
Citation: Zhang, Z.; Wang, H.; Cao,

K.; Li, Y. Using a Convolutional

Neural Network and Mid-Infrared

Spectral Images to Predict the Carbon

Dioxide Content of Ship Exhaust.

Remote Sens. 2023, 15, 2721.

https://doi.org/10.3390/rs15112721

Academic Editor: Chang-Keun Song

Received: 27 April 2023

Revised: 19 May 2023

Accepted: 22 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Communication

Using a Convolutional Neural Network and Mid-Infrared
Spectral Images to Predict the Carbon Dioxide Content of
Ship Exhaust
Zhenduo Zhang 1, Huijie Wang 1, Kai Cao 2 and Ying Li 1,*

1 Navigation College, Dalian Maritime University, Dalian 116026, China; zhangzhenduo@dlmu.edu.cn (Z.Z.);
17863088323g_z@dlmu.edu.cn (H.W.)

2 Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University,
Shanghai 200433, China; caokai@fudan.edu.cn

* Correspondence: yldmu@dlmu.edu.cn

Abstract: Strengthening regulations on carbon emissions from ships is important for ensuring that
China can achieve its dual carbon aims of reaching peak carbon emissions before 2030 and achieving
carbon neutrality before 2060. Currently, the primary means of monitoring ship exhaust emissions
are the sniffing method and non-imaging optical remote sensing; however, these methods suffer from
a low prediction efficiency and high cost. We developed a method for predicting the CO2 content
of ship exhaust that uses a convolutional neural network and mid-infrared spectral images. First,
a bench experiment was performed to synchronously obtain mid-wave infrared spectral images of
the ship exhaust plume and true values for the CO2 concentration from the online monitoring of
eight spectral channels. Then, the ResNet50 residual neural network, which is suitable for image
prediction tasks, was selected to predict the CO2 content. The preprocessed mid-infrared spectral
image of each channel and the corresponding true value for the CO2 content were input to the neural
network, and convolution was applied to extract the radiation characteristics. The neural network
then mapped the relationship between the true CO2 content and the radiation characteristics for each
channel, which it used to predict the CO2 content in the ship exhaust. The results demonstrated
that the predicted and true CO2 contents had a root mean square error of <0.2, mean absolute error
of <0.15, and mean absolute percentage error of <3.5 for all eight channels. The developed model
demonstrated a high prediction accuracy with one channel in particular demonstrating the best
performance. This study demonstrates that the method used for predicting the CO2 content of ship
exhaust based on convolutional neural networks and mid-infrared spectral images is feasible and has
reference significance for the remote monitoring of ship exhaust emissions.

Keywords: ship emissions; exhaust plume; CO2 concentration; convolutional neural network;
imaging detection

1. Introduction

Excessive greenhouse gas (GHG) emissions have worsened global warming and have
resulted in multiple natural disasters that threaten human lives and properties. The most
important GHG is CO2, which accounted for 76% of GHG emissions in 2015 [1]. Thus,
reducing CO2 emissions is an important step for addressing problems associated with
climate change. As the world’s second-largest economy, China proposed the dual carbon
goals of achieving a peak in CO2 emissions by 2030 and carbon neutrality by 2060 [2],
realizing the dual carbon aims require the joint efforts of all industries. The shipping
industry is responsible for ~2.89% of global CO2 emissions, 15% of NOX emissions, and
4–9% of SO2 emissions [3,4]. Note that >70% of the current international trade volume and
>80% of international trade are by maritime transportation [5,6]. In 2021, the International
Maritime Organization (IMO) adopted the target of reducing CO2 emissions from ships by
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2% annually from 2023 to 2026, i.e., a total decrease of 11% compared to 2019 [7]. Achieving
these aims requires both compliance from carriers and supervision by relevant departments.
Currently, countries generally use sniffing and optical remote sensing technologies to
monitor ship exhaust emissions [8–10]. The sniffing method usually involves mounting
measurement equipment on platforms such as helicopters or unmanned aerial vehicles
(UAVs) that then directly enter a ship’s exhaust plume for monitoring [11]. However,
this method requires the aircraft to maintain a flight distance of 25–50 m from the ship’s
chimney and stay in the plume for 15–20 s for effective measurement. The low-altitude
flight of the aircraft affects the normal navigation of the ship, and ensuring that the aircraft
is always in the optimal sampling area of the plume is difficult. Furthermore, it is difficult
for the detector to measure the exhaust plume at the port of the ship’s chimney, and the
temperature and concentration of gases are considerably lesser in the exhaust plume, which
increases their sensitivity to meteorological conditions [12,13]. However, optical remote
sensing can be used for long-distance detection without affecting the normal navigation
of a ship and includes technologies such as differential optical absorption spectroscopy
(DOAS), light detection and ranging (LIDAR), ultraviolet camera (UV-CAM), and thermal
infrared camera (TIR-CAM). These devices can be placed at fixed locations such as on land
or bridges, or on mobile platforms such as ships and aircraft [14–16]. DOAS, which can
be used to determine the gas composition and concentration, uses active laser emissions
to remotely detect the different narrowband absorption characteristics and absorption
intensities of gas molecules in the ship exhaust. However, this system receives the exhaust
gas concentration for the entire ship area, which cannot be imaged. It does not accurately
measure the exhaust gas concentration at the chimney mouth, and the detection accuracy is
not high [17]. LIDAR uses the emissions of multiple pulse signals of different wavelengths
to determine the desired gas concentration based on the known gas molecular absorption
coefficient and detected gas position information [18]. However, LIDAR detects local areas
of the exhaust plume without considering the diffusion of gas over time.

The limitations of the abovementioned monitoring methods can be overcome by com-
bining a convolutional neural network (CNN) with mid-infrared spectral images to predict
the CO2 content of the ship exhaust plume. CNNs are popular to process image data and
have seen rapid advances in computer vision for applications such as face recognition,
unmanned driving, Structural damage diagnosis and medical imaging [19–24]. Infrared
thermography [25] can be used to capture multiple images per second in the mid-infrared
band and obtain information about the entire exhaust plume of a ship while successfully
preserving the spatiotemporal variations in its characteristics. As a passive imaging de-
tection technology, it effectively avoids the disadvantages of DOAS and LIDAR systems,
which require expensive active laser-emitting equipment. This reduces the operating costs
and difficulties of infrared thermography and makes it suitable for remote detection. In-
frared thermography has been popular in fields such as target detection, volcanic gas
concentration inversion, and industrial detection [26–30]. Tombet et al. [31] used ther-
mal infrared multispectral imaging technology to observe and quantitatively analyze the
passive degassing of CO2 from the sulfur reservoir of Kilauea Volcano. However, their
approach is disadvantaged by the limited application scenarios. Platt et al. [32] used the
absorption and thermal emission spectra of digital cameras, thermal infrared cameras, and
ultraviolet cameras to obtain data on SO2, CO2, and other gases; however, they suggested
that radiation transfer issues could limit the accuracy of their approach. Cao et al. [33,34]
combined ultraviolet and infrared images using multi-task deep learning to retrieve the
SO2, CO2, and NO2 concentrations in ship exhaust as well as the sulfur content of ship fuel
based on the sulfur–nitrogen and sulfur–carbon ratios. The retrieval accuracy was relatively
high, but the proposed method was not confirmed under actual ship navigation conditions.

We herein propose a method that combines a CNN with mid-infrared spectral images
to predict the CO2 content of a ship’s exhaust plume. In a bench experiment, we used a
thermal infrared camera to image a ship’s exhaust plume and obtain mid-infrared spectral
image data in eight channels as well as online monitoring equipment to obtain the true
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values of the CO2 content in the chimney pipes. We then used the Resnet50 residual
neural network as a basis for developing a prediction model of the CO2 content. We
then performed experiments to evaluate the performance of the prediction model and
demonstrate the feasibility of our proposed method.

2. Materials and Methods
2.1. Bench Experiment

We performed a bench experiment using an online monitoring device to obtain the
true value for the CO2 concentration in the ship exhaust and a shore-based thermal infrared
camera to obtain infrared images of the exhaust plume. The experiment was then conducted
at different infrared wavelengths and host power. Figure 1 shows a schematic of the bench
experiment. As per Kirchhoff’s law of thermal radiation, the spectral radiation force varies
with the wavelength and temperature. We then used a thermal infrared camera (Telops
Corp., Montreal, QC, Canada) that shoots in eight spectral channels corresponding to
different wavelengths. Each shot generated eight datasets with different sensitivities to
CO2. We then set up the thermal infrared camera 50–60 m away from the ship’s chimney
to capture mid-infrared spectral images of the exhaust plume. Table 1 presents the eight
channels used in the experiment and their band information. Figure 2 shows a mid-infrared
spectral image obtained in eight channels.
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Figure 1. Schematic of the bench experiment.

Table 1. Eight channels used in the bench experiment and their band information.

Filter Wheel
Position Content OD Cut-In [µm] Cut-Out [µm] Average

Transmittance [%]

1 Band-Pass Filter BBP 3000 to 5000 N/A 3.0 5.0 N/A
2 Neutral Density filter OD 0.6 0.6 N/A N/A 25%
3 Band-Pass Filter BP 4665-240 nm N/A 4.545 4.785 N/A
4 Band-Pass Filter BP 4450-200 nm N/A 4.35 4.55 N/A
5 Band-Pass Filter BBP 3725 to 4245 N/A 3.725 4.245 N/A
6 Band-Pass Filter BBP 3670 to 4020 N/A 3.670 4.020 N/A
7 Band-Pass Filter BBP 3440 to 4075 N/A 3.440 4.075 N/A
8 Band-Pass Filter BBP 2900 to 3500 N/A 2.900 3.500 N/A
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Figure 2. Mid-infrared spectral image in eight channels.

The measurements were carried out in the engine laboratory conditions using a marine
engine. Figure 3 shows the MAN B&W 6S35ME-B9 diesel engine used in the experiment,
which is an electronically controlled two-stroke six-cylinder crosshead marine main engine
having a rated power of 3400 kW, rated rotational speed of 142 rpm, and maximum gas
flow of 30,000 kg/h. We used marine oil obtained in the experiment by mixing RME with
2.5% m/m FSC and MGO with 0.1% m/m FSC. If the ship fuel is unchanged, the operating
conditions of the main engine significantly affect the CO2 emissions of the ship exhaust.
Therefore, the engine power was varied within a range of 0–100% to generate 13 different
stable operating conditions, as listed in Table 2. We obtained different concentrations of
CO2 emissions from ship exhaust under different stable operating conditions. We used
online monitoring equipment (RJ-CEMD) to obtain the true values of the CO2 content in
the ship exhaust plume and applied flue gas dilution sampling technology to automatically
and continuously measure the CO2 content in the ship exhaust and other environmental
parameters such as the content, temperature, and pressure of NO2, SO2, and other polluting
gases. The sampling probe of the online monitoring equipment was installed in a perforated
pipe serving as the chimney of the ship, and the exhaust gas was directly extracted. Figure 4
shows the online monitoring equipment and sampling probes used in the experiment.
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Table 2. Operating conditions of the engine used in the experiment.

Number 1 2 3 4 5 6 7 8 9 10 11 12 13

Power percentage (%) 0 5 10 15 20 25 30 40 50 60 80 90 100
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The experiment was performed on two clear and cloudless days, and ~200,000 mid-
infrared spectral images were collected in total with different wavelengths and under
different operating conditions. Data preprocessing to filter out invalid and redundant data
retained 190,844 mid-infrared spectral images with a size of 224 × 224 pixels, in addition to
the corresponding true values for the power, time, band, and CO2 content of each image.

2.2. Prediction Model

We selected a CNN as the basis of the design for our prediction model of the CO2
content. Using the powerful functions of the CNN for image feature extraction, we can
extract the radiation characteristics from mid-infrared spectral images of the exhaust plume
and map the relationship between a mid-infrared spectral image and the true value of the
CO2 content to accurately predict the CO2 content in the ship exhaust.

Owing to the working principle of a CNN, a large number of weights are generated by
each layer. Therefore, training a network requires large amounts of time and computational
resources. To solve this limitation, we introduced transfer learning to the network design,
which involves applying a mature network model trained on large datasets to a task. For
the network to work on our data, it is necessary to remove the top layer from the loaded
pretraining model, set the weight of the network structure to the weight of the image
network, and freeze the pretraining layer to ensure that only the input data participate
in the training to avoid losing the features they have learned during the training process.
Based on our available computational resources and a comparison of existing mature
CNNs, we selected Residual Network 50 (ResNet50) for our experiments. ResNet50 is
characterized by the addition of residual learning to a conventional CNN to solve the
problems of gradient dispersion and reduced accuracy of training sets for deep networks.
Figure 5 shows a structural diagram of the CNN used for our CO2 content prediction model.
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The core unit of ResNet50 is a residual block, for which Figure 6 shows a schematic [22].
The core operation of a residual block is to add the output of the previous layer (or layers)
to the calculation of the current layer and to input the sum in the activation function as the
output of the current layer. This is expressed as follows:

y = F(x, Wi) + x, F = W2σ(W1x) (1)

y = F(x, Wi) + Wsx, F = W2σ(W1x) (2)

where x is the input, F(x) is the output of the residual block before the activation function
of the second layer, Wi is the weight, and σ is the activation function of the rectified linear
unit (ReLU). In Equation (1), the dimensions of the terms are equal, and therefore x and
F(x) can be added element by element. If the dimensions are different, then Equation (2) is
used, where Ws is needed for the linear mapping of x.
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The residual block primarily works in the convolutional layer, which is the key to
learning the radiation characteristics from mid-infrared spectroscopy images of a ship’s
exhaust plume. The radiation characteristics are extracted from the sliding convolution
operation of the convolution kernel on an image of the exhaust plume. The convolutional
layer of the network has five stages in which each stage contains different combinations
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of two basic residual blocks: Conv Block (CB) and Identity Block (IB). CBs change the
dimensions of the input and output (channel number and size), and they cannot be contin-
uously concatenated to change the dimensions of the network. IBs can be concatenated
with the same input and output dimensions (channel number and size) to deepen the
network. The input mid-infrared spectral image data undergoes five stages of convolution
operations in the convolutional layer and outputs a large amount of multidimensional data.
We can use the Flatten function to compress the multidimensional data output from the
convolutional layer into one-dimensional data and input it to the fully connected layer.
Then, backpropagation of the network inversely generates the predicted CO2 content of the
ship’s exhaust plume. To prevent overfitting, we can use the Dropout function to randomly
deactivate 50% of the neurons, which simplifies the network structure and increases the
prediction accuracy.

3. Results
3.1. Data Processing

A three-channel image of 224 × 224 pixels was set as the ResNet50 input. To meet
the input requirements, we performed preprocessing work such as false color setting and
noise reduction on the obtained single-channel infrared spectral images. We used the
built-in tools Pandas and Numpy in Python (Python 3.12. 0a1) to preprocess the obtained
experimental data and establish a relationship between the mid-wave infrared spectral
image data of the ship’s exhaust plume and the true CO2 content based on time information.
We set the mean square error (MSE) as the loss function and trained the model by using
Adam as the optimizer. The learning rate was set to a low value of 0.0001 to accelerate
the convergence of the fully connected layer. The mean absolute error (MAE) and mean
absolute percentage error (MAPE) were selected as evaluation functions for the trained
model. The collected eight-channel data were divided into training and test sets at a ratio
of 9:1.

3.2. Analysis

The trained model was applied to predicting the CO2 content based on the eight
channels of each infrared image. The RMSE, MAE, and MAPE were used as evaluation
indicators of the prediction accuracy. Figure 7 compares the true and predicted values for
the CO2 content sorted by the magnitude of the true value. Among these, the horizontal axis
describes the data sequence number of each channel sorted by CO2 concentration, whereas
the vertical axis represents the CO2 concentration value. Visual comparison demonstrates
that the distribution of predicted values was relatively dispersed in channels FW#1, FW#2,
and FW#4, and the error between the predicted and true values was considerably greater
in these channels than in the other channels. The RMSE, MAE, and MAPE for these
channels were higher than for the other five channels, which confirmed the lower prediction
accuracy. Comparative analysis of the eight datasets demonstrated that channel FW#6
(band 3.670–4.020 µm) resulted in the best prediction accuracy with the lowest RMSE, MAE,
and MAPE, followed by channel FW#8. Although the prediction results varied from band
to band, the overall prediction accuracy was good with all channels having an RMSE of
<0.2 vol.%, MAE of <0.15 vol.%, and MAPE of <3.5%. These results indicate that the error
between the predicted and actual values for the CO2 content was small, which demonstrates
the high accuracy of the prediction model and feasibility of our proposed method.
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4. Discussion

Most gases have radiation properties, among which triatomic, multi-atomic, and
diatomic gases with asymmetric molecular structures have strong radiation and absorption
capabilities. The exhaust plume of a ship contains large amounts of water vapor and
CO2, in addition to nitrogen oxides (NOX), sulfur oxides (SOX), carbon monoxide (CO),
hydrocarbons (HC), particulate matter (PM), and other pollutants. At high temperatures,
the absorption and radiation of the multiple gas components interfere with each other. This
makes distinguishing the radiation energy emitted by CO2 in the ship exhaust difficult.
Infrared images are obtained by detecting the energy radiated outward from an object and
represent the distribution of infrared radiation in the acquired space. The temperature and
radiation distributions of different objects have their own characteristics that affect their
energy distribution in infrared images. In contrast to the conventional approach of using
optical remote sensing to monitor exhaust gas, we chose to use a thermal infrared camera
to capture the entire exhaust plume. We then used a CNN to extract features from the
infrared image, which can be used by the prediction model to predict the CO2 content. This
ensures a high prediction accuracy and simplified learning process. A comparative analysis
of the radiation curves of multiple gas components in the exhaust plume demonstrated
that certain gas components such as NO2 had no or weak radiation phenomena in channel
FW#6. Thus, they had less effect on this band, which improved the prediction accuracy.
Furthermore, channel FW#8 was located in a band with weak radiation interference from
SO2, which improved the prediction accuracy. This explains the high prediction accuracy
with channel FW#8, which was inferior only to that of channel FW#6.

This experiment involved simulating the emissions of a ship’s exhaust plume, which
limited the control variable to the power of the main engine. Because the ship power can
considerably vary under actual operating conditions, further experiments are necessary to
collect continuous values for the power of the main engine and input them into the model
for learning and updating to realize practical application of the proposed method. The
experiment was conducted on sunny and cloudy days, and we ignored the possible effects
of noise generated by the skylight background on the monitoring images of the exhaust
plumes during actual navigation. The effects of an overcast sky, rain, fog, and other adverse
weather conditions should be considered for infrared image acquisition. However, our
proposed method presents a new approach to monitoring the CO2 content of ship exhaust.
The results demonstrate the feasibility of combining infrared spectral images and a CNN to
predict the CO2 concentration in the exhaust plume for monitoring the carbon emissions
of ships. Moreover, compared with other commonly used monitoring methods, such as
sniffing [35] and DOAS [36], it reduces the difficulty of monitoring while ensuring high
inversion accuracy.

5. Conclusions

Under the measurement conditions of marine main engine in the laboratory, we
performed a bench experiment to collect data from a ship’s exhaust plume and used a
thermal infrared camera and online monitoring equipment to obtain eight channels of
mid-infrared spectral images and the true CO2 content at the corresponding time. A CO2
content prediction model was established based on ResNet50, where preprocessed mid-
infrared spectral images of each channel and the corresponding real-time CO2 content data
were simultaneously input. The radiation characteristics of mid-infrared spectral images
were extracted by convolution, and the relationship between the true CO2 content and
the radiation characteristics of the exhaust plume were mapped using deep learning. The
trained model was then used to predict the CO2 content in the ship exhaust. Experimental
results demonstrated that the error between the predicted and true CO2 content was small
for all eight channels, which demonstrated the high prediction accuracy of the prediction
model. These results demonstrate the feasibility of our proposed method and that infrared
images can be used to predict the CO2 content of an exhaust plume, which can contribute
to the development of a new approach to monitoring and regulating the carbon emissions



Remote Sens. 2023, 15, 2721 10 of 11

of ships. In the future, this method will be used to predict the concentration of other gases
in ship exhaust and further explore the prediction of sulfur content in ship fuel.
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