Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Response Variables and Sample Data
2.3. Predictor Variables
2.4. Land Cover Discrimination by Temporal Mean Metrics
2.5. Land Cover Modeling
2.6. Land Cover Mapping
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Satellite (Data Type) | Band, Index Name, or Backscatter Coefficient | Land Cover Class | F-Value | p-Value | Significance |
---|---|---|---|---|---|
VV | Tropical moist forest | 6 | 0.002568297 | ** | |
Grassland | 62 | 3.67405E-26 | *** | ||
Herbaceous and shrubland | 23 | 1.57724E-10 | *** | ||
Infrastructure | 0 | 0.631883799 | |||
Mature palm plantations | 72 | 3.08908E-30 | ** | ||
Water | 3 | 0.031589942 | * | ||
Wetland | 11 | 1.76326E-05 | *** | ||
Young palm plantations | 90 | 3.55004E-37 | *** | ||
VH | Tropical moist forest | 6 | 0.002387089 | ** | |
Grassland | 84 | 4.77421E-35 | *** | ||
Herbaceous and shrubland | 26 | 1.27439E-11 | *** | ||
Infrastructure | 1 | 0.343709726 | |||
Mature palm plantations | 139 | 5.1437E-55 | *** | ||
Water | 7 | 0.000870292 | *** | ||
Wetland | 3 | 0.053333071 | * | ||
Young palm plantations | 101 | 3.48339E-41 | *** | ||
VVmVH | Tropical moist forest | 5 | 0.008475596 | ** | |
Grassland | 47 | 3.22066E-20 | *** | ||
Herbaceous and shrubland | 18 | 2.72475E-08 | *** | ||
Infrastructure | 0 | 0.680842298 | |||
Mature palm plantations | 42 | 1.51053E-18 | *** | ||
Shrubland | 8 | 0.000320566 | *** | ||
Water | 2 | 0.090936068 | |||
Wetland | 14 | 1.33331E-06 | *** | ||
Young palm plantations | 62 | 1.71158E-26 | *** | ||
VHdVV | Tropical moist forest | 1 | 0.297645719 | ||
Grassland | 0 | 0.645580222 | |||
Herbaceous and shrubland | 0 | 0.846826805 | |||
Infrastructure | 0 | 0.977296257 | |||
Mature palm plantations | 9 | 0.000140432 | *** | ||
Water | 0 | 0.760810131 | |||
Wetland | 11 | 2.46617E-05 | *** | ||
Young palm plantations | 3 | 0.040476133 | * | ||
BLUE | Tropical moist forest | 2 | 0.153644537 | ||
Grassland | 5 | 0.00609176 | * | ||
Herbaceous and shrubland | 2 | 0.12682676 | |||
Infrastructure | 5 | 0.004748278 | * | ||
Mature palm plantations | 42 | 3.40328E-18 | *** | ||
Water | 7 | 0.001516881 | * | ||
Wetland | 11 | 2.93761E-05 | *** | ||
Young palm plantations | 29 | 4.75329E-13 | *** | ||
GREEN | Tropical moist forest | 3 | 0.053247018 | * | |
Grassland | 2 | 0.132665756 | |||
Herbaceous and shrubland | 2 | 0.207288516 | |||
Infrastructure | 7 | 0.001213031 | ** | ||
Mature palm plantations | 4 | 0.017734227 | * | ||
Water | 1 | 0.225658337 | |||
Wetland | 6 | 0.003982018 | ** | ||
Young palm plantations | 2 | 0.115107982 | |||
RED | Tropical moist forest | 5 | 0.010667312 | * | |
Grassland | 17 | 5.21408E-08 | *** | ||
Herbaceous and shrubland | 6 | 0.002036325 | * | ||
Infrastructure | 3 | 0.046986096 | * | ||
Mature palm plantations | 56 | 6.96644E-24 | *** | ||
Water | 4 | 0.012729719 | * | ||
Wetland | 23 | 2.33559E-10 | *** | ||
Young palm plantations | 44 | 2.82816E-19 | *** | ||
RED_E_1 | Tropical moist forest | 11 | 1.62602E-05 | *** | |
Grassland | 2 | 0.216948004 | |||
Herbaceous and shrubland | 3 | 0.033364352 | * | ||
Infrastructure | 10 | 6.81317E-05 | *** | ||
Mature palm plantations | 3 | 0.038285219 | * | ||
Water | 8 | 0.00024883 | *** | ||
Wetland | 11 | 1.72503E-05 | *** | ||
Young palm plantations | 2 | 0.164089184 | |||
RED_E_2 | Tropical moist forest | 110 | 1.25924E-44 | *** | |
Grassland | 113 | 7.53722E-46 | *** | ||
Herbaceous and shrubland | 38 | 8.18867E-17 | *** | ||
Infrastructure | 18 | 1.79485E-08 | *** | ||
Mature palm plantations | 410 | 2.3864E-136 | *** | ||
Water | 4 | 0.020459247 | * | ||
Wetland | 14 | 6.56859E-07 | *** | ||
Young palm plantations | 341 | 6.1106E-118 | *** | ||
RED_E_3 | Tropical moist forest | 114 | 6.74092E-46 | *** | |
Grassland | 113 | 1.40749E-45 | *** | ||
Herbaceous and shrubland | 37 | 2.16841E-16 | *** | ||
Infrastructure | 18 | 2.92979E-08 | *** | ||
Mature palm plantations | 423 | 1.76E-139 | *** | ||
Water | 4 | 0.016013878 | * | ||
Wetland | 16 | 1.78503E-07 | *** | ||
Young palm plantations | 333 | 8.7789E-116 | *** | ||
NIR | Tropical moist forest | 65 | 1.81645E-27 | *** | |
Grassland | 63 | 1.16778E-26 | *** | ||
Herbaceous and shrubland | 21 | 9.85588E-10 | *** | ||
Infrastructure | 9 | 0.000172513 | *** | ||
Mature palm plantations | 291 | 1.5266E-103 | *** | ||
Water | 3 | 0.056042942 | * | ||
Wetland | 10 | 5.68407E-05 | *** | ||
Young palm plantations | 236 | 5.56687E-87 | *** | ||
RED_E_4 | Tropical moist forest | 95 | 4.88148E-39 | *** | |
Grassland | 77 | 2.82783E-32 | *** | ||
Herbaceous and shrubland | 29 | 4.25091E-13 | *** | ||
Infrastructure | 15 | 2.53381E-07 | *** | ||
Mature palm plantations | 388 | 1.926E-130 | *** | ||
Water | 3 | 0.059911938 | * | ||
Wetland | 11 | 1.26172E-05 | *** | ||
Young palm plantations | 291 | 1.5251E-103 | *** | ||
SWIR_1 | Tropical moist forest | 13 | 3.99272E-06 | *** | |
Grassland | 38 | 1.44193E-16 | *** | ||
Herbaceous and shrubland | 6 | 0.002912467 | ** | ||
Infrastructure | 10 | 5.48921E-05 | *** | ||
Mature palm plantations | 8 | 0.000514043 | ** | ||
Water | 3 | 0.043625139 | * | ||
Wetland | 30 | 2.57828E-13 | *** | ||
Young palm plantations | 13 | 3.20698E-06 | *** | ||
SWIR_2 | Tropical moist forest | 2 | 0.187005907 | ||
Grassland | 42 | 1.53557E-18 | *** | ||
Herbaceous and shrubland | 8 | 0.000266878 | *** | ||
Infrastructure | 6 | 0.00235001 | ** | ||
Mature palm plantations | 7 | 0.001428365 | ** | ||
Water | 8 | 0.000312134 | ** | ||
Wetland | 37 | 3.01375E-16 | *** | ||
Young palm plantations | 26 | 6.6958E-12 | *** | ||
EVI | Tropical moist forest | 50 | 1.03023E-21 | *** | |
Grassland | 58 | 1.03682E-24 | *** | ||
Herbaceous and shrubland | 17 | 3.80441E-08 | *** | ||
Infrastructure | 2 | 0.207651799 | |||
Mature palm plantations | 276 | 2.9126E-99 | *** | ||
Water | 1 | 0.449498764 | |||
Wetland | 11 | 2.70347E-05 | *** | ||
Young palm plantations | 186 | 4.50887E-71 | *** | ||
SAVI | Tropical moist sorest | 41 | 4.27621E-18 | *** | |
Grassland | 45 | 1.15582E-19 | *** | ||
Herbaceous and shrubland | 14 | 7.42276E-07 | *** | ||
Infrastructure | 1 | 0.384579741 | |||
Mature palm plantations | 260 | 2.23105E-94 | *** | ||
Water | 0 | 0.739025492 | |||
Wetland | 8 | 0.000341478 | ** | ||
Young palm plantations | 175 | 2.39727E-67 | *** | ||
RNDVI | Tropical moist forest | 5 | 0.009506599 | ** | |
Grassland | 32 | 4.23285E-14 | *** | ||
Herbaceous and shrubland | 11 | 1.7484E-05 | *** | ||
Infrastructure | 6 | 0.003625327 | ** | ||
Mature palm plantations | 3 | 0.034660805 | * | ||
Water | 3 | 0.043060708 | * | ||
Wetland | 13 | 2.06961E-06 | *** | ||
Young palm plantations | 6 | 0.00176677 | ** | ||
NDVI | Tropical moist forest | 14 | 7.66839E-07 | *** | |
Grassland | 25 | 2.5465E-11 | *** | ||
Herbaceous and shrubland | 8 | 0.000231118 | ** | ||
Infrastructure | 0 | 0.858098151 | |||
Mature palm plantations | 142 | 6.91379E-56 | *** | ||
Water | 1 | 0.493770717 | |||
Wetland | 3 | 0.046984903 | * | ||
Young palm plantations | 92 | 8.82396E-38 | *** |
Appendix D. (Long Table, It Was Added after References)
Satellite (Data Type) | Band, Index Name, or Backscatter Coefficient | Land Cover Class | F-Value | p-Value | Significance |
---|---|---|---|---|---|
Sentinel-1 (SAR) | VV | Urban areas | 3.8 | 0.022657 | * |
Temporary crops | 77.9 | 1.57E-32 | *** | ||
Permanent crops | 34.5 | 2.61E-15 | *** | ||
Grassland | 33.0 | 1.1E-14 | *** | ||
Heterogeneous agricultural areas | 149.5 | 1.1E-58 | *** | ||
Forest | 9.8 | 5.93E-05 | *** | ||
Areas with herbaceous and/or shrub vegetation | 7.0 | 0.000905 | *** | ||
Open areas with little or no vegetation | 1.7 | 0.182592 | |||
Continental humid areas | 41.8 | 2.82E-18 | *** | ||
Water | 1.9 | 0.151496 | |||
VH | Urban areas | 2.5 | 0.080392 | ||
Temporary crops | 157.8 | 1.55E-61 | *** | ||
Permanent crops | 62.9 | 1.08E-26 | *** | ||
Grassland | 51.8 | 2.66E-22 | *** | ||
Heterogeneous agricultural areas | 386.7 | 2.9E-130 | *** | ||
Forest | 8.3 | 0.000261 | *** | ||
Areas with herbaceous and/or shrub vegetation | 7.4 | 0.000615 | *** | ||
Open areas with little or no vegetation | 22.7 | 2.11E-10 | *** | ||
Continental humid areas | 9.5 | 8E-05 | *** | ||
Water | 4.3 | 0.014194 | ** | ||
VVmVH | Urban areas | 3.8 | 0.023579 | * | |
Temporary crops | 57.3 | 1.77E-24 | *** | ||
Permanent crops | 19.3 | 5.67E-09 | *** | ||
Grassland | 23.2 | 1.26E-10 | *** | ||
Heterogeneous agricultural areas | 71.5 | 4.72E-30 | *** | ||
Forest | 8.6 | 0.000187 | *** | ||
Areas with herbaceous and/or shrub vegetation | 5.7 | 0.003311 | * | ||
Open areas with little or no vegetation | 0.0 | 0.98551 | |||
Continental humid areas | 50.6 | 7.73E-22 | *** | ||
Water | 1.3 | 0.279511 | |||
VHdVV | Urban areas | 2.9 | 0.058313 | ||
Temporary crops | 0.4 | 0.694037 | |||
Permanent crops | 3.4 | 0.032289 | * | ||
Grassland | 3.2 | 0.041195 | * | ||
Heterogeneous agricultural areas | 6.8 | 0.001139 | * | ||
Forest | 2.5 | 0.07944 | |||
Areas with herbaceous and/or shrub vegetation | 1.5 | 0.221896 | |||
Open areas with little or no vegetation | 188.8 | 5.28E-72 | *** | ||
Continental humid areas | 15.3 | 2.66E-07 | *** | ||
Water | 0.7 | 0.514729 | |||
Sentinel-2 (Multispectral) | BLUE | Urban areas | 1.0 | 0.352686 | |
Temporary crops | 1.0 | 0.351463 | |||
Permanent crops | 21.2 | 9.04E-10 | *** | ||
Grassland | 10.9 | 2.06E-05 | *** | ||
Heterogeneous agricultural areas | 4.0 | 0.018951 | * | ||
Forest | 10.1 | 4.43E-05 | *** | ||
Areas with herbaceous and/or shrub vegetation | 1.5 | 0.232523 | |||
Open areas with little or no vegetation | 281.4 | 7E-101 | *** | ||
Continental humid areas | 24.2 | 5.18E-11 | *** | ||
Water | 14.8 | 4.53E-07 | *** | ||
GREEN | Urban areas | 1.1 | 0.323845 | ||
Temporary crops | 4.0 | 0.018853 | * | ||
Permanent crops | 1.1 | 0.342954 | |||
Grassland | 3.3 | 0.036229 | * | ||
Heterogeneous agricultural areas | 43.3 | 6.89E-19 | *** | ||
Forest | 0.3 | 0.722477 | |||
Areas with herbaceous and/or shrub vegetation | 2.2 | 0.110736 | |||
Open areas with little or no vegetation | 278.3 | 5.7E-100 | *** | ||
Continental humid areas | 6.7 | 0.001316 | * | ||
Water | 14.8 | 4.31E-07 | *** | ||
RED | Urban areas | 0.2 | 0.855469 | ||
Temporary crops | 6.3 | 0.001832 | ** | ||
Permanent crops | 17.2 | 4.15E-08 | *** | ||
Grassland | 34.5 | 2.75E-15 | *** | ||
Heterogeneous agricultural areas | 19.8 | 3.45E-09 | *** | ||
Forest | 12.1 | 6.19E-06 | *** | ||
Areas with herbaceous and/or shrub vegetation | 5.2 | 0.005423 | * | ||
Open areas with little or no vegetation | 213.5 | 5.11E-80 | *** | ||
Continental humid areas | 73.6 | 7.3E-31 | *** | ||
Water | 36.6 | 3.91E-16 | *** | ||
RED_E_1 | Urban areas | 0.6 | 0.568254 | ||
Temporary crops | 8.8 | 0.000166 | *** | ||
Permanent crops | 13.9 | 1.07E-06 | *** | ||
Grassland | 5.0 | 0.006749 | * | ||
Heterogeneous agricultural areas | 50.8 | 6.9E-22 | *** | ||
Forest | 5.0 | 0.006819 | * | ||
Areas with herbaceous and/or shrub vegetation | 6.1 | 0.002329 | * | ||
Open areas with little or no vegetation | 204.9 | 3.01E-77 | *** | ||
Continental humid areas | 16.7 | 7.11E-08 | *** | ||
Water | 55.4 | 9.94E-24 | *** | ||
RED_E_2 | Urban areas | 28.0 | 2.16E-12 | *** | |
Temporary crops | 238.3 | 7.46E-88 | *** | ||
Permanent crops | 166.7 | 1.38E-64 | *** | ||
Grassland | 135.6 | 8.32E-54 | *** | ||
Heterogeneous agricultural areas | 166.1 | 2.22E-64 | *** | ||
Forest | 66.2 | 5.19E-28 | *** | ||
Areas with herbaceous and/or shrub vegetation | 24.3 | 4.69E-11 | *** | ||
Open areas with little or no vegetation | 33.0 | 1.16E-14 | *** | ||
Continental humid areas | 34.0 | 4.49E-15 | *** | ||
Water | 8.9 | 0.00014 | * | ||
RED_E_3 | Urban areas | 23.3 | 1.7E-10 | *** | |
Temporary crops | 285.3 | 4.7E-102 | *** | ||
Permanent crops | 143.5 | 1.36E-56 | *** | ||
Grassland | 137.9 | 1.25E-54 | *** | ||
Heterogeneous agricultural areas | 189.4 | 3.55E-72 | *** | ||
Forest | 75.5 | 1.34E-31 | *** | ||
Areas with herbaceous and/or shrub vegetation | 24.6 | 3.42E-11 | *** | ||
Open areas with little or no vegetation | 21.5 | 6.91E-10 | *** | ||
Continental humid areas | 40.7 | 7.86E-18 | *** | ||
Water | 7.6 | 0.000514 | ** | ||
NIR | Urban areas | 6.1 | 0.00236595 | * | |
Temporary crops | 211.6 | 2.0775E-79 | *** | ||
Permanent crops | 70.3 | 1.348E-29 | *** | ||
Grassland | 74.0 | 4.8769E-31 | *** | ||
Heterogeneous agricultural areas | 107.5 | 1.1997E-43 | *** | ||
Forest | 46.1 | 4.9883E-20 | *** | ||
Areas with herbaceous and/or shrub vegetation | 14.6 | 5.2772E-07 | *** | ||
Open areas with little or no vegetation | 23.9 | 6.8998E-11 | *** | ||
Continental humid areas | 22.2 | 3.4788E-10 | *** | ||
Water | 5.4 | 0.00482082 | * | ||
RED_E_4 | Urban areas | 14.0 | 1.13E-06 | *** | |
Temporary crops | 283.1 | 2.1E-101 | *** | ||
Permanent crops | 120.8 | 1.62E-48 | *** | ||
Grassland | 101.1 | 2.77E-41 | *** | ||
Heterogeneous agricultural areas | 147.3 | 6.28E-58 | *** | ||
Forest | 63.1 | 8.5E-27 | *** | ||
Areas with herbaceous and/or shrub vegetation | 17.6 | 2.98E-08 | *** | ||
Open areas with little or no vegetation | 24.0 | 6.21E-11 | *** | ||
Continental humid areas | 25.0 | 2.29E-11 | *** | ||
Water | 5.8 | 0.003018 | * | ||
SWIR_1 | Urban areas | 15.2 | 3.47E-07 | *** | |
Temporary crops | 4.0 | 0.017824 | * | ||
Permanent crops | 13.7 | 1.27E-06 | *** | ||
Grassland | 46.3 | 4.21E-20 | *** | ||
Heterogeneous agricultural areas | 4.6 | 0.01007 | * | ||
Forest | 7.7 | 0.000479 | ** | ||
Areas with herbaceous and/or shrub vegetation | 7.0 | 0.000932 | ** | ||
Open areas with little or no vegetation | 253.7 | 1.41E-92 | *** | ||
Continental humid areas | 32.4 | 1.94E-14 | *** | ||
Water | 0.2 | 0.822389 | |||
SWIR_2 | Urban areas | 12.9 | 3.21E-06 | *** | |
Temporary crops | 4.9 | 0.007743 | * | ||
Permanent crops | 3.4 | 0.032219 | * | ||
Grassland | 60.9 | 6.76E-26 | *** | ||
Heterogeneous agricultural areas | 16.9 | 5.65E-08 | *** | ||
Forest | 1.7 | 0.182995 | |||
Areas with herbaceous and/or shrub vegetation | 8.0 | 0.000366 | * | ||
Open areas with little or no vegetation | 384.5 | 1.1E-129 | *** | ||
Continental humid areas | 50.8 | 6.87E-22 | *** | ||
Water | 0.6 | 0.568736 | |||
EVI | Urban areas | 1.4 | 0.236922 | ||
Temporary crops | 122.9 | 2.92E-49 | *** | ||
Permanent crops | 56.1 | 4.96E-24 | *** | ||
Grassland | 81.5 | 6.47E-34 | *** | ||
Heterogeneous agricultural areas | 99.1 | 1.51E-40 | *** | ||
Forest | 39.0 | 3.9E-17 | *** | ||
Areas with herbaceous and/or shrub vegetation | 10.5 | 2.97E-05 | *** | ||
Open areas with little or no vegetation | 1.4 | 0.241734 | |||
Continental humid areas | 39.2 | 3.24E-17 | *** | ||
Water | 0.1 | 0.877852 | |||
SAVI | Urban areas | 0.9 | 0.400928 | ||
Temporary crops | 95.4 | 3.73E-39 | *** | ||
Permanent crops | 55.1 | 1.3E-23 | *** | ||
Grassland | 66.6 | 3.65E-28 | *** | ||
Heterogeneous agricultural areas | 70.6 | 1.02E-29 | *** | ||
Forest | 35.1 | 1.53E-15 | *** | ||
Areas with herbaceous and/or shrub vegetation | 7.3 | 0.000692 | ** | ||
Open areas with little or no vegetation | 1.1 | 0.347356 | |||
Continental humid areas | 28.3 | 9.89E-13 | *** | ||
Water | 0.1 | 0.914428 | |||
Urban areas | 0.9 | 0.400928 | |||
RNDVI | Urban areas | 3.6 | 0.027078146 | * | |
Temporary crops | 2.2 | 0.108978781 | |||
Permanent crops | 17.3 | 4.06165E-08 | *** | ||
Grassland | 17.9 | 2.11557E-08 | *** | ||
Heterogeneous agricultural areas | 2.1 | 0.118146032 | |||
Forest | 6.7 | 0.001281665 | ** | ||
Areas with herbaceous and/or shrub vegetation | 10.8 | 2.19194E-05 | *** | ||
Open areas with little or no vegetation | 8.4 | 0.000228264 | * | ||
Continental humid areas | 8.7 | 0.000170631 | ** | ||
Water | 5.8 | 0.003089327 | ** | ||
NDVI | Urban areas | 0.5 | 0.579018 | ||
Temporary crops | 30.7 | 1.03E-13 | *** | ||
Permanent crops | 31.2 | 6.18E-14 | *** | ||
Grassland | 40.5 | 9.95E-18 | *** | ||
Heterogeneous agricultural areas | 31.5 | 4.58E-14 | *** | ||
Forest | 11.4 | 1.27E-05 | *** | ||
Areas with herbaceous and/or shrub vegetation | 1.7 | 0.191762 | |||
Open areas with little or no vegetation | 0.4 | 0.692677 | |||
Continental humid areas | 15.4 | 2.47E-07 | *** | ||
Water | 1.1 | 0.335542 |
Appendix E
Land Cover | Sensitivity | Specificity | F1 Score | Prevalence |
---|---|---|---|---|
Forest (C1) | 0.72 | 0.96 | 0.68 | 0.09 |
Continental humid areas(C2) | 0.74 | 0.97 | 0.60 | 0.04 |
Areas with herbaceous and/or shrub vegetation (C3) | 0.62 | 0.95 | 0.69 | 0.22 |
Grassland (C4) | 0.66 | 0.97 | 0.61 | 0.05 |
Urban areas (C5) | 0.90 | 1.00 | 0.87 | 0.02 |
Permanent crops (C6) | 0.83 | 0.98 | 0.82 | 0.09 |
Water (C7) | 0.95 | 0.98 | 0.96 | 0.43 |
Temporary crops (C8) | 0.93 | 1.00 | 0.71 | 0.00 |
Heterogeneous agricultural areas (C9) | 0.82 | 1.00 | 0.53 | 0.00 |
Open areas with little or no vegetation (C10) | 0.88 | 0.98 | 0.84 | 0.07 |
Appendix F
Land Cover | Sensitivity | Specificity | F1 Score | Prevalence |
---|---|---|---|---|
Tropical moist forest (L1): | 0.75 | 0.97 | 0.78 | 0.15 |
Wetland (L2): | 0.66 | 0.97 | 0.70 | 0.12 |
Herbaceous and shrubland (L3): | 0.60 | 0.95 | 0.59 | 0.09 |
Grassland (L4): | 0.72 | 0.98 | 0.66 | 0.05 |
Infrastructure (L5): | 1.00 | 1.00 | 0.78 | 0.01 |
Mature palm plantations (L6): | 0.83 | 0.98 | 0.78 | 0.05 |
Young palm plantations (L7): | 0.77 | 0.99 | 0.71 | 0.03 |
Water (L8): | 0.97 | 0.97 | 0.97 | 0.51 |
References
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Rudel, T.K.; Coomes, O.T.; Moran, E.; Achard, F.; Angelsen, A.; Xu, J.C.; Lambin, E. Forest transitions: Towards a global understanding of land use change. Glob. Environ. Chang. Policy Dimens. 2005, 15, 23–31. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639. [Google Scholar] [CrossRef] [PubMed]
- Friedlingstein, P.; Jones, M.W.; O’Sullivan, M.; Andrew, R.M.; Bakker, D.C.E.; Hauck, J.; Le Quéré, C.; Peters, G.P.; Peters, W.; Pongratz, J.; et al. Global Carbon Budget 2021. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–191. [Google Scholar] [CrossRef]
- Powers, R.P.; Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 2019, 9, 323–329. [Google Scholar] [CrossRef]
- Venter, Z.S.; Sydenham, M.A.K. Continental-Scale Land Cover Mapping at 10 m Resolution Over Europe (ELC10). Remote Sens. 2021, 13, 2301. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Hostert, P.; Kuemmerle, T.; Broich, M. Regional matters: On the usefulness of regional land-cover datasets in times of global change. Remote Sens. Ecol. Conserv. 2022, 8, 272–283. [Google Scholar] [CrossRef]
- Cihlar, J. Land cover mapping of large areas from satellites: Status and research priorities. Int. J. Remote Sens. 2000, 21, 1093–1114. [Google Scholar] [CrossRef]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef]
- Vancutsem, C.; Achard, F.; Pekel, J.F.; Vieilledent, G.; Carboni, S.; Simonetti, D.; Gallego, J.; Aragão, L.E.O.C.; Nasi, R. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 2022, 7, eabe1603. [Google Scholar] [CrossRef]
- NASA. Land-Cover and Land-Use Change (LCLUC) Program. Available online: https://lcluc.umd.edu/ (accessed on 23 February 2023).
- ESA. Land Cover Project. Available online: https://climate.esa.int/en/projects/land-cover/ (accessed on 23 February 2023).
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef]
- Tsendbazar, N.E.; de Bruin, S.; Mora, B.; Schouten, L.; Herold, M. Comparative assessment of thematic accuracy of GLC maps for specific applications using existing reference data. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 124–135. [Google Scholar] [CrossRef]
- Mushtaq, F.; Henry, M.; O’Brien, C.D.; Di Gregorio, A.; Jalal, R.; Latham, J.; Muchoney, D.; Hill, C.T.; Mosca, N.; Tefera, M.G.; et al. An International Library for Land Cover Legends: The Land Cover Legend Registry. Land 2022, 11, 1083. [Google Scholar] [CrossRef]
- Tsendbazar, N.E.; de Bruin, S.; Herold, M. Assessing global land cover reference datasets for different user communities. ISPRS J. Photogramm. Remote Sens. 2015, 103, 93–114. [Google Scholar] [CrossRef]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- ESA. CORINE land cover. Available online: https://land.copernicus.eu/pan-european/corine-land-cover (accessed on 23 February 2023).
- Büttner, G. CORINE land cover and land cover change products. In Land Use and Land Cover Mapping in Europe; Manakos, I., Braun, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-7969-3. [Google Scholar]
- Bielecka, E.; Jenerowicz, A. Intellectual Structure of CORINE Land Cover Research Applications in Web of Science: A Europe-Wide Review. Remote Sens. 2019, 11, 2017. [Google Scholar] [CrossRef]
- Cruickshank, M.M.; Tomlinson, R.W. Application of CORINE Land Cover Methodology to the U.K.-Some Issues Raised from Northern Ireland. Glob. Ecol. Biogeogr. Lett. 1996, 5, 235–248. [Google Scholar] [CrossRef]
- Diaz-Pacheco, J.; Gutiérrez, J. Exploring the limitations of CORINE Land Cover for monitoring urban land-use dynamics in metropolitan areas. J. Land Use Sci. 2014, 9, 243–259. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Coscieme, L.; Vignini, P.; Cicolani, B. Scale and ecological dependence of ecosystem services evaluation: Spatial extension and economic value of freshwater ecosystems in Italy. Ecol. Indic. 2013, 32, 259–263. [Google Scholar] [CrossRef]
- IDEAM. Leyenda Nacional de Coberturas de la Tierra. Metodología CORINE Land Cover Adaptada para Colombia Escala 1:100.000; IDEAM: Bogotá D.C., Colombia, 2010; ISBN 978-958-806729-2. [Google Scholar]
- Foody, G.M. Approaches for the production and evaluation of fuzzy land cover classifications from remotely-sensed data. Int. J. Remote Sens. 1996, 17, 1317–1340. [Google Scholar] [CrossRef]
- Gumbricht, T.; Roman-Cuesta, R.M.; Verchot, L.; Herold, M.; Wittmann, F.; Householder, E.; Herold, N.; Murdiyarso, D. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Chang. Biol. 2017, 23, 3581–3599. [Google Scholar] [CrossRef]
- Doyle, C.; Beach, T.; Luzzadder-Beach, S. Tropical Forest and Wetland Losses and the Role of Protected Areas in Northwestern Belize, Revealed from Landsat and Machine Learning. Remote Sens. 2021, 13, 379. [Google Scholar] [CrossRef]
- Mizuochi, H.; Nishiyama, C.; Ridwansyah, I.; Nasahara, K.N. Monitoring of an Indonesian Tropical Wetland by Machine Learning-Based Data Fusion of Passive and Active Microwave Sensors. Remote Sens. 2018, 10, 1235. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, G.; Liu, W.; Erfanian, A.; Peng, Q.; Fu, R. Modeled Response of South American Climate to Three Decades of Deforestation. J. Clim. 2021, 34, 2189–2203. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Pickens, A.H.; Tyukavina, A.; Hernandez-Serna, A.; Zalles, V.; Turubanova, S.; Kommareddy, I.; Stehman, S.V.; Song, X.-P.; et al. Global land use extent and dispersion within natural land cover using Landsat data. Environ. Res. Lett. 2022, 17, 34050. [Google Scholar] [CrossRef]
- Salazar, A.; Salazar, J.F.; Sánchez-Pacheco, S.J.; Sanchez, A.; Lasso, E.; Villegas, J.C.; Arias, P.A.; Poveda, G.; Rendón, Á.M.; Uribe, M.R.; et al. Undermining Colombia’s peace and environment. Science 2021, 373, 289 LP–290 LP. [Google Scholar]
- Murillo-Sandoval, P.J.; Gjerdseth, E.; Correa-Ayram, C.; Wrathall, D.; Van Den Hoek, J.; Dávalos, L.M.; Kennedy, R. No peace for the forest: Rapid, widespread land changes in the Andes-Amazon region following the Colombian civil war. Glob. Environ. Chang. 2021, 69, 102283. [Google Scholar] [CrossRef]
- Armenteras, D.; Schneider, L.; Davalos, L.M. Fires in protected areas reveal unforeseen costs of Colombian peace. Nat. Ecol. Evol. 2019, 3, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Clerici, N.; Armenteras, D.; Kareiva, P.; Botero, R.; Ramírez-Delgado, J.P.; Forero-Medina, G.; Ochoa, J.; Pedraza, C.; Schneider, L.; Lora, C.; et al. Deforestation in Colombian protected areas increased during post-conflict periods. Sci. Rep. 2020, 10, 4971. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Potapov, P.; Tyukavina, A.; Turubanova, S.; Talero, Y.; Hernandez-Serna, A.; Hansen, M.C.; Saah, D.; Tenneson, K.; Poortinga, A.; Aekakkararungroj, A.; et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000-2017 Landsat time-series. Remote Sens. Environ. 2019, 232, 111278. [Google Scholar] [CrossRef]
- Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sens. 2020, 12, 426. [Google Scholar] [CrossRef]
- Fagua, J.C.; Ramsey, R.D. Geospatial modeling of land cover change in the Chocó-Darien global ecoregion of South America; One of most biodiverse and rainy areas in the world. PLoS ONE 2019, 14, e0211324. [Google Scholar] [CrossRef] [PubMed]
- Didan, K. MYD13Q1 MODIS/Aqua Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data Set]. Available online: https://doi.org/10.5067/MODIS/MYD13Q1.006 (accessed on 23 February 2023). [CrossRef]
- Xian, G.; Homer, C.; Rigge, M.; Shi, H.; Meyer, D. Characterization of shrubland ecosystem components as continuous fields in the northwest United States. Remote Sens. Environ. 2015, 168, 286–300. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.; Megown, K. Completion of the 2011 National Land Cover Database for the Conterminous United States—Representing a Decade of Land Cover Change Information. Photogramm. Eng. Remote Sens. 2015, 81, 345–354. [Google Scholar]
- Potapov, P.; Hansen, M.C.; Pickens, A.; Hernandez-Serna, A.; Tyukavina, A.; Turubanova, S.; Zalles, V.; Li, X.; Khan, A.; Stolle, F.; et al. The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results. Front. Remote Sens. 2022, 3, 856903. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Maus, V.; Câmara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; Queiroz, G.R. A Time-Weighted Dynamic Time Warping Method for Land-Use and Land-Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Arevalo, P.; Olofsson, P.; Woodcock, C.E. Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: A test methodology for REDD plus reporting. Remote Sens. Environ. 2020, 238, 111051. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sens. Environ. 2020, 253, 112165. [Google Scholar] [CrossRef]
- Fagua, J.C.; Jantz, P.; Burns, P.; Massey, R.; Buitrago, J.Y.; Saatchi, S.; Hakkenberg, C.; Goetz, S.J. Mapping tree diversity in the tropical forest region of Chocó-Colombia. Environ. Res. Lett. 2021, 16, 54024. [Google Scholar] [CrossRef]
- Lang, N.; Jetz, W.; Schindler, K.; Wegner, J.D. A high-resolution canopy height model of the Earth 2022. arXiv 2022, arXiv:2204.08322. [Google Scholar]
- Prasad, P.; Loveson, V.J.; Chandra, P.; Kotha, M. Evaluation and comparison of the earth observing sensors in land cover/land use studies using machine learning algorithms. Ecol. Inform. 2022, 68, 101522. [Google Scholar] [CrossRef]
- De Luca, G.; Silva, J.M.N.; Di Fazio, S.; Modica, G. Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for land cover mapping in a Mediterranean region. Eur. J. Remote Sens. 2022, 55, 52–70. [Google Scholar] [CrossRef]
- Clerici, N.; Valbuena Calderón, C.A.; Posada, J.M. Fusion of Sentinel-1A and Sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. J. Maps 2017, 13, 718–726. [Google Scholar] [CrossRef]
- Fagua, J.C.; Jantz, P.; Rodriguez-Buritica, S.; Laura, D.; Goetz, S.J. Integrating LiDAR, Multispectral and SAR Data to Estimate and Map Canopy Height in Tropical Forests. Remote Sens. 2019, 11, 20. [Google Scholar] [CrossRef]
- Kacic, P.; Hirner, A.; Da Ponte, E. Fusing Sentinel-1 and -2 to Model GEDI-Derived Vegetation Structure Characteristics in GEE for the Paraguayan Chaco. Remote Sens. 2021, 13, 5105. [Google Scholar] [CrossRef]
- Foody, G.M.; Arora, M.K. An evaluation of some factors affecting the accuracy of classification by an artificial neural network. Int. J. Remote Sens. 1997, 18, 799–810. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C. Land cover classification in an era of big and open data: Optimizing localized implementation and training data selection to improve mapping outcomes. Remote Sens. Environ. 2022, 268, 112780. [Google Scholar] [CrossRef]
- Foody, G.M.; Pal, M.; Rocchini, D.; Garzon-Lopez, C.X.; Bastin, L. The Sensitivity of Mapping Methods to Reference Data Quality: Training Supervised Image Classifications with Imperfect Reference Data. ISPRS Int. J. Geo-Information 2016, 5, 199. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed.; Bickel, P., Diggle, P., Fienberg, S., Gather, U., Olkin, I., Zeger, S., Eds.; Springer Science+Business Media: New York, NY, USA, 2017. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Copass, C.; Antonova, N.; Kennedy, R. Comparison of Office and Field Techniques for Validating Landscape Change Classification in Pacific Northwest National Parks. Remote Sens. 2019, 11, 3. [Google Scholar] [CrossRef]
- Lu, N.; Hernandez, A.J.; Ramsey, R.D. Land cover dynamics monitoring with Landsat data in Kunming, China: A cost-effective sampling and modelling scheme using Google Earth imagery and random forests. Geocarto Int. 2015, 30, 186–201. [Google Scholar] [CrossRef]
- Toure, S.I.; Stow, D.A.; Shih, H.; Weeks, J.; Lopez-Carr, D. Land cover and land use change analysis using multi-spatial resolution data and object-based image analysis. Remote Sens. Environ. 2018, 210, 259–268. [Google Scholar] [CrossRef]
- Ling, F.; Li, X.D.; Du, Y.; Xiao, F. Super-Resolution Land Cover Mapping with Spatial-Temporal Dependence by Integrating a Former Fine Resolution Map. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1816–1825. [Google Scholar] [CrossRef]
- Momeni, R.; Aplin, P.; Boyd, D.S. Mapping Complex Urban Land Cover from Spaceborne Imagery: The Influence of Spatial Resolution, Spectral Band Set and Classification Approach. Remote Sens. 2016, 8, 88. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the worlds: A new map of life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- IAvH. Informe del Estado del Ambiente y de los Recursos Naturales Renovables; Casallas, I.M., del Guardiola, L.P., Moreno, Y.A., Eds.; IDEAM: Bogota D.C., Colombia, 2016; ISBN 978-958-8067-87-2. [Google Scholar]
- IDEAM. Marco nacional de Servicios Climáticos. Available online: http://www.ideam.gov.co/web/tiempo-y-clima/marco-nacional-de-servicios-climaticos (accessed on 23 February 2023).
- Etter, A.; McAlpine, C.; Possingham, H. Historical Patterns and Drivers of Landscape Change in Colombia Since 1500: A Regionalized Spatial Approach. Ann. Assoc. Am. Geogr. 2008, 98, 2–23. [Google Scholar] [CrossRef]
- Primack, R.B.; Corlett, R.T. Tropical Rain Forests: An Ecological and Biogeographical Comparison; Blackwell Publishing: Oxford, UK, 2009; ISBN 978-1-4051-4109-3. [Google Scholar]
- One Earth Magdalena-Urabá Moist Forests. Available online: https://www.oneearth.org/ecoregions/magdalena-uraba-moist-forests/ (accessed on 23 February 2023).
- García, Y.; Rangel, O.; Rodríguez, P. Cambios en la vegetación y el clima durante los últimos 200 años en ciénagas del sur del departamento del cesar. In Complejo Cenagoso Zapatosa y Ciénaga del sur del Cesar; Rangel, O., Ed.; Universidad Nacional de Colombia: Bogota D.C., Colombia, 2012; pp. 133–163. ISBN 9787587615067. [Google Scholar]
- Fedepalma|Federación Nacional de Cultivadores de Palma de Aceite CID Palmero. Available online: http://cidpalmero.fedepalma.org/recursos-internet (accessed on 23 February 2023).
- ESA. Sentinel-1 SAR GRD: C-Band Synthetic Aperture Radar Ground Range Detected, Log Scaling. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD (accessed on 23 February 2023).
- Vollrath, A.; Mullissa, A.; Reiche, J. Angular-Based Radiometric Slope Correction for Sentinel-1 on Google Earth Engine. Remote Sens. 2020, 12, 1867. [Google Scholar] [CrossRef]
- ESA. Sentinel-2 MSI: MultiSpectral Instrument, Level-2A. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR (accessed on 23 February 2023).
- ESA. Sentinel-2: Cloud Probability. Available online: https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_CLOUD_PROBABILITY (accessed on 23 February 2023).
- Braaten, J. Sentinel-2 Cloud Masking with s2cloudless. Available online: https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless (accessed on 23 February 2023).
- Jenness, J. Topographic Position Index (TPI) v. 1.2. Available online: http://www.jennessent.com/downloads/tpi_documentation_online.pdf (accessed on 23 February 2023).
- Čučković, Z. Terrain Position Index for QGIS. Available online: https://landscapearchaeology.org/2019/tpi/ (accessed on 23 February 2023).
- Boehmke, B.; Greenwell, B.M. Hands-On Machine Learning with R; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Benesty, M.; et al. Package ‘caret’: Classification and Regression Training. Available online: https://github.com/topepo/caret/ (accessed on 23 February 2023).
- Liaw, A. Package ‘randomForest’: Breiman and Cutler’s Random Forests for Classification and Regression; Berkeley, CA, USA. 2018. Available online: https://cran.r-project.org/web/packages/randomForest/index.html (accessed on 23 February 2023).
- Milborrow, S.; Tibshirani, R. Package ‘earth’: Multivariate Adaptive Regression Splines; 2019. Available online: https://cran.r-project.org/web/packages/earth/index.html (accessed on 23 February 2023).
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Tsendbazar, N.-E.; Herold, M.; de Bruin, S.; Lesiv, M.; Fritz, S.; Van De Kerchove, R.; Buchhorn, M.; Duerauer, M.; Szantoi, Z.; Pekel, J.-F. Developing and applying a multi-purpose land cover validation dataset for Africa. Remote Sens. Environ. 2018, 219, 298–309. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, L.; Feng, D.; Peng, D.; Li, C.; Huang, X.; Lu, H.; Gong, P. Comparisons of three recent moderate resolution African land cover datasets: CGLS-LC100, ESA-S2-LC20, and FROM-GLC-Africa30. Int. J. Remote Sens. 2019, 40, 6185–6202. [Google Scholar] [CrossRef]
- Fagua, J.C.; Ramsey, R.D. Comparing the accuracy of MODIS data products for vegetation detection between two environmentally dissimilar ecoregions: The Chocó-Darien of South America and the Great Basin of North America. GISci. Remote Sens. 2019, 56, 1046–1064. [Google Scholar] [CrossRef]
- Helmer, E.H.; Ruzycki, T.S.; Benner, J.; Voggesser, S.M.; Scobie, B.P.; Park, C.; Fanning, D.W.; Ramnarine, S. Detailed maps of tropical forest types are within reach: Forest tree communities for Trinidad and Tobago mapped with multiseason Landsat and multiseason fine-resolution imagery. For. Ecol. Manag. 2012, 279, 147–166. [Google Scholar] [CrossRef]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239, 111630. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Xie, S.; Gao, Y. Fine Land-Cover Mapping in China Using Landsat Datacube and an Operational SPECLib-Based Approach. Remote Sens. 2019, 11, 1056. [Google Scholar] [CrossRef]
- Ghulam, A.; Ghulam, O.; Maimaitijiang, M.; Freeman, K.; Porton, I.; Maimaitiyiming, M. Remote Sensing Based Spatial Statistics to Document Tropical Rainforest Transition Pathways. Remote Sens. 2015, 7, 6257–6279. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Feng, Z. Fusion and Analysis of Land Use/Cover Datasets Based on Bayesian-Fuzzy Probability Prediction: A Case Study of the Indochina Peninsula. Remote Sens. 2022, 14, 5786. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Shahfahad; Pal, S.; Liou, Y.-A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations—A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef]
- Alabi, T.R.; Adewopo, J.; Duke, O.P.; Kumar, P.L. Banana Mapping in Heterogenous Smallholder Farming Systems Using High-Resolution Remote Sensing Imagery and Machine Learning Models with Implications for Banana Bunchy Top Disease Surveillance. Remote Sens. 2022, 14, 5206. [Google Scholar] [CrossRef]
- Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISCIENCE Remote Sens. 2018, 55, 243–264. [Google Scholar] [CrossRef]
- Mazzia, V.; Khaliq, A.; Chiaberge, M. Improvement in Land Cover and Crop Classification based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN). Appl. Sci. 2020, 10, 238. [Google Scholar] [CrossRef]
- Boston, T.; Van Dijk, A.; Larraondo, P.R.; Thackway, R. Comparing CNNs and Random Forests for Landsat Image Segmentation Trained on a Large Proxy Land Cover Dataset. Remote Sens. 2022, 14, 3396. [Google Scholar] [CrossRef]
CORINE LEGEND | ECOSO LEGEND |
---|---|
Forest (C1): Areas occupied by forests and woodlands with a vegetation pattern composed of native or exotic coniferous and/or broad-leaved trees. | Tropical moist Forest (E1): Evergreen vegetation dominated by trees that reach over 30 m in height. These forests are the primary natural non-flooding vegetation cover type of the study area [72,73,74,75]. |
Continental humid areas (C2): Areas flooded or liable to flooding during a great part of the year by fresh, brackish, or standing water with specific vegetation coverage made of low shrub, semi-ligneous, or herbaceous species. | Wetlands (E2): Swamps and shallow lakes where water saturates the soil to generate a particular type of evergreen vegetation that varies from shrubs to trees. These areas are located along rivers, and their water levels vary during the year according to rainfall [74,75]. |
Areas with herbaceous and/or shrub vegetation (C3): Areas covered by natural grassland, moors, sclerophyllous vegetation, and transitional woodland/shrub. | Herbaceous and Shrubland (E3): Areas dominated by natural herbaceous vegetation and shrubs. Introduced forbs can be present [75]. |
Grassland (C4): Dense grass cover dominated by graminaceae not under a rotation system. Mainly for grazing, but the folder may be harvested mechanically. Includes areas with hedges. | Grassland (E4): Introduced grass species that are used primarily for cattle grazing [75]. |
Urban areas (C5): Any urban surface. | Infrastructure (E5): Human infrastructures, such as urban areas, buildings, concrete, and others. |
Permanent crops (C6): All surfaces occupied by permanent crops, not under a rotation system. | Mature palm plantations (E6): plantations of African palm (Elaeis Guineensis Jacq). These cultivated areas are relatively stable vegetation because palm requires three years to mature and produce oil and its useful life is about 25 years, at which point individuals are replanted with younger palms [76]. |
Young palm plantations (E7): First three years of a new plantation of African palm [76]. | |
Water (C7): Bodies of continental water. | Water (E8): Bodies of continental water. |
Temporary crops (C8): All surfaces occupied by crops in rotation systems. | |
Heterogeneous agricultural areas (C9): Areas covered by annual crops associated with permanent crops and complex cultivation. Land principally occupied by agriculture, with significant areas of natural vegetation or Agro-forestry areas. | |
Open Areas with little or no vegetation (C10): Areas covered by beaches, bare rock, sparsely vegetated areas, burnt areas, glaciers, and perpetual snow. |
Satellite (Data Type) | Band, Index Name, or Backscatter Coefficient | Wavelength or Definition |
---|---|---|
Sentinel-1 (SAR) | VV of C band | 5.6 cm (5.405 GHz) |
VH of C band | 5.6 cm (5.405 GHz) | |
VH/VV of C band | 5.6 cm (5.405 GHz) | |
VV-VH of C band | 5.6 cm (5.405 GHz) | |
Sentinel-2 (Multispectral) | Blue | 492.1–496.6 nm |
Green | 559–560 nm | |
Red | 664.5–665 nm | |
Red edge 1 | 703.8–703.9 nm | |
Red edge 2 | 739.1–740.2 nm | |
Red edge 3 | 779.7–782.5 nm | |
Near Infrared—NIR | 835.1–833 nm | |
Red edge 4 | 864–864.8 nm | |
Short wave infrared 1—SWIR1 | −1610.4–1613.7 nm | |
Short wave infrared 2—SWIR2 | 2185.7–2202.4 nm | |
NDVI—Normalized Difference Vegetation Index | (NIR − Red)/(NIR + Red) | |
EVI—Enhanced Vegetation Index | G * (NIR − Red)/(NIR + C1 * RED − C2 * Blue + L) | |
SAVI—Soil Adjusted Vegetation Index | (1 + L) * (NIR − Red)/NIR + Red + L) | |
RNDVI—Red edge Vegetation Index | (NIR − Red Edge 2)/(NIR + Red Edge 2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fagua, J.C.; Rodríguez-Buriticá, S.; Jantz, P. Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend. Remote Sens. 2023, 15, 2522. https://doi.org/10.3390/rs15102522
Fagua JC, Rodríguez-Buriticá S, Jantz P. Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend. Remote Sensing. 2023; 15(10):2522. https://doi.org/10.3390/rs15102522
Chicago/Turabian StyleFagua, J. Camilo, Susana Rodríguez-Buriticá, and Patrick Jantz. 2023. "Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend" Remote Sensing 15, no. 10: 2522. https://doi.org/10.3390/rs15102522
APA StyleFagua, J. C., Rodríguez-Buriticá, S., & Jantz, P. (2023). Advancing High-Resolution Land Cover Mapping in Colombia: The Importance of a Locally Appropriate Legend. Remote Sensing, 15(10), 2522. https://doi.org/10.3390/rs15102522