 6,540,130.58 | 36.43 | non-in situ | Gneiss | Massive | - | - | Till |
9 | 311,023.19 | 6,539,937.87 | 36.34 | non-in situ | Gneiss | Massive | - | - | Till |
10 | 310,993.52 | 6,539,476.50 | 37.59 | In situ | Phyllite | Foliation | - | - | Bedrock |
11 | 311,511.87 | 6,539,639.37 | 48.17 | In situ | Phyllite | Foliation | 315 | 33 | Bedrock |
12 | 311,512.30 | 6,539,569.32 | 50.93 | In situ | Phyllite | Foliation | 310 | 34 | Bedrock |
13 | 311,549.44 | 6,539,628.55 | 55.67 | In situ | Phyllite | Foliation | 320 | 32 | Bedrock |
14 | 311,558.92 | 6,539,704.79 | 52.70 | In situ | Phyllite | Foliation | 306 | 35 | Bedrock |
15 | 311,224.83 | 6,539,977.30 | 37.60 | In situ | Phyllite | Foliation | - | - | Bedrock |
16 | 311,365.73 | 6,540,014.40 | 39.55 | In situ | Phyllite | Foliation | - | - | Bedrock |
17 | 311,403.25 | 6,539,963.41 | 37.00 | In situ | Gyttja | Non consolidated | - | - | Organic matter |
18 | 311,401.73 | 6,539,962.52 | 36.75 | In situ | Gyttja | Non consolidated | - | - | Organic matter |
19 | 311,406.62 | 6,539,966.70 | 37.80 | In situ | Phyllite | Foliation | 270 | 80 | Bedrock |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez, I.; Weibull, W.; Watson, L.; Olsen, T.M.; Escalona, A. Holistic 3D Model of an Urban Area in Norway: An Integration of Geophysical, Geotechnical, Remote Sensing, and Geological Methods. Remote Sens. 2023, 15, 2872. https://doi.org/10.3390/rs15112872
Gutierrez I, Weibull W, Watson L, Olsen TM, Escalona A. Holistic 3D Model of an Urban Area in Norway: An Integration of Geophysical, Geotechnical, Remote Sensing, and Geological Methods. Remote Sensing. 2023; 15(11):2872. https://doi.org/10.3390/rs15112872
Chicago/Turabian StyleGutierrez, Ivan, Wiktor Weibull, Lisa Watson, Thomas Meldahl Olsen, and Alejandro Escalona. 2023. "Holistic 3D Model of an Urban Area in Norway: An Integration of Geophysical, Geotechnical, Remote Sensing, and Geological Methods" Remote Sensing 15, no. 11: 2872. https://doi.org/10.3390/rs15112872
APA StyleGutierrez, I., Weibull, W., Watson, L., Olsen, T. M., & Escalona, A. (2023). Holistic 3D Model of an Urban Area in Norway: An Integration of Geophysical, Geotechnical, Remote Sensing, and Geological Methods. Remote Sensing, 15(11), 2872. https://doi.org/10.3390/rs15112872