CALIOP-Based Evaluation of Dust Emissions and Long-Range Transport of the Dust from the Aral−Caspian Arid Region by 3D-Source Potential Impact (3D-SPI) Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Region under Study
2.2. Satellite Data
2.3. Lagrangian Trajectories Modelling
2.4. Trajectory Duration
2.5. Accounting for Relative Humidity in the Transport Area
2.6. Dust Emission Detection Technique
2.7. Air Transport Repeatability Calculation Technique
2.8. Three Dimensional Source Potential Influence (3D-SPI) Method
2.9. The Estimation of Average Travel Time, Average Transfer Altitude, and Average Relative Humidity in the Dust Transport Area
3. Results and Discussion
3.1. The Vertical Profiles of the Tropospheric Dust Extinction Coefficient in ACAR
3.2. The Spatial Variability of Dust Optical Depth in the ACAR
3.3. The Average Seasonal Repeatability of Air Transport from ACAR to Remote Areas
3.3.1. The Repeatability of Air Transport from the ACAR Lower Troposphere Layers
3.3.2. The Repeatability of Air Transport from ACAR to the Regional Atmospheric Mixed Layer
3.4. Potential Impact of the ACAR Dust on Regional DOD
3.4.1. The Potential Impact of the ACAR Lower Tropospheric Layers on the Regional DOD
3.4.2. The Potential Impact of ACAR’s Dust Emission Layer on the Regional Mixed Layer
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
52.5°E | 57.5°E | 62.5°E | 67.5°E | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | I | II | III | IV | I | II | III | IV | I | II | III | IV | |
48°N | 9 | 12 | 16 | 13 | 11 | 13 | 18 | 14 | 12 | 14 | 18 | 16 | 10 | 13 | 17 | 13 |
46°N | 11 | 14 | 18 | 15 | 9 | 10 | 15 | 14 | 11 | 12 | 16 | 13 | 11 | 14 | 18 | 15 |
44°N | 11 | 12 | 17 | 15 | 12 | 14 | 19 | 17 | 12 | 14 | 20 | 17 | 10 | 12 | 15 | 14 |
42°N | 11 | 13 | 18 | 16 | 10 | 11 | 15 | 15 | 12 | 13 | 19 | 17 | 12 | 13 | 19 | 16 |
40°N | 12 | 13 | 19 | 17 | 14 | 14 | 19 | 18 | 12 | 13 | 19 | 17 | 9 | 10 | 15 | 13 |
38°N | 11 | 11 | 15 | 14 | 12 | 12 | 16 | 14 | 14 | 14 | 20 | 18 | 12 | 13 | 19 | 17 |
52.5E | 57.5E | 62.5E | 67.5E | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | I | II | III | IV | I | II | III | IV | I | II | III | IV | |
48N | 173 | 678 | 1278 | 470 | 114 | 629 | 1316 | 444 | 111 | 669 | 1332 | 460 | 106 | 616 | 1259 | 452 |
46N | 240 | 523 | 854 | 456 | 241 | 606 | 1081 | 489 | 225 | 670 | 1036 | 466 | 141 | 738 | 1303 | 484 |
44N | 281 | 721 | 1043 | 513 | 309 | 673 | 986 | 502 | 249 | 786 | 1112 | 478 | 178 | 783 | 1207 | 456 |
42N | 455 | 539 | 667 | 544 | 234 | 865 | 1239 | 482 | 235 | 911 | 1224 | 473 | 229 | 813 | 1177 | 479 |
40N | 539 | 404 | 452 | 534 | 289 | 872 | 1187 | 500 | 281 | 908 | 1175 | 492 | 238 | 740 | 948 | 486 |
38N | 576 | 367 | 443 | 607 | 324 | 812 | 1033 | 524 | 357 | 959 | 1098 | 521 | 272 | 836 | 1011 | 542 |
mean | 377 | 539 | 790 | 521 | 252 | 743 | 1140 | 490 | 243 | 817 | 1163 | 482 | 194 | 754 | 1151 | 483 |
Site | Latitude Range | Longitude Range |
---|---|---|
Moscow region | 53N … 58N | 32E … 42E |
Volga region | 53N … 58N | 47E … 57E |
Southern Urals | 55N … 60N | 65E … 75E |
South-Western Siberia | 53N … 58N | 80E … 90E |
Baikal region | 52N … 57N | 105E … 115E |
Amur region | 54N … 59N | 125E … 135E |
Prymorie region | 44N … 50N | 135E … 140E |
Black Sea−Caspian | 44N … 50N | 40E … 46E |
Northwest Russia | 62N … 67N | 35E … 55E |
Northern Urals | 63N … 68N | 65E … 75E |
West Siberia | 63N … 68N | 80E … 90E |
Yakutia | 63N … 68N | 120E … 140E |
Chukotka | 63N … 68N | 170E … 180E |
Barents Sea | 73N … 78N | 35E … 55E |
Kara Sea | 73N … 78N | 65E … 95E |
Laptev Sea | 73N … 78N | 105E … 140E |
East Siberian Sea | 73N … 78N | 150E … 180E |
West Iran | 34N … 39N | 45E … 50E |
East Iran | 34N … 38N | 53E … 60E |
Central Iran | 30N … 34N | 48E … 60E |
South Iran | 26N … 30N | 50E … 60E |
West China | 35N … 41N | 78E … 88E |
North India | 23N … 28N | 73E … 80E |
Southeast Asia | 10N … 30N | 100E … 120E |
Mesopotamia | 31N … 36N | 35E … 45E |
Arabian Peninsula | 22N … 27N | 42E … 47E |
Northeast Africa | 20N … 30N | 20E … 30E |
Northwest Africa | 20N … 30N | 10W… 0E |
North America (USA) | 43N … 53N | 95W … 115W |
East Europe (outside Russia) | 42N … 52N | 14E … 24E |
West Europe | 42N … 52N | 0E … 10E |
North Pole region | 80N … 90N | 180W … 180E |
References
- Davidson, C.I.; Phalen, R.F.; Solomon, P.A. Airborne particulate matter and human health: A review. Aerosol Sci. Technol. 2005, 39, 737–749. [Google Scholar] [CrossRef]
- Zhang, R.-J.; Ho, K.-F.; Shen, Z.-X. The role of aerosol in climate change, the environment, and human health. Atmos. Ocean. Sci. Lett. 2012, 5, 156–161. [Google Scholar] [CrossRef]
- Mahowald, N.M.; Kloster, S.; Engelstaedter, S.; Moore, J.K.; Mukhopadhyay, S.; McConnell, J.R.; Albani, S.; Doney, S.C.; Bhattacharya, A.; Curran, M.A.J.; et al. Observed 20th century desert dust variability: Impact on climate and biogeochemistry. Atmos. Chem. Phys. 2010, 10, 10875–10893. [Google Scholar] [CrossRef]
- Oh, H.J.; Ma, Y.; Kim, J. Human inhalation exposure to aerosol and health effect: Aerosol monitoring and modelling regional deposited doses. Int. J. Environ. Res. Publ. Health 2020, 17, 1923–1941. [Google Scholar] [CrossRef] [PubMed]
- Naji, H.; Taherpour, M. The effect of simulated dust storm on wood development and leaf stomata in Quercus brantii L. Desert 2019, 24, 43–49. [Google Scholar] [CrossRef]
- Evans, S.; Malyshev, S.; Ginoux, P.; Shevliakova, E. The impacts of the dust radiative effect on vegetation growth in the Sahel. Glob. Biogeochem. Cycles 2019, 33, 1582–1593. [Google Scholar] [CrossRef]
- Kondratyev, K.Y.; Grigoryev, A.A.; Pokrovsky, P.M. The effect of aerosols on climate and aerosol climatology on the basis of observations from space. Adv. Space Res. 1982, 2, 3–10. [Google Scholar] [CrossRef]
- Duce, R. Sources, distributions, and fluxes of mineral aerosols and their relationship to climate. In Aerosol Forcing of Climate; Charlson, R.J., Heintzenberg, J., Eds.; John Wiley: Chichester, UK, 1995; pp. 43–72. [Google Scholar]
- Kondratyev, K.Y.; Ivlev, L.S.; Krapivin, V.; Varotsos, C.A. Aerosol radiative forcing and climate. In Atmospheric Aerosol Properties; Mason, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 507–566. [Google Scholar] [CrossRef]
- Ginzburg, A.S.; Gubanova, D.P.; Minashkin, V.M. Influence of natural and anthropogenic aerosols on global and regional climate. Russ. J. General Chem. 2009, 79, 2062–2070. [Google Scholar] [CrossRef]
- Alizadeh, O.; Zawar-Reza, P.; Sturman, A. The global distribution of mineral dust and its impacts on the climate system: A review. Atmos. Res. 2014, 138, 152–165. [Google Scholar] [CrossRef]
- Zhang, B. The effect of aerosols to climate change and society. J. Geosci. Environ. Protect. 2020, 8, 55–78. [Google Scholar] [CrossRef]
- Kutuzov, S.; Legrand, M.; Preunkert, S.; Ginot, P.; Mikhalenko, V.; Shukurov, K.; Poliukhov, A.; Toropov, P. The Elbrus (Caucasus, Russia) ice core record—Part 2: History of desert dust deposition. Atmos. Chem. Phys. 2019, 19, 14133–14148. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Williamson, S.; Menounos, B. The influence of forest fires aerosol and air temperature on glacier albedo, western North America. Rem. Sens. Environ. 2021, 267, 112732. [Google Scholar] [CrossRef]
- Aoki, T.; Motoyoshi, H.; Kodama, Y.; Yasunari, T.J.; Sugiura, K.; Kobayashi, H. Atmospheric aerosol deposition on snow surfaces and its effect on albedo. SOLA 2006, 2, 13–16. [Google Scholar] [CrossRef]
- Painter, T.H.; Bryant, A.C.; Skiles, S.M. Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. Lett. 2012, 39, L17502. [Google Scholar] [CrossRef]
- Skiles, S.M.; Painter, T.H.; Belnap, J.; Holland, L.; Reynolds, R.L.; Goldstein, H.L.; Lin, J. Regional variability in dust-on-snow 30 processes and impacts in the Upper Colorado River Basin. Hydrol. Proc. 2015, 29, 5397–5413. [Google Scholar] [CrossRef]
- Tentyukov, M.P.; Belan, B.D.; Lyutoev, V.P.; Shukurov, K.A.; Ivlev, G.A.; Simonenkov, D.V.; Arshinov, M.Y.; Fofonov, A.V.; Mikhailov, V.I.; Buchelnikov, V.S. Geochemical activity of snow and layer-by-layer variability of the isotope ratio (δ18O) in the snow mass under conditions of the different surface atmosphere dustiness. Vestnik Geosci. 2022, 10, 49–62. [Google Scholar] [CrossRef]
- Golitsyn, G.S. Complex Soviet-American dust experiment. In Joint Soviet-American Experiment on Arid Aerosol; Golitsyn, G.S., Gillette, D.A., Jonson, T., Ivanov, V.N., Kolomiets, S.M., Smirnov, V.V., Eds.; Hydrometeoizdat: St. Peterburg, Russia, 1993; pp. 3–6. [Google Scholar]
- Ivlev, L.S.; Dovgalyuk, Y.A. Physics of Atmospheric Aerosol Systems; NIIKh SPbGU: St. Petersburg, Russia, 1999; pp. 5–33. Available online: https://www.rfbr.ru/rffi/ru/books/o_65830#9 (accessed on 11 March 2023). (In Russian)
- Penner, J.E.; Andreae, M.; Annegarn, H.; Barrie, L.; Feichter, J.; Hegg, D.; Jayaraman, A.; Leaitch, R.; Murphy, D.; Nganga, J.; et al. Aerosols, their direct and indirect effects. In Intergovernmental Panel on Climate Change, Report to IPCC from the Scientific Assessment Working Group (WGI); Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 291–336. Available online: https://www.ipcc.ch/site/assets/uploads/2018/03/TAR-05.pdf (accessed on 11 March 2023).
- Textor, C.; Schulz, M.; Guibert, S.; Kinne, S.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Berglen, T.; Boucher, O.; Chin, M.; et al. Analysis and quantification of the diversities of aerosol life cycles within Aerocom. Atmos. Chem. Phys. 2006, 6, 1777–1813. [Google Scholar] [CrossRef]
- Prospero, J.; Ginoux, P.; Torres, O.; Nicholson, S.; Gill, T. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 1002–1032. [Google Scholar] [CrossRef]
- Ginoux, P.A.; Prospero, J.M.; Gill, T.E.; Hsu, C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, RG3005. [Google Scholar] [CrossRef]
- Choobari, O.A.; Sturman, A.; Zawar-Reza, P. A global satellite view of the seasonal distribution of mineral dust and its correlation with atmospheric circulation. Dynam. Atmos. Oceans 2014, 68, 20–34. [Google Scholar] [CrossRef]
- Bagnold, R.A. The Physics of Blown Sand and Desert Dunes; Methuen & Co.: London, UK, 1941; pp. 1–2. Available online: https://archive.org/details/in.ernet.dli.2015.220669/page/n27/mode/2up (accessed on 2 February 2023).
- Gillette, D.A.; Passi, R. Modeling, dust, caused by wind erosion. J. Geophys. Res. 1998, 93, 14233–14242. [Google Scholar] [CrossRef]
- Ponomarev, V.M. Micro-scale modelling of pollution dispersion in atmospheric boundary layer. Syst. Anal. Model. Simul. 1998, 30, 39–44. [Google Scholar] [CrossRef]
- Cakmur, R.V.; Miller, R.L.; Torres, O. Incorporating the effect of small-scale circulations upon dust emission in an atmospheric general circulation model. J. Geophys. Res. 2004, 109, D07201. [Google Scholar] [CrossRef]
- Takemi, T.; Yasui, M.; Zhou, J.; Lichao Liu, L. Role of boundary layer and cumulus convection on dust emission and transport over a midlatitude desert area. J. Geophys. Res. 2006, 111, D11203–D11219. [Google Scholar] [CrossRef]
- Klose, M.; Shao, Y. Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 2012, 12, 7309–7320. [Google Scholar] [CrossRef]
- Sinclair, P.C. General characteristics of dust devils. J. Appl. Met. 1969, 8, 32–45. [Google Scholar] [CrossRef]
- Sinclair, P.C. Vertical transport of desert particulates by dust devils and clear thermal. In Atmosphere-surface Exchange of Particulates and Gaseous Pollutants; Engelman, R., Sehmel, G., Eds.; ERDA: Oak Ridge, Tennessee, 1974; pp. 497–527. [Google Scholar]
- Gorchakov, G.I.; Koprov, B.M.; Shukurov, K.A. Arid submicron aerosol transport by vortices. Izv. Atmos. Ocean. Phys. 2003, 39, 536–547. Available online: https://www.researchgate.net/publication/287056137_Arid_submicron_aerosol_transport_by_vortices (accessed on 2 February 2023).
- Marsham, J.H.; Parker, D.J.; Grams, C.M.; Johnson, B.T.; Grey, W.M.F.; Ross, A.N. Observations of mesoscale and boundary-layer scale circulations affecting dust transport and uplift over the Sahara. Atmos. Chem. Phys. 2008, 8, 6979–6993. [Google Scholar] [CrossRef]
- Chkhetiani, O.G.; Gledzer, E.B.; Artamonova, M.S.; Iordanskii, M.A. Dust resuspension under weak wind conditions: Direct observations and model. Atmos. Chem. Phys. 2012, 12, 5147–5162. [Google Scholar] [CrossRef]
- Groll, M.; Opp, C.; Aslanov, I. Spatial and temporal distribution of the dust deposition in central Asia–results from a long term monitoring program. Aeol. Res. 2013, 9, 49–62. [Google Scholar] [CrossRef]
- Reid, J.S.; Jonsson, H.H.; Maring, H.B.; Smirnov, A.; Savoie, D.L.; Cliff, S.S.; Reid, E.A.; Livingston, J.M.; Meier, M.M.; Dubovik, O.; et al. Comparison of size and morphological measurements of coarse mode dust particles from Africa. J. Geophys. Res. 2003, 108, 8593. [Google Scholar] [CrossRef]
- Di Biagio, C.; Banks, J.R.; Gaetani, M. Dust Atmospheric Transport over Long Distances. Reference Module in Earth Systems and Environmental Sciences. 2021. Available online: https://hal.science/hal-03330916/file/Dust_transport_preview_DiBiagio_2021.pdf (accessed on 2 February 2023).
- Yang, K.; Wang, Z.; Luo, T.; Liu, X.; Mingxuan, W. Upper troposphere dust belt formation processes vary seasonally and spatially in the Northern Hemisphere. Comm. Earth Environ. 2022, 3, 24. [Google Scholar] [CrossRef]
- van der Does, M.; Brummer, G.-J.A.; Korte, L.F.; Stuut, J.-B.W. Seasonality in Saharan dust across the Atlantic Ocean: From atmospheric transport to seafloor deposition. J. Geophys. Res. Atmos. 2021, 126, e2021JD034614. [Google Scholar] [CrossRef]
- McKendry, I.G.; Strawbridge, K.B.; O’Neill, N.T.; Macdonald, A.M.; Liu, P.S.K.; Leaitch, W.R.; Anlauf, K.G.; Jaegle, L.; Fairlie, T.D.; Westphal, D.L. Trans-Pacific transport of Saharan dust to western North America: A case study. J. Geophys. Res. 2007, 112, D01103–D01116. [Google Scholar] [CrossRef]
- Das, R.; Evan, A.; Lawrence, D. Contributions of long-distance dust transport to atmospheric inputs in the Yucatan Peninsula. Glob. Biogeochem. Cycl. 2013, 27, 167–175. [Google Scholar] [CrossRef]
- Reid, E.A.; Reid, J.S.; Meier, M.M.; Dunlap, M.R.; Cliff, S.S.; Broumas, A.; Perry, K.; Maring, H. Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. J. Geophys. Res. 2003, 108, 8591–8612. [Google Scholar] [CrossRef]
- van der Does, M.; Korte, L.F.; Munday, C.I.; Brummer, G.-J.A.; Stuut, J.-B.W. Particle size traces modern Saharan dust transport and deposition across the equatorial North Atlantic. Atmos. Chem. Phys. 2016, 16, 13697–13710. [Google Scholar] [CrossRef]
- Gläser, G.; Wernli, H.; Kerkweg, A.; Teubler, F. The transatlantic dust transport from North Africa to the Americas—Its characteristics and source regions. J. Geophys. Res. Atmos. 2015, 120, 231–252. [Google Scholar] [CrossRef]
- Gutleben, M.; Groß, S.; Heske, C.; Wirth, M. Wintertime Saharan dust transport towards the Caribbean: An airborne lidar case study during EUREC4A. Atmos. Chem. Phys. 2022, 22, 7319–7330. [Google Scholar] [CrossRef]
- Marinou, E.; Amiridis, V.; Binietoglou, I.; Tsikerdekis, A.; Solomos, S.; Proestakis, E.; Konsta, D.; Papagiannopoulos, N.; Tsekeri, A.; Vlastou, G.; et al. Three-dimensional evolution of Saharan dust transport towards Europe based on a 9-year EARLINET-optimized CALIPSO dataset. Atmos. Chem. Phys. 2017, 17, 5893–5919. [Google Scholar] [CrossRef]
- Eguchi, K.; Uno, I.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Sugimoto, N.; Liu, Z. Transpacific dust transport: Integrated analysis of NASA/CALIPSO and a global aerosol transport model. Atmos. Chem. Phys. 2009, 9, 3137–3145. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, K.; Fu, J.S.; Abdullaev, S.F. Long-range transport of Asian dust to the Arctic: Identification of transport pathways, evolution of aerosol optical properties, and impact assessment on surface albedo changes. Atmos. Chem. Phys. 2022, 22, 10389–10407. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Hayasaka, T.; Wang, S.; Zhou, T.; Jin, H. Short-cut transport path for Asian dust directly to the Arctic: A case study. Environ. Res. Lett. 2015, 10, 114018. [Google Scholar] [CrossRef]
- Wu, N.; Ge, Y.; Abuduwaili, J.; Issanova, G.; Saparov, G. Insights into variations and potential long-range transport of atmospheric aerosols from the Aral Sea basin in Central Asia. Rem. Sens. 2022, 14, 3201. [Google Scholar] [CrossRef]
- Shukurov, K.A.; Shukurova, L.M. Source regions of ammonium nitrate, ammonium sulfate, and natural silicates in the surface aerosols of Moscow oblast. Izv. Atmos. Ocean. Phys. 2017, 53, 316–325. [Google Scholar] [CrossRef]
- Han, Y.; Wang, T.; Tan, R.; Tang, J.; Wang, C.; He, S.; Dong, Y.; Huang, Z.; Bi, J. CALIOP-based quantification of Central Asian dust transport. Rem. Sens. 2022, 14, 1416–1431. [Google Scholar] [CrossRef]
- Crocchianti, S.; Moroni, B.; Waldhauserová, P.D.; Becagli, S.; Severi, M.; Traversi, R.; Cappelletti, D. Potential source contribution function analysis of high latitude dust sources over the arctic: Preliminary results and prospects. Atmosphere 2021, 12, 347. [Google Scholar] [CrossRef]
- Újvári, G.; Klötzli, U.; Stevens, T.; Svensson, A.; Ludwig, P.; Vennemann, T.; Gier, S.; Horschinegg, M.; Palcsu, L.; Hippler, D.; et al. Greenland ice core record of last glacial dust sources and atmospheric circulation. J. Geophys. Res. Atmos. 2022, 127, e2022JD036597. [Google Scholar] [CrossRef]
- Opp, C.; Darmstadt, A. Vom Aralsee zur Aralkum: Ursachen, Wirkungen und Folgen des Aralsee-Syndroms (From the Aral Sea to the Aral Kum: Causes and Consequences of the Aral Sea Syndrome). In Asien; Glaser, R., Kremb, K., Eds.; WBG: Darmstadt, Germany, 2007; pp. 90–100. Available online: https://www.researchgate.net/publication/303244563_Vom_Aralsee_zur_Aralkum_Ursachen_Wirkungen_und_Folgen_des_Aralsee-Syndroms (accessed on 2 February 2023).
- Breckle, S.-W.; Wucherer, W. The Aralkum, a man-made desert on the desiccated floor of the Aral Sea (Central Asia): General introduction and aims of the book. In Aralkum—A Man-Made Desert: The Desiccated Floor of the Aral Sea (Central Asia); Breckle, S.-W., Wucherer, W., Dimeyeva, L.A., Ogar, N.P., Eds.; Springer: Heidelberg, Germany; New York, NY, USA, 2012; pp. 1–9. [Google Scholar] [CrossRef]
- Banks, J.R.; Heinold, B.; Schepanski, K. Impacts of the desiccation of the Aral Sea on the Central Asian dust life-cycle. J. Geophys. Res. Atmos. 2022, 127, e2022JD036618. [Google Scholar] [CrossRef]
- EOS DIS. Available online: https://worldview.earthdata.nasa.gov (accessed on 12 March 2023).
- Issanova, G.; Abuduwaili, J.; Galayeva, O.; Semenov, O.; Bazarbayeva, T. Aeolian transportation of sand and dust in the Aral Sea region. Int. J. Environ. Sci. Technol. 2015, 12, 3213–3224. [Google Scholar] [CrossRef]
- Nobakht, M.; Shahgedanova, M.; White, K. New inventory of dust emission sources in Central Asia and northwestern China derived from MODIS imagery using dust enhancement technique. J. Geophys. Res. Atmos. 2021, 126, e2020JD033382. [Google Scholar] [CrossRef]
- Schultz, V.L. Rivers of Central Asia, Parts I–II; Gidrometeoizdat: Leningrad, Russia, 1965; pp. 59–294. Available online: http://www.cawater-info.net/library/rus/hist/shultz2/pages/002.htm (accessed on 2 February 2023).
- Narbayep, M.; Pavlova, V. The Aral Sea, Central Asian Countries and Climate Change in the 21st Century; United Nations ESCAP, IDD: Bangkok, Thailand, 2022; Available online: https://www.unescap.org/kp/2022/aral-sea-central-asian-countries-and-climate-change-21st-century (accessed on 2 February 2023).
- Létolle, R.; Aladin, N.; Filipov, I.; Boroffka, N.G.O. The future chemical evolution of the Aral Sea from 2000 to the years 2050. Mitig. Adapt. Strateg. Glob. Chang. 2005, 10, 51–70. [Google Scholar] [CrossRef]
- Glazovskiy, N.F. The Aral Crisis: Causative Factors and Means of Solution; Nauka: Moscow, Russia, 1990; pp. 20–23. (In Russian) [Google Scholar]
- Micklin, P.P. The past, present, and future Aral Sea. Lakes Reserv. Res. Manag. 2010, 15, 193–213. [Google Scholar] [CrossRef]
- Golitsyn, G.S.; Gillette, D.A. Introduction: A joint Soviet-American experiment for the study of Asian desert dust and its impact on local meteorological conditions and climate. Atmos. Environ. 1993, 27A, 2467–2470. [Google Scholar] [CrossRef]
- Hansen, D.A.; Kapustin, V.N.; Kopeikin, V.M.; Gillette, D.A.; Bodhaine, B.A. Optical absorption by aerosol black carbon and dust in a desert region of Central Asia. Atmos. Environ. 1993, 27A, 2527–2531. [Google Scholar] [CrossRef]
- Panchenko, M.V.; Terpugova, S.A.; Bodhaine, B.A.; Isakov, A.A.; Sviridenkov, M.A.; Sokolik, I.N.; Romashova, E.V.; Nazarov, B.I.; Shukurov, A.K.; Chistyakova, I.; et al. Optical investigations of dust storms during USSR-US experiments in Tadjikistan, 1989. Atmos. Environ. 1993, 27A, 2503–2508. [Google Scholar] [CrossRef]
- Sviridenkov, M.A.; Gillette, D.A.; Isakov, A.A.; Sokolik, I.N.; Smirnov, V.V.; Belan, B.D.; Panchenko, M.V.; Andronova, A.V.; Kolomiets, S.M.; Zhukov, V.M.; et al. Size distributions of dust aerosol measured during the Soviet-American Experiment in Tadzhikistan, 1989. Atmos. Environ. 1993, 27A, 2481–2486. [Google Scholar] [CrossRef]
- Shukurov, A.K.; Nazarov, B.I.; Abdulaev, S.F.; Pirogov, S.M. On optical depth ratios of dust aerosol in visible and infrared spectral regions. In Joint Soviet-American Experiment on Arid Aerosol; Golitsyn, G.S., Gillette, D.A., Jonson, T., Ivanov, V.N., Kolomiets, S.M., Smirnov, V.V., Eds.; Hydrometeoizdat: St. Peterburg, Russia, 1993; pp. 135–146. [Google Scholar]
- Semenov, O.E. Dust storms and sandstorms and aerosol long-distance transport. In Aralkum—A Man-Made Desert: The Desiccated Floor of the Aral Sea (Central Asia); Breckle, S.-W., Wucherer, W., Dimeyeva, L.A., Ogar, N.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 73–82. [Google Scholar] [CrossRef]
- Opp, C.; Groll, M.; Aslanov, I.; Lotz, T.; Vereshagina, N. Aeolian dust deposition in the Southern Aral Sea region (Uzbekistan)—Ground-based monitoring results from the LUCA project. Quat. Int. 2016, 429, 86–99. [Google Scholar] [CrossRef]
- Hofer, J.; Althausen, D.; Abdullaev, S.F.; Makhmudov, A.N.; Nazarov, B.I.; Schettler, G.; Engelmann, R.; Baars, H.; Fomba, K.; Müller, K.; et al. Long-term profiling of mineral dust and pollution aerosol with multiwavelength polarization Raman Lidar at the Central Asian site of Dushanbe, Tajikistan: Case studies. Atmos. Chem. Phys. 2017, 17, 14559–14577. [Google Scholar] [CrossRef]
- Hofer, J.; Ansmann, A.; Althausen, D.; Engelmann, R.; Baars, H.; Abdullaev, S.F.; Makhmudov, A.N. Long-term profiling of aerosol light extinction, particle mass, cloud condensation nuclei, and ice-nucleating particle concentration over Dushanbe, Tajikistan, in Central Asia. Atmos. Chem. Phys. 2020, 20, 4695–4711. [Google Scholar] [CrossRef]
- Golitsyn, G.S.; Granberg, I.G.; Andronova, A.V.; Ponomarev, V.M.; Zilitinkevich, S.S.; Smirnov, V.V.; Yablokov, M.Y. Investigation of boundary layer fine structure in arid regions: Injection of fine dust into the atmosphere. Water Air Soil Pollut. 2003, 3, 245–257. [Google Scholar] [CrossRef]
- Gorchakov, G.I.; Koprov, B.M.; Shukurov, K.A. Wind effect on aerosol transport from the underlying surface. Izv. Atmos. Ocean. Phys. 2004, 40, 679–694. Available online: https://www.researchgate.net/publication/286981084_Wind_effect_on_aerosol_transport_from_the_underlying_surface (accessed on 2 February 2023).
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Rupakheti, D.; Rupakheti, M.; Abdullaev, S.F.; Yin, X.; Kang, S. Columnar aerosol properties and radiative effects over Dushanbe, Tajikistan in Central Asia. Environ. Poll. 2020, 265, 114872–114883. [Google Scholar] [CrossRef] [PubMed]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Winker, D.M.; Pelon, J.; McCormick, M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. In Proceedings of the SPIE 4893, Third International Asia-Pacific Environmental Remote Sensing: Remote Sensing of the Atmosphere, Ocean, Environment, and Space, Hangzhou, China, 21 March 2003. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.H.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Kittaka, C.; Vaughan, M.A.; Liu, Z.; Hu, Y.; Trepte, C.R.; Rogers, R.R.; Ferrare, R.A.; Lee, K.P.; et al. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Proestakis, E.; Amiridis, V.; Marinou, E.; Georgoulias, A.K.; Solomos, S.; Kazadzis, S.; Chimot, J.; Che, H.; Alexandri, G.; Binietoglou, I.; et al. Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP. Atmos. Chem. Phys. 2018, 18, 1337–1362. [Google Scholar] [CrossRef]
- Ma, X.; Huang, Z.; Qi, S.; Huang, J.; Zhang, S.; Dong, Q.; Wang, X. Ten-year global particulate mass concentration derived from space-borne CALIPSO lidar observations. Sci. Total Environ. 2020, 721, 137699–137711. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, Z.; Yu, H.; Ginoux, P.; Shen, J. Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: Regional and interannual variability. Atmos. Chem. Phys. 2021, 21, 13369–13395. [Google Scholar] [CrossRef]
- Yang, W.; Marshak, A.; Várnai, T.; Kalashnikova, O.V.; Kostinski, A.B. CALIPSO observations of transatlantic dust: Vertical stratification and effect of clouds. Atmos. Chem. Phys. 2012, 12, 11339–11354. [Google Scholar] [CrossRef]
- Petit, R.H.; Legrand, M.; Jankowiak, I.; Molinie, J.; Asselin de Beauville, C.; Marion, G.; Mansot, J.L. Transport of Saharan dust over the Caribbean Islands: Study of an event. J. Geophys. Res. 2005, 110, D18S09–D18S28. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Yi, Y.; Tang, Q.; Wang, X.; Hu, Y.; Liu, Z.; Ayers, K.; Trepte, C.; Winker, D. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophys. Res. Lett. 2007, 34, L18805–L18809. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Wang, Z.; Chen, W.-N.; Chang, S.-Y.; Chou, C.C.K.; Sugimoto, N.; Zhao, X. Long-range transport of Asian dust and air pollutants to Taiwan: Observed evidence and model simulation. Atmos. Chem. Phys. 2007, 7, 423–434. [Google Scholar] [CrossRef]
- Uno, I.; Yumimoto, K.; Shimizu, A.; Hara, Y.; Sugimoto, N.; Wang, Z.; Liu, Z.; Winker, D.M. 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model. Geophys. Res. Lett. 2008, 35, L06803–L06809. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Chen, B.; Huang, Z.; Liu, Z.; Zhao, Q.; Yi, Y.; Ayers, J.K. Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res. 2008, 13, D23212–D23224. [Google Scholar] [CrossRef]
- Zhao, S.; Yin, D.; Qu, J. Identifying sources of dust based on CALIPSO, MODIS satellite data and backward trajectory model. Atmos. Poll. Res. 2015, 6, 36–44. [Google Scholar] [CrossRef]
- Hayasaki, M.; Yamamoto, M.K.; Higuchi, A.; Shimizu, A.; Mori, I.; Nishikawa, M.; Takasuga, T. Asian dust transport to Kanto by flow around Japan’s Central Mountains. SOLA 2011, 7A, 032–035. [Google Scholar] [CrossRef]
- Onishi, K.; Kurosaki, Y.; Otani, S.; Yoshida, A.; Sugimoto, N.; Kurozawa, Y. Atmospheric transport route determines components of Asian dust and health effects in Japan. Atmos. Environ. 2012, 49, 94–102. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- Han, Y.; Wang, T.; Tang, J.; Wang, C.; Jian, B.; Huang, Z.; Huang, J. New insights into the Asian dust cycle derived from CALIPSO lidar measurements. Remote Sens. Environ. 2022, 272, 112906–112921. [Google Scholar] [CrossRef]
- NASA OPeNDAP. Content of CALIPSO. Available online: https://opendap.larc.nasa.gov/opendap/CALIPSO (accessed on 13 March 2023).
- Tackett, J.L.; Winker, D.M.; Getzewich, B.J.; Vaughan, M.A.; Young, S.A.; Kar, J. CALIPSO lidar level 3 aerosol profile product: Version 3 algorithm design. Atmos. Meas. Technol. 2018, 11, 4129–4152. [Google Scholar] [CrossRef] [PubMed]
- Draxler, R.R.; Hess, G.D. An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition. Austral. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Stein, A.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.; Cohen, M.; Ngan, F. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Am. Met. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Kleist, D.; Parrish, D.F.; Derber, J.C.; Treadon, R.; Wu, W.-S.; Lord, S. Introduction of the GSI into the NCPE global data assimilation system. Weather Forecast 2009, 24, 1691–1705. [Google Scholar] [CrossRef]
- Global Data Assimilation System (GDAS1) Archive Information. Available online: https://www.ready.noaa.gov/gdas1.php (accessed on 12 March 2023).
- Hsu, Y.-K.; Holsen, T.; Hopke, P. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Fleming, Z.L.; Monks, P.S.; Manning, A.J. Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos. Res. 2012, 104–105, 1–39. [Google Scholar] [CrossRef]
- Vinogradova, A.A.; Veremeichik, A.O. Potential sources of aerosol pollution of the atmosphere near the Nenetsky Nature Reserve. Atmos. Ocean. Opt. 2013, 26, 118–125. [Google Scholar] [CrossRef]
- Riuttanen, L.; Hullkonen, M.; Dal Maso, M.; Junninen, H.; Kulmala, M. Trajectory analysis of atmospheric transport of fine particles, SO2, NOx and O3 to the SMEAR II station in Finland in 1996–2008. Atmos. Chem. Phys. 2013, 13, 2153–2164. [Google Scholar] [CrossRef]
- Kabashnikov, V.; Milinevsky, G.; Chaikovsky, A.; Miatselskaya, N.; Danylevsky, V.; Aculinin, A.; Kalinskaya, D.; Korchemkina, E.; Bovchaliuk, A.; Pietruczuk, A.; et al. Localization of aerosol sources in East-European region by back-trajectory statistics. Int. J. Remote Sens. 2014, 35, 6993–7006. [Google Scholar] [CrossRef]
- Osada, K.; Ura, S.; Kagawa, M.; Mikami, M.; Tanaka, T.Y.; Matoba, S.; Aoki, K.; Shinoda, M.; Kurosaki, Y.; Hayashi, M.; et al. Wet and dry deposition of mineral dust particles in Japan: Factors related to temporal variation and spatial distribution. Atmos. Chem. Phys. 2014, 14, 1107–1121. [Google Scholar] [CrossRef]
- Golitsyn, G.S.; Grechko, E.I.; Wang, G.; Wang, P.; Dzhola, A.V.; Emilenko, A.S.; Kopeikin, V.M.; Rakitin, V.S.; Safronov, A.N.; Fokeeva, E.V. Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol. Izv. Atmos. Ocean. Phys. 2015, 51, 1–11. [Google Scholar] [CrossRef]
- Bullard, J.E.; Mockford, T. Seasonal and decadal variability of dust observations in the Kangerlussuaq area, west Greenland. Arct. Antarct. Alp. Res. 2018, 50, S100011. [Google Scholar] [CrossRef]
- Li, C.; Dai, Z.; Liu, X.; Wu, P. Transport pathways and potential source region contributions of PM2.5 in Weifang: Seasonal variations. Appl. Sci. 2020, 10, 2835–2851. [Google Scholar] [CrossRef]
- Poddubny, V.A.; Nagovitsyna, E.S.; Markelov, Y.I.; Buevich, A.G.; Antonov, K.L.; Omel’kova, E.V.; Manzhurov, I.L. Estimation of the spatial distribution of methane concentration in the area of the Barents and Kara Seas in summer 2016-2017. Russ. Meteorol. Hydrol. 2020, 45, 193–200. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1988; pp. 441–497. [Google Scholar] [CrossRef]
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeol. Res. 2014, 15, 53–71. [Google Scholar] [CrossRef]
- Stokes, G.G. On the effect of internal friction of fluids on the motion of pendulums. Trans. Cambr. Philosoph. Soc. 1851, 9, 8–106. [Google Scholar] [CrossRef]
- Betzer, P.R.; Carder, K.L.; Duce, R.A.; Merrill, J.T.; Tindale, N.W.; Uematsu, M.; Costello, D.K.; Young, R.W.; Feely, R.A.; Breland, J.A.; et al. Long-range transport of giant mineral aerosol particles. Nature 1988, 336, 568–571. [Google Scholar] [CrossRef]
- Middleton, N.J.; Betzer, P.R.; Bull, P.A. Long-range transport of ’giant’ aeolian quartz grains: Linkage with discrete sedimentary sources and implications for protective particle transfer. Marine Geol. 2001, 177, 411–417. [Google Scholar] [CrossRef]
- van der Does, M.; Knippertz, P.; Zschenderlein, P.; Harrison, R.G.; Stuut, J.-B.W. The mysterious long-range transport of giant mineral dust particles. Sci. Adv. 2018, 4, eaau2768. [Google Scholar] [CrossRef] [PubMed]
- Arimoto, R.; Ray, B.J.; Lewis, N.F.; Tomza, U.; Duce, R.A. Mass-particle size distributions of atmospheric dust to the remote ocean. J. Geophys. Res. 1997, 102, 15867–15874. [Google Scholar] [CrossRef]
- Maring, H.B.; Savoie, D.L.; Izaguirre, M.A.; McCormick, C.; Arimoto, R.; Prospero, J.M.; Pilinis, C. Aerosol physical and optical properties and their relationship to aerosol composition in the free troposphere at Izania, Tenerife, Canary Islands, during July 1995. J. Geophys. Res. 2000, 105, 14677–14700. [Google Scholar] [CrossRef]
- Talbot, R.W.; Harris, R.C.; Browell, E.V.; Gregory, G.L.; Sebacher, D.I.; Beck, S.M. Distribution and geochemistry in the tropical North Atlantic Troposphere: Relationship to dust. J. Geophys. Res. 1986, 91, 5173–5182. [Google Scholar] [CrossRef]
- D’Almeida, G.A. On the variability of desert aerosol radiative characteristics. J. Geophys. Res. 1987, 92, 3017–3026. [Google Scholar] [CrossRef]
- Gomes, L.; Bergametti, G.; Coude-Gaussen, G.; Rognon, P. Sub-micron desert dusts: A sandblasting process. J. Geophys. Res. 1990, 95, 13927–13935. [Google Scholar] [CrossRef]
- Gullu, G.H.; Olmez, I.; Tuncel, G. Chemical concentrations and elements size distributions of aerosols in the eastern Mediterranean during strong dust storms. In The Impacts of Desert Dust Across the Mediterranean; Guerzoni, S., Chester, R., Eds.; Kluwer Academic: Norwell, MA, USA, 1996; pp. 339–347. [Google Scholar] [CrossRef]
- Maenhaut, W.; Ptasinki, J.; Cafmeyer, J. Detailed mass size distributions of atmospheric aerosol species in the Negev Desert, Israel, during ARACHNE-96. Nucl. Instrum. Methods Phys. Res. 1999, 150, 422–427. [Google Scholar] [CrossRef]
- Gomes, L.; Gillette, D.A. A comparison of characteristics of aerosol from dust storms in central Asia with soil derived dust from other regions. Atmos. Environ. 1993, 27A, 2539–2544. [Google Scholar] [CrossRef]
- Patterson, E.M.; Gillette, D.A. Commonalties in measured size distribution for aerosol having a soil-derived component. J. Geophys. Res. 1977, 82, 2074–2082. [Google Scholar] [CrossRef]
- Reid, J.S.; Flocchini, R.G.; Cahill, T.A.; Ruth, R.S.; Salgado, D.P. Local meteorological, transport, and source aerosol characteristics of late Autumn Owens Lake (dry) dust storms. Atmos. Environ. 1994, 28, 1699–1706. [Google Scholar] [CrossRef]
- Carlson, T.N.; Prospero, J.M. The large scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Met. 1972, 16, 1368–1371. [Google Scholar] [CrossRef]
- Simonenkov, D.V.; (V.E. Zuev Institute of Atmospheric Optics, Tomsk, Russia). Personal communication, 2023.
- Uno, I.; Eguchi, K.; Yumimoto, K.; Takemura, T.; Shimizu, A.; Uematsu, M.; Liu, Z.; Wang, Z.; Hara, Y.; Sugimoto, N. Asian dust transported one full circuit around the globe. Nat. Geosci. 2009, 2, 557–560. [Google Scholar] [CrossRef]
- Balkanski, Y.J.; Jacob, D.J.; Gardner, G.M.; Graustein, W.C.; Turekian, K.K. Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb. J. Geophys. Res. 1993, 98, 573–586. [Google Scholar] [CrossRef]
- Zhang, L.; Michelangeli, D.V.; Taylor, P.A. Numerical studies of aerosol scavenging by low-level, warm stratiform clouds and precipitation. Atmos. Environ. 2004, 38, 4653–4665. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Global Change; Wiley: New York, NY, USA, 1997; pp. 829–890. [Google Scholar]
- Abadi, A.R.S.; Hamzeh, N.H.; Shukurov, K.; Opp, C.; Dumka, U.C. Long-term investigation of aerosols in the Urmia Lake region in the Middle East by ground-based and satellite data in 2000–2021. Remote Sens. 2022, 14, 3827–3844. [Google Scholar] [CrossRef]
- Shukurov, K.A.; Shukurova, L.M. Potential sources of Southern Siberia aerosols by data of AERONET site in Tomsk, Russia. In Proceedings of the SPIE, XXIII International Symposium on Atmospheric and Oceanic Optics: Atmospheric and Oceanic Physics, Irkutsk, Russia, 3–7 July 2017; p. 104663W. [Google Scholar] [CrossRef]
- Swinehart, D.F. The Beer-Lambert law. J. Chem. Educ. 1962, 39, 333. [Google Scholar] [CrossRef]
- Evseeva, L.S.; Kuznetsova, L.P. Climatic characteristic. In The Caspian Sea: Hydrology and Hydrochemistry; Baidin, S.S., Kosarev, A.N., Eds.; Nauka: Moscow, Russia, 1986; pp. 19–28. (In Russian) [Google Scholar]
- Kaskaoutis, D.G.; Rashki, A.; Houssos, E.E.; Mofid, A.; Goto, D.; Bartzokas, A.; Francois, P.; Legrand, M. Meteorological aspects associated with dust storms in the Sistan region, southeastern Iran. Clim. Dyn. 2015, 45, 407–424. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Houssos, E.E.; Rashki, A.; Francois, P.; Legrand, M.; Goto, D.; Bartzokas, A.; Kambezidis, H.D.; Takemura, T. The Caspian Sea—Hindu Kush index (CasHKI): A regulatory factor for dust activity over southwest Asia. Glob. Planet. Chang. 2016, 137, 10–23. [Google Scholar] [CrossRef]
- Wang, Y.Q. MeteoInfo: GIS software for meteorological data visualization and analysis. Met. Appl. 2014, 21, 360–368. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Alam, K.; Ranjbar, A. Numerical simulations of dust storms originated from dried lakes in central and southwest Asia: The case of Aral Sea and Sistan Basin. Aeol. Res. 2021, 50, 100679–100695. [Google Scholar] [CrossRef]
- Abadi, A.R.S.; Hamzeh, N.H.; Chel Gee Ooi, M.; Kong, S.S.K.; Opp, C. Investigation of Two Severe Shamal Dust Storms and the Highest Dust Frequencies in the South and Southwest of Iran. Atmosphere 2022, 13, 1990–2011. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Abadi, A.R.S.; Madhavan, B.L. Investigation of a severe frontal dust storm over the Persian Gulf in February 2020 by CAMS model. Arab. J. Geosci. 2021, 14, 1–12. [Google Scholar] [CrossRef]
- Karami, S.; Hamzeh, N.H.; Alam, K.; Ranjbar, A. The study of a rare frontal dust storm with snow and rain fall: Model results and ground measurements. J. Atmos. Sol. Terr. Phys. 2020, 197, 105149–105161. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Karami, S.; Kaskaoutis, D.G.; Tegen, I.; Moradi, M.; Opp, C. Atmospheric dynamics and numerical simulations of six frontal dust storms in the Middle East region. Atmosphere 2021, 12, 125–151. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Ranjbar Saadat Abadi, A.; Ooi, M.C.G.; Habibi, M.; Schöner, W. Analyses of a Lake Dust Source in the Middle East through Models Performance. Remote Sens. 2022, 14, 2145–2168. [Google Scholar] [CrossRef]
- Shukurov, K.A.; Shukurova, L.M. Aral’s potential source of dust for Moscow region. E3S Web Conf. 2019, 99, 02015–02019. [Google Scholar] [CrossRef]
- Hamzeh, N.H.; Kaskaoutis, D.G.; Rashki, A.; Mohammadpour, K. Long-term variability of dust events in southwestern Iran and its relationship with the drought. Atmosphere 2021, 12, 1350–1370. [Google Scholar] [CrossRef]
- Broomandi, P.; Mohammadpour, K.; Kaskaoutis, D.G.; Fathian, A.; Abdullaev, S.F.; Maslov, V.A.; Nikfal, A.; Jahanbakhshi, A.; Aubakirova, B.; Kim, J.R.; et al. A Synoptic- and Remote Sensing-based Analysis of a Severe Dust Storm Event over Central Asia. Aerosol Air Qual. Res. 2023, 23, 220309–220333. [Google Scholar] [CrossRef]
- Gubanova, D.; Chkhetiani, O.; Vinogradova, A.; Skorokhod, A.; Iordanskii, M. Atmospheric transport of dust aerosol from arid zones to the Moscow region during fall 2020. AIMS Geosci. 2022, 8, 277–302. [Google Scholar] [CrossRef]
Site | Regional Troposphere | Regional Troposphere | Regional Troposphere | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | I | II | III | IV | I | II | III | IV | |
Moscow region | 23 | 23 | 23 | 24 | 20 | 18 | 16 | 19 | 11 | 18 | 19 | 18 |
Volga region | 39 | 42 | 37 | 38 | 36 | 35 | 29 | 32 | 19 | 32 | 30 | 29 |
Southern Urals | 52 | 53 | 49 | 49 | 48 | 46 | 38 | 42 | 25 | 41 | 41 | 36 |
South-western Siberia | 59 | 63 | 62 | 61 | 57 | 56 | 51 | 55 | 25 | 48 | 52 | 44 |
Baikal Region | 56 | 63 | 65 | 65 | 54 | 56 | 55 | 60 | 19 | 46 | 53 | 44 |
Amur Region | 42 | 55 | 56 | 61 | 40 | 48 | 45 | 55 | 14 | 38 | 42 | 38 |
Prymorie region | 53 | 66 | 57 | 70 | 52 | 59 | 46 | 66 | 16 | 45 | 41 | 42 |
Black Sea−Caspian | 28 | 34 | 44 | 35 | 24 | 27 | 35 | 27 | 18 | 27 | 37 | 29 |
Northwest Russia | 25 | 22 | 23 | 24 | 23 | 17 | 17 | 19 | 11 | 16 | 19 | 18 |
Northern Urals | 39 | 39 | 35 | 36 | 36 | 31 | 27 | 29 | 17 | 30 | 29 | 27 |
West Siberia | 45 | 44 | 46 | 46 | 41 | 36 | 35 | 38 | 20 | 34 | 38 | 34 |
Yakutia | 30 | 42 | 50 | 44 | 28 | 34 | 38 | 37 | 10 | 29 | 38 | 27 |
Chukotka | 24 | 31 | 30 | 38 | 23 | 25 | 21 | 34 | 3 | 16 | 21 | 16 |
Barents Sea | 18 | 16 | 14 | 17 | 16 | 11 | 9 | 12 | 6 | 11 | 11 | 11 |
Kara Sea | 27 | 25 | 23 | 26 | 25 | 18 | 16 | 20 | 10 | 18 | 18 | 17 |
Laptev Sea | 25 | 29 | 30 | 31 | 23 | 22 | 21 | 25 | 7 | 19 | 23 | 19 |
East Siberian Sea | 20 | 25 | 23 | 29 | 18 | 19 | 15 | 24 | 4 | 14 | 16 | 14 |
West Iran | 7 | 11 | 38 | 14 | 6 | 8 | 27 | 10 | 3 | 7 | 30 | 9 |
East Iran | 24 | 39 | 81 | 52 | 20 | 31 | 72 | 43 | 12 | 27 | 73 | 37 |
Central Iran | 7 | 14 | 59 | 23 | 6 | 10 | 48 | 18 | 3 | 9 | 49 | 14 |
South Iran | 5 | 8 | 58 | 18 | 4 | 5 | 47 | 15 | 1 | 5 | 47 | 10 |
West China | 24 | 39 | 55 | 39 | 23 | 33 | 42 | 35 | 3 | 21 | 41 | 16 |
North India | 7 | 18 | 47 | 19 | 7 | 14 | 34 | 16 | 1 | 10 | 34 | 6 |
Southeast Asia | 10 | 8 | 5 | 9 | 10 | 7 | 3 | 8 | 1 | 4 | 3 | 2 |
Mesopotamia | 4 | 6 | 13 | 5 | 3 | 4 | 8 | 3 | 1 | 4 | 8 | 3 |
Arabian Peninsula | 2 | 2 | 20 | 6 | 2 | 1 | 14 | 5 | <1 | 1 | 13 | 2 |
Northeast Africa | 1 | 2 | 8 | 2 | 1 | 1 | 5 | 1 | <1 | 1 | 5 | 1 |
Northwest Africa | - | <1 | <1 | - | <1 | <1 | <1 | <1 | - | - | <1 | - |
North America (USA) | 11 | 17 | 9 | 17 | 10 | 14 | 6 | 16 | 1 | 6 | 4 | 4 |
East Europe (outside Russia) | 6 | 7 | 7 | 6 | 5 | 5 | 5 | 4 | 2 | 4 | 6 | 5 |
West Europe | 3 | 4 | 2 | 3 | 3 | 3 | 1 | 2 | 1 | 3 | 1 | 2 |
North Pole region | 10 | 11 | 8 | 11 | 9 | 8 | 5 | 8 | 2 | 6 | 5 | 6 |
Site | I | II | III | IV |
---|---|---|---|---|
Moscow Region | 3 | 5 | 5 | 5 |
Volga Region | 4 | 9 | 8 | 8 |
Southern Urals | 7 | 10 | 8 | 9 |
South-western Siberia | 4 | 8 | 8 | 8 |
Baikal Region | 1 | 5 | 4 | 3 |
Amur Region | - | 2 | 1 | 1 |
Prymorie Region | 2 | 2 | <1 | 4 |
Black Sea−Caspian | 10 | 14 | 21 | 19 |
Northwest Russia | 2 | 2 | 2 | 3 |
Northern Urals | 2 | 2 | 2 | 3 |
West Siberia | 1 | 1 | 2 | 2 |
Yakutia | - | - | 1 | 1 |
Chukotka | - | - | - | - |
Barents Sea | 3 | 1 | <1 | - |
Kara Sea | 1 | 1 | - | 1 |
Laptev Sea | <1 | <1 | - | 1 |
East Siberian Sea | <1 | - | - | <1 |
West Iran | 2 | 4 | 19 | 6 |
East Iran | 8 | 22 | 63 | 30 |
Central Iran | 2 | 7 | 38 | 11 |
South Iran | 1 | 3 | 23 | 6 |
West China | 1 | 7 | 19 | 5 |
North India | <1 | 6 | 10 | 3 |
Southeast Asia | <1 | 1 | - | 1 |
Mesopotamia | 1 | 2 | 5 | 2 |
Arabian Peninsula | - | 1 | 7 | 2 |
Northeast Africa | <1 | 1 | 3 | 1 |
Northwest Africa | - | - | - | - |
North America (USA) | - | - | - | - |
East Europe (outside Russia) | 1 | 1 | 1 | 2 |
West Europe | <1 | <1 | - | 1 |
North Pole Region | - | - | - | - |
Site | Regional Troposphere | Regional Troposphere | Regional Troposphere | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | I | II | III | IV | I | II | III | IV | |
Moscow Region | <1 | 11 | 29 | 10 | <1 | 13 | 34 | 10 | <1 | 8 | 23 | 9 |
Volga region | 1 | 13 | 32 | 11 | 1 | 13 | 38 | 6 | 1 | 11 | 22 | 14 |
Southern Urals | <1 | 15 | 22 | 7 | <1 | 17 | 24 | 6 | <1 | 10 | 20 | 8 |
South-western Siberia | 1 | 10 | 16 | 8 | 1 | 8 | 16 | 5 | 1 | 12 | 16 | 12 |
Baikal Region | <1 | 7 | 16 | 9 | <1 | 6 | 16 | 6 | <1 | 7 | 16 | 15 |
Amur Region | 1 | 4 | 13 | 4 | <1 | 4 | 12 | 3 | <1 | 3 | 14 | 5 |
Prymorie Region | <1 | 5 | 19 | 8 | <1 | 5 | 15 | 7 | <1 | 5 | 23 | 13 |
Black Sea−Caspian | 1 | 16 | 52 | 18 | <1 | 19 | 71 | 15 | 1 | 11 | 36 | 21 |
Northwest Russia | <1 | 6 | 22 | 4 | <1 | 7 | 27 | 4 | <1 | 4 | 17 | 4 |
Northern Urals | <1 | 7 | 15 | 5 | <1 | 8 | 17 | 6 | <1 | 5 | 15 | 5 |
West Siberia | <1 | 6 | 10 | 3 | <1 | 6 | 10 | 2 | <1 | 6 | 10 | 4 |
Yakutia | <1 | 4 | 12 | 4 | <1 | 4 | 13 | 4 | <1 | 4 | 12 | 5 |
Chukotka | <1 | 2 | 8 | 1 | <1 | 2 | 6 | 1 | <1 | 3 | 9 | 1 |
Barents Sea | <1 | 2 | 14 | 3 | <1 | 2 | 13 | 3 | <1 | 2 | 12 | 3 |
Kara Sea | <1 | 4 | 11 | 2 | <1 | 4 | 13 | 2 | <1 | 3 | 11 | 2 |
Laptev Sea | <1 | 3 | 11 | 2 | <1 | 3 | 12 | 2 | <1 | 3 | 9 | 2 |
East Siberian Sea | <1 | 3 | 9 | 4 | <1 | 3 | 11 | 2 | <1 | 2 | 7 | 7 |
West Iran | 2 | 23 | 76 | 33 | 1 | 26 | 83 | 27 | 3 | 20 | 65 | 37 |
East Iran | 4 | 35 | 71 | 37 | 2 | 41 | 77 | 33 | 7 | 29 | 65 | 45 |
Central Iran | 3 | 28 | 67 | 39 | 3 | 29 | 75 | 35 | 5 | 26 | 54 | 44 |
South Iran | 2 | 28 | 103 | 43 | 2 | 22 | 99 | 36 | 4 | 32 | 105 | 51 |
West China | 2 | 25 | 58 | 49 | 2 | 25 | 50 | 28 | 5 * | 25 | 64 | 107 |
North India | 1 | 30 | 65 | 20 | <1 | 14 | 63 | 16 | <1 * | 37 | 69 | 31 |
Southeast Asia | 3 | 14 | 36 | 17 | 3 | 13 | 36 | 15 | 4 * | 16 | 37 | 30 |
Mesopotamia | <1 | 8 | 68 | 21 | <1 | 10 | 75 | 19 | 1 * | 6 | 47 | 19 |
Arabian Peninsula | 1 | 4 | 61 | 48 | 1 | 1 | 53 | 36 | <1 * | 7 * | 62 | 64 |
Northeast Africa | 1 * | 30 * | 71 | 22 | 1 | 13 | 98 | 13 | 1 * | 38 * | 47 | 27 * |
Northwest Africa | <1 * | 8 * | 12 * | 9 * | - | 6 | 4 | <1 | <1 * | 10 * | 13 * | 9 * |
North America (USA) | <1 | 3 | 6 | 3 | <1 | 2 | 6 | 2 | <1 * | 3 | 6 | 10 |
East Europe (outside Russia) | 2 | 7 | 26 | 20 | 2 | 6 | 39 | 34 | 1 * | 8 | 17 | 7 |
West Europe | 1 | 9 | 12 * | 11 | <1 | 10 | 22 | 23 | <1 * | 7 | 7 * | 3 |
North Pole Region | <1 | 1 | 7 | 4 | <1 | 2 | 7 | 2 | <1 * | 1 | 6 | 4 |
Site | I | II | III | IV |
---|---|---|---|---|
Moscow Region | <1 * | 5 | 13 | 6 |
Volga Region | <1 | 5 | 8 | 2 |
Southern Urals | <1 | 7 | 12 | 4 |
South-western Siberia | <1 * | 4 | 9 | 5 |
Baikal Region | <1 * | 4 * | 11 * | 5 * |
Amur Region | <1 * | <1 | 4 * | <1 * |
Prymorie Region | <1 * | 2 * | 4 * | 1 * |
Black Sea−Caspian | <1 | 6 | 15 | 7 |
Northwest Russia | <1 * | 3 * | 9 | 1 |
Northern Urals | <1 | 1 | 5 | 1 |
West Siberia | <1 * | <1 * | 8 * | 1 * |
Yakutia | <1 * | 1 * | 3 * | <1 * |
Chukotka | <1 * | <1 * | <1 * | <1 * |
Barents Sea | <1 | <1 * | <1 * | <1 * |
Kara Sea | <1 * | <1 * | 2 * | <1 * |
Laptev Sea | <1 * | <1 * | 3 * | <1 * |
East Siberian Sea | <1 * | <1 * | <1 * | <1 * |
West Iran | 3 * | 19 | 33 | 41 |
East Iran | 6 | 20 | 38 | 38 |
Central Iran | 3 * | 19 | 43 | 44 |
South Iran | 3 * | 17 | 39 | 38 |
West China | <1 * | 13 | 59 | 73 |
North India | <1 * | 17 | 26 | 24 |
Southeast Asia | 4 * | 6 * | 22 * | 11 * |
Mesopotamia | 1 * | 7 | 23 | 15 |
Arabian Peninsula | <1 * | 11 * | 23 | 45 * |
Northeast Africa | 1 * | 35 * | 49 | 8 * |
Northwest Africa | <1 * | 3 * | 7 * | 6 * |
North America (USA) | <1 * | <1 * | <1 * | <1 * |
East Europe (outside Russia) | <1 * | 5 | 8 | 8 |
West Europe | <1 * | <1 * | <1 * | 1 * |
North Pole Region | <1 * | <1 * | <1 * | <1 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukurov, K.A.; Simonenkov, D.V.; Nevzorov, A.V.; Rashki, A.; Hamzeh, N.H.; Abdullaev, S.F.; Shukurova, L.M.; Chkhetiani, O.G. CALIOP-Based Evaluation of Dust Emissions and Long-Range Transport of the Dust from the Aral−Caspian Arid Region by 3D-Source Potential Impact (3D-SPI) Method. Remote Sens. 2023, 15, 2819. https://doi.org/10.3390/rs15112819
Shukurov KA, Simonenkov DV, Nevzorov AV, Rashki A, Hamzeh NH, Abdullaev SF, Shukurova LM, Chkhetiani OG. CALIOP-Based Evaluation of Dust Emissions and Long-Range Transport of the Dust from the Aral−Caspian Arid Region by 3D-Source Potential Impact (3D-SPI) Method. Remote Sensing. 2023; 15(11):2819. https://doi.org/10.3390/rs15112819
Chicago/Turabian StyleShukurov, Karim Abdukhakimovich, Denis Valentinovich Simonenkov, Aleksei Viktorovich Nevzorov, Alireza Rashki, Nasim Hossein Hamzeh, Sabur Fuzaylovich Abdullaev, Lyudmila Mihailovna Shukurova, and Otto Guramovich Chkhetiani. 2023. "CALIOP-Based Evaluation of Dust Emissions and Long-Range Transport of the Dust from the Aral−Caspian Arid Region by 3D-Source Potential Impact (3D-SPI) Method" Remote Sensing 15, no. 11: 2819. https://doi.org/10.3390/rs15112819
APA StyleShukurov, K. A., Simonenkov, D. V., Nevzorov, A. V., Rashki, A., Hamzeh, N. H., Abdullaev, S. F., Shukurova, L. M., & Chkhetiani, O. G. (2023). CALIOP-Based Evaluation of Dust Emissions and Long-Range Transport of the Dust from the Aral−Caspian Arid Region by 3D-Source Potential Impact (3D-SPI) Method. Remote Sensing, 15(11), 2819. https://doi.org/10.3390/rs15112819