Exploring the Spatiotemporal Variation in Light-Absorbing Aerosols and Its Relationship with Meteorology over the Hindukush–Himalaya–Karakoram Region
Abstract
:1. Introduction
2. Study Area and Meteorological Conditions
2.1. Study Area
2.2. Local Meteorology
3. Data Sets and Methods
3.1. Modern-Era Retrospective Analysis for Research and Applications Version 2
3.2. Ozone Monitoring Instrument Analysis
3.3. Air Mass Trajectory Analysis
4. Results and Discussions
4.1. Temporal Variation in Surface Mass Concentration of Light-Absorbing Aerosols
4.2. Spatial Variation in Surface Mass Concentration of Light-Absorbing Aerosols
4.3. Temporal Variation in Optical Properties of Light-Absorbing Aerosols
4.4. Spatial Variation in Optical Properties of Light-Absorbing Aerosols
4.5. Relationships between Mass Concentration, Optical, and Meteorological Parameters
4.6. Long-Range Aerosol Transportation over the Study Area
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate Forcing by Anthropogenic Aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lv, Q.; Zhang, M.; Wang, T.; Kawamoto, K.; Chen, S.; Zhang, B. Effects of Atmospheric Dynamics and Aerosols on the Fraction of Supercooled Water Clouds. Atmos. Chem. Phys. 2017, 17, 1847–1863. [Google Scholar] [CrossRef]
- Zeb, B.; Alam, K.; Sorooshian, A.; Chishtie, F.; Ahmad, I.; Bibi, H. Temporal Characteristics of Aerosol Optical Properties over the Glacier Region of Northern Pakistan. J. Atmos. Sol.-Terr. Phys. 2019, 186, 35–46. [Google Scholar] [CrossRef]
- Panicker, A.S.; Lee, D.I.; Kumkar, Y.V.; Kim, D.; Maki, M.; Uyeda, H. Decadal Climatological Trends of Aerosol Optical Parameters over Three Different Environments in South Korea. Int. J. Climatol. 2013, 33, 1909–1916. [Google Scholar] [CrossRef]
- Liu, J.; Du, Z.; Gordon, M.; Liang, L.; Ma, Y.; Zheng, M.; Cheng, Y.; He, K. The Characteristics of Carbonaceous Aerosol in Beijing during a Season of Transition. Chemosphere 2018, 212, 1010–1019. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Cong, Z.; Schmale, J.; Sprenger, M.; Li, C.; Yang, W.; Gao, T.; Sillanpää, M.; Li, X.; et al. Light-Absorbing Impurities Enhance Glacier Albedo Reduction in the Southeastern Tibetan Plateau. J. Geophys. Res. 2017, 122, 6915–6933. [Google Scholar] [CrossRef]
- Skiles, S.M.; Flanner, M.; Cook, J.M.; Dumont, M.; Painter, T.H. Radiative Forcing by Light-Absorbing Particles in Snow. Nat. Clim. Chang. 2018, 8, 964–971. [Google Scholar] [CrossRef]
- Moosmüller, H.; Chakrabarty, R.K.; Arnott, W.P. Aerosol Light Absorption and Its Measurement: A Review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 844–878. [Google Scholar] [CrossRef]
- Warren, S. A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols. Artic. J. Atmos. Sci. 1980, 37, 2734–2745. [Google Scholar] [CrossRef]
- Doherty, S.J.; Grenfell, T.C.; Forsström, S.; Hegg, D.L.; Brandt, R.E.; Warren, S.G. Observed Vertical Redistribution of Black Carbon and Other Insoluble Light-Absorbing Particles in Melting Snow. J. Geophys. Res. Atmos. 2013, 118, 5553–5569. [Google Scholar] [CrossRef]
- Hansen, J.; Nazarenko, L. Soot Climate Forcing via Snow and Ice Albedos. Proc. Natl. Acad. Sci. USA 2004, 101, 423–428. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Efficacy of Climate Forcings. J. Geophys. Res. D Atmos. 2005, 110, 1–45. [Google Scholar] [CrossRef]
- Horvath, H. Atmospheric Light Absorption-A Review. Atmos. Environ. Part A Gen. Top. 1993, 27, 293–317. [Google Scholar] [CrossRef]
- Sanap, S.D.; Pandithurai, G. The Effect of Absorbing Aerosols on Indian Monsoon Circulation and Rainfall: A Review. Atmos. Res. 2015, 164–165, 318–327. [Google Scholar] [CrossRef]
- Nasir, J.; Zeb, B.; Sorooshian, A.; Mansha, M.; Alam, K.; Ahmad, I.; Rizvi, H.H.; Shafiq, M. Spatio-Temporal Variations of Absorbing Aerosols and Their Relationship with Meteorology over Four High Altitude Sites in Glaciated Region of Pakistan. J. Atmos. Sol.-Terr. Phys. 2019, 190, 84–95. [Google Scholar] [CrossRef]
- Goelles, T.; Bøggild, C.E.; Greve, R. Ice Sheet Mass Loss Caused by Dust and Black Carbon Accumulation. Cryosphere 2015, 9, 1845–1856. [Google Scholar] [CrossRef]
- Di Mauro, B.; Fava, F.; Ferrero, L.; Garzonio, R.; Baccolo, G.; Delmonte, B.; Colombo, R. Mineral Dust Impact on Snow Radiative Properties in the European Alps Combining Ground, UAV, and Satellite Observations. J. Geophys. Res. 2015, 120, 6080–6097. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Kang, L.; Chen, S.; Huang, J.; Zhao, S.; Ma, X.; Yuan, T.; Zhang, X.; Xie, T. The Spatial and Temporal Distributions of Absorbing Aerosols over East Asia. Remote Sens. 2017, 9, 1050. [Google Scholar] [CrossRef]
- Xu, B.; Cao, J.; Joswiak, D.R.; Liu, X.; Zhao, H.; He, J. Post-Depositional Enrichment of Black Soot in Snow-Pack and Accelerated Melting of Tibetan Glaciers. Environ. Res. Lett. 2012, 7, 014022. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Ménégoz, M.; Krinner, G.; Balkanski, Y.; Cozic, A.; Boucher, O.; Ciais, P. Boreal and Temperate Snow Cover Variations Induced by Black Carbon Emissions in the Middle of the 21st Century. Cryosphere 2013, 7, 537–554. [Google Scholar] [CrossRef]
- Menon, S.; Koch, D.; Beig, G.; Sahu, S.; Fasullo, J.; Orlikowski, D. Atmospheric Chemistry and Physics Black Carbon Aerosols and the Third Polar Ice Cap. Atmos. Chem. Phys. 2010, 10, 4559–4571. [Google Scholar] [CrossRef]
- Gul, C.; Praveen Puppala, S.; Kang, S.; Adhikary, B.; Zhang, Y.; Ali, S.; Li, Y.; Li, X. Concentrations and Source Regions of Light-Absorbing Particles in Snow/Ice in Northern Pakistan and Their Impact on Snow Albedo. Atmos. Chem. Phys. 2018, 18, 4891–5000. [Google Scholar] [CrossRef]
- Zeb, B.; Alam, K.; Nasir, J.; Mansha, M.; Ahmad, I.; Bibi, S.; Malik, S.M.; Ali, M. Black Carbon Aerosol Characteristics and Radiative Forcing over the High Altitude Glacier Region of Himalaya-Karakorum-Hindukush. Atmos. Environ. 2020, 238, 117711. [Google Scholar] [CrossRef]
- Jilani, R.; Haq, M.; Naseer, A. A Study of Glaciers in Northern Pakistan. 2007. Available online: https://www.eorc.jaxa.jp/ALOS/conf/Proc_PIsymp2007/contents/proceedings/Land_Snow_and_Ice/LSI06.pdf (accessed on 10 February 2017).
- Ahmad, M.; Alam, K.; Tariq, S.; Blaschke, T. Contrasting Changes in Snow Cover and Its Sensitivity to Aerosol Optical Properties in Hindukush-Karakoram-Himalaya Region. Sci. Total Environ. 2020, 699, 134356. [Google Scholar] [CrossRef] [PubMed]
- Jegede, O.O. Variation of Rainfall and Humidity in Nigeria. IISTE J. Environ. Earth Sci. 2014, 4, 29–37. [Google Scholar]
- Millet, T.; Bencherif, H.; Bounhir, A.; Bègue, N.; Lamy, K.; Ranaivombola, M.; Benkhaldoun, Z.; Portafaix, T.; Duflot, V. Aerosol Distributions and Transport over Southern Morocco from Ground-Based and Satellite Observations (2004–2020). Atmosphere 2022, 13, 923. [Google Scholar] [CrossRef]
- Colarco, P.; Da Silva, A.; Chin, M.; Diehl, T. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth. J. Geophys. Res. Atmos. 2010, 115, D14. [Google Scholar] [CrossRef]
- Buchard, V.; da Silva, A.M.; Randles, C.A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D. Evaluation of the Surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmos. Environ. 2016, 125, 100–111. [Google Scholar] [CrossRef]
- Solanki, R.; Pathak, K.N. Study of Black Carbon (BC) Mass Concentration Variation at a Coastal Region (Surat). Environ. Sci. Proc. 2021, 4, 16. [Google Scholar] [CrossRef]
- Sati, A.P.; Mohan, M. Analysis of Air Pollution during a Severe Smog Episode of November 2012 and the Diwali Festival over Delhi, India. Int. J. Remote Sens. 2014, 35, 6940–6954. [Google Scholar] [CrossRef]
- Tanskanen, A.; Lindfors, A.; Määttä, A.; Krotkov, N.; Herman, J.; Kaurola, J.; Koskela, T.; Lakkala, K.; Fioletov, V.; Bernhard, G.; et al. Validation of Daily Erythemal Doses from Ozone Monitoring Instrument with Ground-Based UV Measurement Data. J. Geophys. Res. Atmos. 2007, 112, D24. [Google Scholar] [CrossRef]
- Chung, C.E.; Ramanathan, V.; Decremer, D. Observationally Constrained Estimates of Carbonaceous Aerosol Radiative Forcing. Proc. Natl. Acad. Sci. USA 2012, 109, 11624–11629. [Google Scholar] [CrossRef]
- ul Haq, E.; Alam, K.; Bibi, S.; Roy, A. High Concentration of Black Carbon in Northern Pakistan: Characteristics, Source Apportionment and Emission Source Regions. Atmos. Environ. 2023, 293, 119475. [Google Scholar] [CrossRef]
- Fang, C.; Xue, K.; Li, J.; Wang, J. Characteristics and Weekend Effect of Air Pollution in Eastern Jilin Province. Atmosphere 2022, 13, 681. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, T.; Wang, R.; Zhang, L. Backward Trajectory and Multifractal Analysis of Air Pollution in Zhengzhou Region of China. Math. Probl. Eng. 2022, 2022, 2226565. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-Based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Sandeep, K.; Negi, R.S.; Panicker, A.S.; Gautam, A.S.; Bhist, D.S.; Beig, G.; Murthy, B.S.; Latha, R.; Singh, S.; Das, S. Characteristics and Variability of Carbonaceous Aerosols over a Semi Urban Location in Garhwal Himalayas. Asia-Pacific J. Atmos. Sci. 2020, 56, 455–465. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, S.; Bai, L.; Lu, X.; Wang, C.; Gu, X.; Li, Y. Establishment and Evaluation of Anthropogenic Black and Organic Carbon Emissions over Central Plain, China. Atmos. Environ. 2020, 226, 117406. [Google Scholar] [CrossRef]
- Li, Y.; Kang, S.; Zhang, X.; Li, C.; Chen, J.; Qin, X.; Shao, L.; Tian, L. Dust Dominates the Summer Melting of Glacier Ablation Zones on the Northeastern Tibetan Plateau. Sci. Total Environ. 2023, 856, 159214. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Dai, T.; Wang, H.; He, B.; Bao, Q.; Liu, Y.; Shi, G. Aerosol Characteristics over the Tibetan Plateau Simulated with a Coupled Aerosol–Climate Model (FGOALS-F3-L). Atmos. Ocean. Sci. Lett. 2021, 14, 100031. [Google Scholar] [CrossRef]
- Sahu, S.K.; Beig, G.; Sharma, C. Decadal Growth of Black Carbon Emissions in India. Geophys. Res. Lett. 2008, 35, 2807. [Google Scholar] [CrossRef]
- Sakerin, S.M.; Kabanov, D.M.; Kopeikin, V.M.; Kruglinsky, I.A.; Novigatsky, A.N.; Pol’kin, V.V.; Shevchenko, V.P.; Turchinovich, Y.S. Spatial Distribution of Black Carbon Concentrations in the Atmosphere of the North Atlantic and the European Sector of the Arctic Ocean. Atmosphere 2021, 12, 949. [Google Scholar] [CrossRef]
- Lin, P.; Hu, M.; Deng, Z.; Slanina, J.; Han, S.; Kondo, Y.; Takegawa, N.; Miyazaki, Y.; Zhao, Y.; Sugimoto, N. Seasonal and Diurnal Variations of Organic Carbon in PM2.5in Beijing and the Estimation of Secondary Organic Carbon. J. Geophys. Res. Atmos. 2009, 114, 1–14. [Google Scholar] [CrossRef]
- Fattahi Masrour, P.; Rezazadeh, M. Spatio-Temporal Distribution of Various Types of Dust Events in the Middle East during the Period 1996-2015. J. Earth Sp. Phys. 2022, 47, 231–248. [Google Scholar] [CrossRef]
- Denier van der Gon, H.; Jozwicka, M.; Hendriks, E.; Gondwe, M.; Schaap, M. Mineral Dust as a Component of Particulate Matter; PBL Netherlands Environment Assessment Agency: Bilthoven, The Netherlands, 2010; Volume 160. [Google Scholar]
- Sheoran, R.; Dumka, U.C.; Kaskaoutis, D.G.; Grivas, G.; Ram, K.; Prakash, J.; Hooda, R.K.; Tiwari, R.K.; Mihalopoulos, N. Chemical Composition and Source Apportionment of Total Suspended Particulate in the Central Himalayan Region. Atmosphere 2021, 12, 1228. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Che, H.; Xia, X.; Zhao, H.; Wang, H.; Gui, K.; Zheng, Y.; Sun, T.; Li, X.; et al. Aerosol Optical Properties over an Urban Site in Central China Determined Using Ground-Based Sun Photometer Measurements. Aerosol Air Qual. Res. 2019, 19, 620–638. [Google Scholar] [CrossRef]
- Zhao, H.; Che, H.; Gui, K.; Ma, Y.; Wang, Y.; Wang, H.; Zheng, Y.; Zhang, X. Interdecadal Variation in Aerosol Optical Properties and Their Relationships to Meteorological Parameters over Northeast China from 1980 to 2017. Chemosphere 2020, 247, 125737. [Google Scholar] [CrossRef]
- Sonwani, S.; Saxena, P.; Shukla, A. Carbonaceous Aerosol Characterization and Their Relationship With Meteorological Parameters During Summer Monsoon and Winter Monsoon at an Industrial Region in Delhi, India. Earth Sp. Sci. 2021, 8, e2020EA001303. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. Int. J. Environ. Res. Public Health 2017, 14, 1510. [Google Scholar] [CrossRef]
- Toledano, C.; Cachorro, V.E.; De Frutos, A.M.; Torres, B.; Berjón, A.; Sorribas, M.; Stone, R.S. Airmass Classification and Analysis of Aerosol Types at El Arenosillo (Spain). J. Appl. Meteorol. Climatol. 2009, 48, 962–981. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Kaskaoutis, D.G.; Chen, X.; Mamadjanov, Y.; Tan, L. Atmospheric Dust Dynamics in Southern Central Asia: Implications for Buildup of Tajikistan Loess Sediments. Atmos. Res. 2019, 229, 74–85. [Google Scholar] [CrossRef]
- Thomas, D.C.; Kidd, F.J. On the Margins: Enduring Pre-Modern Water Management Strategies In and Around the Registan Desert, Afghanistan. J. F. Archaeol. 2017, 42, 29–42. [Google Scholar] [CrossRef]
Name | Covered Area (km2) | Population | Population Density |
---|---|---|---|
Astore | 5411 | 100,000 | 18.48 |
Diamir | 7234 | 270,000 | 37.32 |
Chanche | 8531 | 160,000 | 18.76 |
Ghizer | 12,381 | 170,000 | 13.73 |
Gilgit | 4208 | 290,000 | 68.92 |
Hunza Nagar | 14,246 | 120,000 | 8.42 |
Skardu | 18,700 | 380,000 | 20.32 |
Chitral | 14,850 | 447,625 | 30.14 |
Swat | 5337 | 2,308,624 | 432.6 |
Dir | 3699 | 947,401 | 256.1 |
Kohistan | 7492 | 784,711 | 104.7 |
DD-MM-YY | AOD | DD-MM-YY | AOD |
---|---|---|---|
20-06-05 | 0.923 | 05-05-14 | 0.975 |
25-06-06 | 0.927 | 07-07-15 | 0.952 |
13-08-07 | 0.951 | 23-06-16 | 0.930 |
12-03-08 | 0.972 | 24-05-17 | 0.916 |
11-08-09 | 0.983 | 07-08-18 | 0.949 |
05-09-10 | 0.929 | 20-07-19 | 0.992 |
20-08-11 | 0.981 | 26-07-20 | 0.837 |
14-07-12 | 0.980 | 11-07-21 | 0.884 |
25-06-13 | 0.898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.S.A.; Huang, Z.; ul Haq, E.; Alam, K. Exploring the Spatiotemporal Variation in Light-Absorbing Aerosols and Its Relationship with Meteorology over the Hindukush–Himalaya–Karakoram Region. Remote Sens. 2023, 15, 2527. https://doi.org/10.3390/rs15102527
Shah SSA, Huang Z, ul Haq E, Alam K. Exploring the Spatiotemporal Variation in Light-Absorbing Aerosols and Its Relationship with Meteorology over the Hindukush–Himalaya–Karakoram Region. Remote Sensing. 2023; 15(10):2527. https://doi.org/10.3390/rs15102527
Chicago/Turabian StyleShah, Syed Shakeel Ahmad, Zhongwei Huang, Ehtiram ul Haq, and Khan Alam. 2023. "Exploring the Spatiotemporal Variation in Light-Absorbing Aerosols and Its Relationship with Meteorology over the Hindukush–Himalaya–Karakoram Region" Remote Sensing 15, no. 10: 2527. https://doi.org/10.3390/rs15102527