Exploring the Spatiotemporal Variation in Light-Absorbing Aerosols and Its Relationship with Meteorology over the Hindukush–Himalaya–Karakoram Region
Abstract
1. Introduction
2. Study Area and Meteorological Conditions
2.1. Study Area
2.2. Local Meteorology
3. Data Sets and Methods
3.1. Modern-Era Retrospective Analysis for Research and Applications Version 2
3.2. Ozone Monitoring Instrument Analysis
3.3. Air Mass Trajectory Analysis
4. Results and Discussions
4.1. Temporal Variation in Surface Mass Concentration of Light-Absorbing Aerosols
4.2. Spatial Variation in Surface Mass Concentration of Light-Absorbing Aerosols
4.3. Temporal Variation in Optical Properties of Light-Absorbing Aerosols
4.4. Spatial Variation in Optical Properties of Light-Absorbing Aerosols
4.5. Relationships between Mass Concentration, Optical, and Meteorological Parameters
4.6. Long-Range Aerosol Transportation over the Study Area
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A.; Hansen, J.E.; Hofmann, D.J. Climate Forcing by Anthropogenic Aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lv, Q.; Zhang, M.; Wang, T.; Kawamoto, K.; Chen, S.; Zhang, B. Effects of Atmospheric Dynamics and Aerosols on the Fraction of Supercooled Water Clouds. Atmos. Chem. Phys. 2017, 17, 1847–1863. [Google Scholar] [CrossRef][Green Version]
- Zeb, B.; Alam, K.; Sorooshian, A.; Chishtie, F.; Ahmad, I.; Bibi, H. Temporal Characteristics of Aerosol Optical Properties over the Glacier Region of Northern Pakistan. J. Atmos. Sol.-Terr. Phys. 2019, 186, 35–46. [Google Scholar] [CrossRef]
- Panicker, A.S.; Lee, D.I.; Kumkar, Y.V.; Kim, D.; Maki, M.; Uyeda, H. Decadal Climatological Trends of Aerosol Optical Parameters over Three Different Environments in South Korea. Int. J. Climatol. 2013, 33, 1909–1916. [Google Scholar] [CrossRef][Green Version]
- Liu, J.; Du, Z.; Gordon, M.; Liang, L.; Ma, Y.; Zheng, M.; Cheng, Y.; He, K. The Characteristics of Carbonaceous Aerosol in Beijing during a Season of Transition. Chemosphere 2018, 212, 1010–1019. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Cong, Z.; Schmale, J.; Sprenger, M.; Li, C.; Yang, W.; Gao, T.; Sillanpää, M.; Li, X.; et al. Light-Absorbing Impurities Enhance Glacier Albedo Reduction in the Southeastern Tibetan Plateau. J. Geophys. Res. 2017, 122, 6915–6933. [Google Scholar] [CrossRef][Green Version]
- Skiles, S.M.; Flanner, M.; Cook, J.M.; Dumont, M.; Painter, T.H. Radiative Forcing by Light-Absorbing Particles in Snow. Nat. Clim. Chang. 2018, 8, 964–971. [Google Scholar] [CrossRef]
- Moosmüller, H.; Chakrabarty, R.K.; Arnott, W.P. Aerosol Light Absorption and Its Measurement: A Review. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 844–878. [Google Scholar] [CrossRef]
- Warren, S. A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols. Artic. J. Atmos. Sci. 1980, 37, 2734–2745. [Google Scholar] [CrossRef]
- Doherty, S.J.; Grenfell, T.C.; Forsström, S.; Hegg, D.L.; Brandt, R.E.; Warren, S.G. Observed Vertical Redistribution of Black Carbon and Other Insoluble Light-Absorbing Particles in Melting Snow. J. Geophys. Res. Atmos. 2013, 118, 5553–5569. [Google Scholar] [CrossRef]
- Hansen, J.; Nazarenko, L. Soot Climate Forcing via Snow and Ice Albedos. Proc. Natl. Acad. Sci. USA 2004, 101, 423–428. [Google Scholar] [CrossRef][Green Version]
- Hansen, J.; Sato, M.; Ruedy, R.; Nazarenko, L.; Lacis, A.; Schmidt, G.A.; Russell, G.; Aleinov, I.; Bauer, M.; Bauer, S.; et al. Efficacy of Climate Forcings. J. Geophys. Res. D Atmos. 2005, 110, 1–45. [Google Scholar] [CrossRef]
- Horvath, H. Atmospheric Light Absorption-A Review. Atmos. Environ. Part A Gen. Top. 1993, 27, 293–317. [Google Scholar] [CrossRef]
- Sanap, S.D.; Pandithurai, G. The Effect of Absorbing Aerosols on Indian Monsoon Circulation and Rainfall: A Review. Atmos. Res. 2015, 164–165, 318–327. [Google Scholar] [CrossRef]
- Nasir, J.; Zeb, B.; Sorooshian, A.; Mansha, M.; Alam, K.; Ahmad, I.; Rizvi, H.H.; Shafiq, M. Spatio-Temporal Variations of Absorbing Aerosols and Their Relationship with Meteorology over Four High Altitude Sites in Glaciated Region of Pakistan. J. Atmos. Sol.-Terr. Phys. 2019, 190, 84–95. [Google Scholar] [CrossRef]
- Goelles, T.; Bøggild, C.E.; Greve, R. Ice Sheet Mass Loss Caused by Dust and Black Carbon Accumulation. Cryosphere 2015, 9, 1845–1856. [Google Scholar] [CrossRef][Green Version]
- Di Mauro, B.; Fava, F.; Ferrero, L.; Garzonio, R.; Baccolo, G.; Delmonte, B.; Colombo, R. Mineral Dust Impact on Snow Radiative Properties in the European Alps Combining Ground, UAV, and Satellite Observations. J. Geophys. Res. 2015, 120, 6080–6097. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Kang, L.; Chen, S.; Huang, J.; Zhao, S.; Ma, X.; Yuan, T.; Zhang, X.; Xie, T. The Spatial and Temporal Distributions of Absorbing Aerosols over East Asia. Remote Sens. 2017, 9, 1050. [Google Scholar] [CrossRef][Green Version]
- Xu, B.; Cao, J.; Joswiak, D.R.; Liu, X.; Zhao, H.; He, J. Post-Depositional Enrichment of Black Soot in Snow-Pack and Accelerated Melting of Tibetan Glaciers. Environ. Res. Lett. 2012, 7, 014022. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Ménégoz, M.; Krinner, G.; Balkanski, Y.; Cozic, A.; Boucher, O.; Ciais, P. Boreal and Temperate Snow Cover Variations Induced by Black Carbon Emissions in the Middle of the 21st Century. Cryosphere 2013, 7, 537–554. [Google Scholar] [CrossRef][Green Version]
- Menon, S.; Koch, D.; Beig, G.; Sahu, S.; Fasullo, J.; Orlikowski, D. Atmospheric Chemistry and Physics Black Carbon Aerosols and the Third Polar Ice Cap. Atmos. Chem. Phys. 2010, 10, 4559–4571. [Google Scholar] [CrossRef][Green Version]
- Gul, C.; Praveen Puppala, S.; Kang, S.; Adhikary, B.; Zhang, Y.; Ali, S.; Li, Y.; Li, X. Concentrations and Source Regions of Light-Absorbing Particles in Snow/Ice in Northern Pakistan and Their Impact on Snow Albedo. Atmos. Chem. Phys. 2018, 18, 4891–5000. [Google Scholar] [CrossRef][Green Version]
- Zeb, B.; Alam, K.; Nasir, J.; Mansha, M.; Ahmad, I.; Bibi, S.; Malik, S.M.; Ali, M. Black Carbon Aerosol Characteristics and Radiative Forcing over the High Altitude Glacier Region of Himalaya-Karakorum-Hindukush. Atmos. Environ. 2020, 238, 117711. [Google Scholar] [CrossRef]
- Jilani, R.; Haq, M.; Naseer, A. A Study of Glaciers in Northern Pakistan. 2007. Available online: https://www.eorc.jaxa.jp/ALOS/conf/Proc_PIsymp2007/contents/proceedings/Land_Snow_and_Ice/LSI06.pdf (accessed on 10 February 2017).
- Ahmad, M.; Alam, K.; Tariq, S.; Blaschke, T. Contrasting Changes in Snow Cover and Its Sensitivity to Aerosol Optical Properties in Hindukush-Karakoram-Himalaya Region. Sci. Total Environ. 2020, 699, 134356. [Google Scholar] [CrossRef] [PubMed]
- Jegede, O.O. Variation of Rainfall and Humidity in Nigeria. IISTE J. Environ. Earth Sci. 2014, 4, 29–37. [Google Scholar]
- Millet, T.; Bencherif, H.; Bounhir, A.; Bègue, N.; Lamy, K.; Ranaivombola, M.; Benkhaldoun, Z.; Portafaix, T.; Duflot, V. Aerosol Distributions and Transport over Southern Morocco from Ground-Based and Satellite Observations (2004–2020). Atmosphere 2022, 13, 923. [Google Scholar] [CrossRef]
- Colarco, P.; Da Silva, A.; Chin, M.; Diehl, T. Online Simulations of Global Aerosol Distributions in the NASA GEOS-4 Model and Comparisons to Satellite and Ground-Based Aerosol Optical Depth. J. Geophys. Res. Atmos. 2010, 115, D14. [Google Scholar] [CrossRef][Green Version]
- Buchard, V.; da Silva, A.M.; Randles, C.A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D. Evaluation of the Surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmos. Environ. 2016, 125, 100–111. [Google Scholar] [CrossRef]
- Solanki, R.; Pathak, K.N. Study of Black Carbon (BC) Mass Concentration Variation at a Coastal Region (Surat). Environ. Sci. Proc. 2021, 4, 16. [Google Scholar] [CrossRef]
- Sati, A.P.; Mohan, M. Analysis of Air Pollution during a Severe Smog Episode of November 2012 and the Diwali Festival over Delhi, India. Int. J. Remote Sens. 2014, 35, 6940–6954. [Google Scholar] [CrossRef]
- Tanskanen, A.; Lindfors, A.; Määttä, A.; Krotkov, N.; Herman, J.; Kaurola, J.; Koskela, T.; Lakkala, K.; Fioletov, V.; Bernhard, G.; et al. Validation of Daily Erythemal Doses from Ozone Monitoring Instrument with Ground-Based UV Measurement Data. J. Geophys. Res. Atmos. 2007, 112, D24. [Google Scholar] [CrossRef][Green Version]
- Chung, C.E.; Ramanathan, V.; Decremer, D. Observationally Constrained Estimates of Carbonaceous Aerosol Radiative Forcing. Proc. Natl. Acad. Sci. USA 2012, 109, 11624–11629. [Google Scholar] [CrossRef][Green Version]
- ul Haq, E.; Alam, K.; Bibi, S.; Roy, A. High Concentration of Black Carbon in Northern Pakistan: Characteristics, Source Apportionment and Emission Source Regions. Atmos. Environ. 2023, 293, 119475. [Google Scholar] [CrossRef]
- Fang, C.; Xue, K.; Li, J.; Wang, J. Characteristics and Weekend Effect of Air Pollution in Eastern Jilin Province. Atmosphere 2022, 13, 681. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, T.; Wang, R.; Zhang, L. Backward Trajectory and Multifractal Analysis of Air Pollution in Zhengzhou Region of China. Math. Probl. Eng. 2022, 2022, 2226565. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Draxler, R.R. TrajStat: GIS-Based Software That Uses Various Trajectory Statistical Analysis Methods to Identify Potential Sources from Long-Term Air Pollution Measurement Data. Environ. Model. Softw. 2009, 24, 938–939. [Google Scholar] [CrossRef]
- Sandeep, K.; Negi, R.S.; Panicker, A.S.; Gautam, A.S.; Bhist, D.S.; Beig, G.; Murthy, B.S.; Latha, R.; Singh, S.; Das, S. Characteristics and Variability of Carbonaceous Aerosols over a Semi Urban Location in Garhwal Himalayas. Asia-Pacific J. Atmos. Sci. 2020, 56, 455–465. [Google Scholar] [CrossRef]
- Zhang, H.; Yin, S.; Bai, L.; Lu, X.; Wang, C.; Gu, X.; Li, Y. Establishment and Evaluation of Anthropogenic Black and Organic Carbon Emissions over Central Plain, China. Atmos. Environ. 2020, 226, 117406. [Google Scholar] [CrossRef]
- Li, Y.; Kang, S.; Zhang, X.; Li, C.; Chen, J.; Qin, X.; Shao, L.; Tian, L. Dust Dominates the Summer Melting of Glacier Ablation Zones on the Northeastern Tibetan Plateau. Sci. Total Environ. 2023, 856, 159214. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Dai, T.; Wang, H.; He, B.; Bao, Q.; Liu, Y.; Shi, G. Aerosol Characteristics over the Tibetan Plateau Simulated with a Coupled Aerosol–Climate Model (FGOALS-F3-L). Atmos. Ocean. Sci. Lett. 2021, 14, 100031. [Google Scholar] [CrossRef]
- Sahu, S.K.; Beig, G.; Sharma, C. Decadal Growth of Black Carbon Emissions in India. Geophys. Res. Lett. 2008, 35, 2807. [Google Scholar] [CrossRef][Green Version]
- Sakerin, S.M.; Kabanov, D.M.; Kopeikin, V.M.; Kruglinsky, I.A.; Novigatsky, A.N.; Pol’kin, V.V.; Shevchenko, V.P.; Turchinovich, Y.S. Spatial Distribution of Black Carbon Concentrations in the Atmosphere of the North Atlantic and the European Sector of the Arctic Ocean. Atmosphere 2021, 12, 949. [Google Scholar] [CrossRef]
- Lin, P.; Hu, M.; Deng, Z.; Slanina, J.; Han, S.; Kondo, Y.; Takegawa, N.; Miyazaki, Y.; Zhao, Y.; Sugimoto, N. Seasonal and Diurnal Variations of Organic Carbon in PM2.5in Beijing and the Estimation of Secondary Organic Carbon. J. Geophys. Res. Atmos. 2009, 114, 1–14. [Google Scholar] [CrossRef]
- Fattahi Masrour, P.; Rezazadeh, M. Spatio-Temporal Distribution of Various Types of Dust Events in the Middle East during the Period 1996-2015. J. Earth Sp. Phys. 2022, 47, 231–248. [Google Scholar] [CrossRef]
- Denier van der Gon, H.; Jozwicka, M.; Hendriks, E.; Gondwe, M.; Schaap, M. Mineral Dust as a Component of Particulate Matter; PBL Netherlands Environment Assessment Agency: Bilthoven, The Netherlands, 2010; Volume 160. [Google Scholar]
- Sheoran, R.; Dumka, U.C.; Kaskaoutis, D.G.; Grivas, G.; Ram, K.; Prakash, J.; Hooda, R.K.; Tiwari, R.K.; Mihalopoulos, N. Chemical Composition and Source Apportionment of Total Suspended Particulate in the Central Himalayan Region. Atmosphere 2021, 12, 1228. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Che, H.; Xia, X.; Zhao, H.; Wang, H.; Gui, K.; Zheng, Y.; Sun, T.; Li, X.; et al. Aerosol Optical Properties over an Urban Site in Central China Determined Using Ground-Based Sun Photometer Measurements. Aerosol Air Qual. Res. 2019, 19, 620–638. [Google Scholar] [CrossRef]
- Zhao, H.; Che, H.; Gui, K.; Ma, Y.; Wang, Y.; Wang, H.; Zheng, Y.; Zhang, X. Interdecadal Variation in Aerosol Optical Properties and Their Relationships to Meteorological Parameters over Northeast China from 1980 to 2017. Chemosphere 2020, 247, 125737. [Google Scholar] [CrossRef]
- Sonwani, S.; Saxena, P.; Shukla, A. Carbonaceous Aerosol Characterization and Their Relationship With Meteorological Parameters During Summer Monsoon and Winter Monsoon at an Industrial Region in Delhi, India. Earth Sp. Sci. 2021, 8, e2020EA001303. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The Relationships between PM2.5 and Meteorological Factors in China: Seasonal and Regional Variations. Int. J. Environ. Res. Public Health 2017, 14, 1510. [Google Scholar] [CrossRef][Green Version]
- Toledano, C.; Cachorro, V.E.; De Frutos, A.M.; Torres, B.; Berjón, A.; Sorribas, M.; Stone, R.S. Airmass Classification and Analysis of Aerosol Types at El Arenosillo (Spain). J. Appl. Meteorol. Climatol. 2009, 48, 962–981. [Google Scholar] [CrossRef]
- Li, Y.; Song, Y.; Kaskaoutis, D.G.; Chen, X.; Mamadjanov, Y.; Tan, L. Atmospheric Dust Dynamics in Southern Central Asia: Implications for Buildup of Tajikistan Loess Sediments. Atmos. Res. 2019, 229, 74–85. [Google Scholar] [CrossRef]
- Thomas, D.C.; Kidd, F.J. On the Margins: Enduring Pre-Modern Water Management Strategies In and Around the Registan Desert, Afghanistan. J. F. Archaeol. 2017, 42, 29–42. [Google Scholar] [CrossRef]
Name | Covered Area (km2) | Population | Population Density |
---|---|---|---|
Astore | 5411 | 100,000 | 18.48 |
Diamir | 7234 | 270,000 | 37.32 |
Chanche | 8531 | 160,000 | 18.76 |
Ghizer | 12,381 | 170,000 | 13.73 |
Gilgit | 4208 | 290,000 | 68.92 |
Hunza Nagar | 14,246 | 120,000 | 8.42 |
Skardu | 18,700 | 380,000 | 20.32 |
Chitral | 14,850 | 447,625 | 30.14 |
Swat | 5337 | 2,308,624 | 432.6 |
Dir | 3699 | 947,401 | 256.1 |
Kohistan | 7492 | 784,711 | 104.7 |
DD-MM-YY | AOD | DD-MM-YY | AOD |
---|---|---|---|
20-06-05 | 0.923 | 05-05-14 | 0.975 |
25-06-06 | 0.927 | 07-07-15 | 0.952 |
13-08-07 | 0.951 | 23-06-16 | 0.930 |
12-03-08 | 0.972 | 24-05-17 | 0.916 |
11-08-09 | 0.983 | 07-08-18 | 0.949 |
05-09-10 | 0.929 | 20-07-19 | 0.992 |
20-08-11 | 0.981 | 26-07-20 | 0.837 |
14-07-12 | 0.980 | 11-07-21 | 0.884 |
25-06-13 | 0.898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.S.A.; Huang, Z.; ul Haq, E.; Alam, K. Exploring the Spatiotemporal Variation in Light-Absorbing Aerosols and Its Relationship with Meteorology over the Hindukush–Himalaya–Karakoram Region. Remote Sens. 2023, 15, 2527. https://doi.org/10.3390/rs15102527
Shah SSA, Huang Z, ul Haq E, Alam K. Exploring the Spatiotemporal Variation in Light-Absorbing Aerosols and Its Relationship with Meteorology over the Hindukush–Himalaya–Karakoram Region. Remote Sensing. 2023; 15(10):2527. https://doi.org/10.3390/rs15102527
Chicago/Turabian StyleShah, Syed Shakeel Ahmad, Zhongwei Huang, Ehtiram ul Haq, and Khan Alam. 2023. "Exploring the Spatiotemporal Variation in Light-Absorbing Aerosols and Its Relationship with Meteorology over the Hindukush–Himalaya–Karakoram Region" Remote Sensing 15, no. 10: 2527. https://doi.org/10.3390/rs15102527
APA StyleShah, S. S. A., Huang, Z., ul Haq, E., & Alam, K. (2023). Exploring the Spatiotemporal Variation in Light-Absorbing Aerosols and Its Relationship with Meteorology over the Hindukush–Himalaya–Karakoram Region. Remote Sensing, 15(10), 2527. https://doi.org/10.3390/rs15102527