Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and RS Data
2.2. Proposed Approach for LULC Classification in Andean Sub-Basins in Colombia
2.2.1. Data Pre-Processing and Harmonization
2.2.2. Radiometric Indices
2.2.3. Model Setup and Classification Process
3. Results
4. Discussion
4.1. CPU vs. GPU Performance Evaluation
4.2. Comparison with Other Machine Learning Methods
4.3. Comparison with other Deep Learning Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oswald, S.M.; Hollosi, B.; Žuvela-Aloise, M.; See, L.; Guggenberger, S.; Hafner, W.; Prokop, G.; Storch, A.; Schieder, W. Using urban climate modelling and improved land use classifications to support climate change adaptation in urban environments: A case study for the city of Klagenfurt, Austria. Urban Clim. 2020, 31, 100582. [Google Scholar] [CrossRef]
- Benhammou, Y.; Alcaraz-Segura, D.; Guirado, E.; Khaldi, R.; Achchab, B.; Herrera, F.; Tabik, S. Sentinel2GlobalLULC: A Sentinel-2 RGB image tile dataset for global land use/cover mapping with deep learning. Sci. Data 2022, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Rottensteiner, F.; Heipke, C. Classification of land cover and land use based on convolutional neural networks. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 251–258. [Google Scholar] [CrossRef]
- Carranza-García, M.; García-Gutiérrez, J.; Riquelme, J.C. A Framework for Evaluating Land Use and Land Cover Classification Using Convolutional Neural Networks. Remote Sens. 2019, 11, 274. [Google Scholar] [CrossRef]
- Chuvieco, E.; Li, J.; Yang, X. Advances in Earth Observation of Global Change, 1st ed.; Springer: Dordrecht, The Netherlands, 2010; ISBN 978-90-481-9084-3. [Google Scholar]
- Smyth, T.A.; Wilson, R.; Rooney, P.; Yates, K.L. Extent, accuracy and repeatability of bare sand and vegetation cover in dunes mapped from aerial imagery is highly variable. Aeolian Res. 2022, 56, 100799. [Google Scholar] [CrossRef]
- Lilay, M.Y.; Taye, G.D. Semantic segmentation model for land cover classification from satellite images in Gambella National Park, Ethiopia. SN Appl. Sci. 2023, 5, 15. [Google Scholar] [CrossRef]
- Yuh, Y.G.; Tracz, W.; Matthews, H.D.; Turner, S.E. Application of machine learning approaches for land cover monitoring in northern Cameroon. Ecol. Inform. 2023, 74, 101955. [Google Scholar] [CrossRef]
- Keshtkar, H.; Voigt, W.; Alizadeh, E. Land-cover classification and analysis of change using machine-learning classifiers and multi-temporal remote sensing imagery. Arab. J. Geosci. 2017, 10, 154. [Google Scholar] [CrossRef]
- Pencue-Fierro, E.L.; Solano-Correa, Y.T.; Corrales-Munoz, J.C.; Figueroa-Casas, A. A Semi-Supervised Hybrid Approach for Multitemporal Multi-Region Multisensor Landsat Data Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5424–5435. [Google Scholar] [CrossRef]
- Swetanisha, S.; Panda, A.R.; Behera, D.K. Land use/land cover classification using machine learning models. Int. J. Electr. Comput. Eng. (IJECE) 2022, 12, 2040–2046. [Google Scholar] [CrossRef]
- Alshari, E.A.; Abdulkareem, M.B.; Gawali, B.W. Classification of land use/land cover using artificial intelligence (ANN-RF). Front. Artif. Intell. 2023, 5, 964279. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, Y.; Lee, J. Assessment of Machine Learning Algorithms for Land Cover Classification Using Remotely Sensed Data. Sens. Mater. 2021, 33, 3885. [Google Scholar] [CrossRef]
- Saralioglu, E.; Vatandaslar, C. Land use/land cover classification with Landsat-8 and Landsat-9 satellite images: A comparative analysis between forest- and agriculture-dominated landscapes using different machine learning methods. Acta Geod. Geophys. 2022, 57, 695–716. [Google Scholar] [CrossRef]
- Razafinimaro, A.; Hajalalaina, A.R.; Rakotonirainy, H.; Zafimarina, R. Land cover classification based optical satellite images using machine learning algorithms. Int. J. Adv. Intell. Inform. 2022, 8, 362–380. [Google Scholar] [CrossRef]
- Putri, K.A. Analysis of Land Cover Classification Results Using ANN, SVM, and RF Methods with R Programming Language (Case Research: Surabaya, Indonesia). IOP Conf. Ser. Earth Environ. Sci. 2023, 1127, 14. [Google Scholar] [CrossRef]
- Khosravi, I.; Jouybari-Moghaddam, Y. Hyperspectral Imbalanced Datasets Classification Using Filter-Based Forest Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4766–4772. [Google Scholar] [CrossRef]
- Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog. Artif. Intell. 2020, 9, 85–112. [Google Scholar] [CrossRef]
- Sánchez, A.-M.S.; González-Piqueras, J.; de la Ossa, L.; Calera, A. Convolutional Neural Networks for Agricultural Land Use Classification from Sentinel-2 Image Time Series. Remote Sens. 2022, 14, 5373. [Google Scholar] [CrossRef]
- Kroupi, E.; Kesa, M.; Navarro-Sánchez, V.D.; Saeed, S.; Pelloquin, C.; Alhaddad, B.; Moreno, L.; Soria-Frisch, A.; Ruffini, G. Deep convolutional neural networks for land-cover classification with Sentinel-2 images. JARS 2019, 13, 024525. [Google Scholar] [CrossRef]
- Campos-Taberner, M.; García-Haro, F.; Martínez, B.; Gilabert, M. Deep learning para la clasificación de usos de suelo agrícola con Sentinel-2. Rev. Teledetec. 2020, 56, 35–48. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, P.; Corpetti, T.; Zhao, L. WTS: A Weakly towards Strongly Supervised Learning Framework for Remote Sensing Land Cover Classification Using Segmentation Models. Remote Sens. 2021, 13, 394. [Google Scholar] [CrossRef]
- Pedrayes, O.D.; Lema, D.G.; García, D.F.; Usamentiaga, R.; Alonso, Á. Evaluation of Semantic Segmentation Methods for Land Use with Spectral Imaging Using Sentinel-2 and PNOA Imagery. Remote Sens. 2021, 13, 2292. [Google Scholar] [CrossRef]
- Ruiz, O.D.M.; Idrobo, M.J.P.; Otero, S.J.D.; Figueroa, C.A. Effects of productive activities on the water quality for human consumption in an andean basin, a case study. Rev. Int. Contam. Ambient. 2017, 33, 361–375. [Google Scholar] [CrossRef]
- Lopez, I.D.; Figueroa, A.; Corrales, J.C. Multi-Dimensional Data Preparation: A Process to Support Vulnerability Analysis and Climate Change Adaptation. IEEE Access 2020, 8, 87228–87242. [Google Scholar] [CrossRef]
- Perdomo Chavarro, D. Determinación de la Variación de Microcontaminates (Agroquímicos) en la Subcuenca del Río Palacé Mediante un Modelo Matemático; Trabajo de grado-pregrado, Uniautónoma del Cauca, Facultad de Ciencias Ambientales y Desarrollo Sostenible, Programa de Ingeniería Ambiental y Sanitaria: Popayán, Colombia, 2021. [Google Scholar]
- Chantre Velasco, M. Análisis Comparativo de Cambios de Área en Coberturas en la Parte alta de la Subcuenca río Palacé, a Través de Imágenes Landsat Entre 1989 y 2016; Universidad de Manizales: Manizales, Colombia, 2017. [Google Scholar]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Scepanovic, S.; Antropov, O.; Laurila, P.; Rauste, Y.; Ignatenko, V.; Praks, J. Wide-Area Land Cover Mapping with Sentinel-1 Imagery Using Deep Learning Semantic Segmentation Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10357–10374. [Google Scholar] [CrossRef]
- Essien, P.; Figueiredo, C.A.O.B.; Takahashi, H.; Klutse, N.A.B.; Wrasse, C.M.; Afonso, J.M.D.S.; Quispe, D.P.; Lomotey, S.O.; Ayorinde, T.T.; Sobral, J.H.A.; et al. Intertropical Convergence Zone as the Possible Source Mechanism for Southward Propagating Medium-Scale Traveling Ionospheric Disturbances over South American Low-Latitude and Equatorial Region. Atmosphere 2022, 13, 15. [Google Scholar] [CrossRef]
- European Space Agency (ESA) Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 29 March 2023).
- Louis, J.; Pflug, B.; Main-Knorn, M.; Debaecker, V.; Mueller-Wilm, U.; Iannone, R.Q.; Giuseppe Cadau, E.; Boccia, V.; Gascon, F. Sentinel-2 Global Surface Reflectance Level-2a Product Generated with Sen2Cor. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8522–8525. [Google Scholar]
- Louis, J.; Devignot, O.; Pessiot, L. Level-2A Algorithm Theoretical Basis Document; Remote Sensing Systems: Santa Rosa, CA, USA, 2021; p. 78. [Google Scholar]
- Alaska Satellite Facility ASF Data Search. Available online: https://search.asf.alaska.edu/#/.html (accessed on 29 March 2023).
- Yang, H.; Li, X.; Zhao, L.; Chen, S. An accurate and robust registration framework based on outlier removal and feature point adjustment for remote sensing images. Int. J. Remote Sens. 2021, 42, 8979–9002. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, W.; Li, Z.; Atkinson, P.M. Fusion of Sentinel-2 images. Remote Sens. Environ. 2016, 187, 241–252. [Google Scholar] [CrossRef]
- Ren, H.; Feng, G. Are soil-adjusted vegetation indices better than soil-unadjusted vegetation indices for above-ground green biomass estimation in arid and semi-arid grasslands? Grass Forage Sci. 2014, 70, 611–619. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Daughtry, C.S.T.; Eitel, J.U.H.; Long, D.S. Remote Sensing Leaf Chlorophyll Content Using a Visible Band Index. Agron. J. 2011, 103, 1090–1099. [Google Scholar] [CrossRef]
- Nouaim, W.; Chakiri, S.; Rambourg, D.; Karaoui, I.; Ettaqy, A.; Chao, J.; Allouza, M.; Razoki, B.; Yazidi, M.; El Hmidi, F. Mapping the water erosion risk in the Lakhdar river basin (central High Atlas, Morocco). Geol. Ecol. Landscapes 2018, 3, 22–28. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Dogan, H.M. Applications of remote sensing and Geographic Information Systems to assess ferrous minerals and iron oxide of Tokat province in Turkey. Int. J. Remote Sens. 2008, 29, 221–233. [Google Scholar] [CrossRef]
- Liu, X.; Peng, Y.; Lu, Z.; Li, W.; Yu, J.; Ge, D.; Xiang, W. Feature-Fusion Segmentation Network for Landslide Detection Using High-Resolution Remote Sensing Images and Digital Elevation Model Data. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4500314. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Hancock, D.W.; Dougherty, C.T. Relationships between Blue- and Red-based Vegetation Indices and Leaf Area and Yield of Alfalfa. Crops Sci. 2007, 47, 2547–2556. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.; Zur, Y.; Stark, R.; Gritz, U. Non-Destructive and Remote Sensing Techniques for Estimation of Vegetation Status; Papers in Natural Resources. In Proceedings of the Third European Conference on Precision Agriculture, Montpellier, France, 18–20 June 2001. [Google Scholar]
- Tucker, C.; Elgin, J.; McMurtrey, J.; Fan, C. Monitoring corn and soybean crop development with hand-held radiometer spectral data. Remote Sens. Environ. 1979, 8, 237–248. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M.M.; Widlowski, J.-L. Advanced vegetation indices optimized for up-coming sensors: Design, performance, and applications. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2489–2505. [Google Scholar] [CrossRef]
- Crippen, R. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Carter, G.A. Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Yan, C.; Fan, X.; Fan, J.; Yu, L.; Wang, N.; Chen, L.; Li, X. HyFormer: Hybrid Transformer and CNN for Pixel-Level Multispectral Image Land Cover Classification. Int. J. Environ. Res. Public Health 2023, 20, 3059. [Google Scholar] [CrossRef] [PubMed]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Muckley, L.; Garforth, J. Multi-Input ConvLSTM for Flood Extent Prediction. In Proceedings of the Pattern Recognition. ICPR International Workshops and Challenges; Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J., Vezzani, R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 75–85. [Google Scholar]
- Thangadeepiga, E.; Alagu Raja, R.A. Remote Sensing-Based Crop Identification Using Deep Learning. In Intelligent Data Engineering and Analytics; Satapathy, S.C., Zhang, Y.-D., Bhateja, V., Majhi, R., Eds.; Springer: Singapore, 2021; pp. 109–122. [Google Scholar]
- The Sequential Model|TensorFlow Core. Available online: https://www.tensorflow.org/guide/keras/sequential_model (accessed on 15 March 2023).
- Lenail, A. NN-SVG: Publication-Ready Neural Network Architecture Schematics. J. Open Source Softw. 2019, 4, 747. [Google Scholar] [CrossRef]
- Alrasheedi, F.; Zhong, X.; Huang, P.-C. Padding Module: Learning the Padding in Deep Neural Networks. IEEE Access 2023, 11, 7348–7357. [Google Scholar] [CrossRef]
- Muñoz-Ordóñez, J.; Cobos, C.; Mendoza, M.; Herrera-Viedma, E.; Herrera, F.; Tabik, S. Framework for the Training of Deep Neural Networks in TensorFlow Using Metaheuristics. In Intelligent Data Engineering and Automated Learning—IDEAL 2018; Yin, H., Camacho, D., Novais, P., Tallón-Ballesteros, A.J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 801–811. [Google Scholar]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.; Fritz, S.; et al. ESA WorldCover 10 m 2021 V200; European Space Agency: Paris, France, 2022. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 818–833. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the International Conference on Machine Learning 2019, Long Beach, CA, USA, 9–15 June 2019; pp. 10691–10700. [Google Scholar]
Image | Year | Metadata |
---|---|---|
1 | 2020 | S2A_MSIL2A_20200211T153611_N0214_R068_T18NUH_20200211T194219 |
2 | 2020 | S2B_MSIL2A_20200801T152639_N0214_R025_T18NUH_20200801T205640 |
Index | S2 Bands | Reference |
---|---|---|
Adjusted Transformed Soil Adjusted VI (ATSAVI) | 4, 8 | [38] |
Atmospheric Resistance Vegetation Index (ARVI) | 2, 4, 8 | [45] |
Blue Normalized Difference Vegetation Index (BNDVI) | 2, 8 | [46] |
Chlorophyll Index Red Edge (CIRedEdge) | 5, 8 | [40] |
Coloration Index (CI) | 2, 4 | [41] |
CRI550 | 2, 3 | [47] |
Enhanced Vegetation Index (EVI) | 2, 4, 8 | [39] |
Green Difference Vegetation Index (GDVI) | 3, 8 | [48] |
Green Leaf Index (GLI) | 2, 3, 4 | [49] |
Infrared Percentage Vegetation Index (IPVI) | 4, 8 | [50] |
Normalized Difference Vegetation Index (NDVI) | 4, 8 | [51] |
Normalized Difference Water Index (NDWI) | 3, 8 | [42] |
Simple Ratio—Ferrous Minerals (FM) | 8, 11 | [43] |
Simple Ratio—Iron Oxide (IO) | 2, 4 | [43] |
Simple Ratio (SR) | 2, 4 | [52] |
Soil Adjusted Vegetation Index (SAVI) | 4, 8 | [53] |
CNN Parameters Input Shape = (3, 3, 27) | Convolutional Layer | |||
---|---|---|---|---|
Convolution 1 | Convolution 2 | Convolution 3 | Convolution 4 | |
Number of filters | 100 | 150 | 300 | 530 |
Kernel size | (3, 3) | (3, 3) | (3, 3) | (3, 3) |
Activation | ReLU | ReLU | ReLU | ReLU |
Padding | Same | Same | Same | Same |
Stride | 1 | 1 | 1 | 1 |
Pooling | Max Pooling | Max Pooling | Average Pooling | Average Pooling |
Dropout | 0.25 | 0.25 | None | 0.25 |
Predicted Results | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Water | Páramo | Urban Areas | Planted Forest | Pasture | Natural Grassland | Agricultural Areas | Dense Forest | Mixed Forest | Mineral Extraction | Shrub | Truth Overall | Recall | ||
True data | Water | 5162 | 0 | 19 | 9 | 14 | 0 | 0 | 0 | 79 | 0 | 30 | 5313 | 97.16% |
Páramo | 2 | 5094 | 0 | 0 | 13 | 0 | 1 | 9 | 0 | 0 | 5 | 5124 | 99.42% | |
Urban Areas | 74 | 3 | 4881 | 1 | 74 | 35 | 2 | 0 | 1 | 64 | 7 | 5142 | 94.92% | |
Planted Forest | 13 | 0 | 0 | 5116 | 0 | 3 | 0 | 0 | 20 | 0 | 0 | 5152 | 99.30% | |
Pasture | 9 | 57 | 21 | 0 | 4968 | 28 | 62 | 0 | 6 | 51 | 39 | 5241 | 94.79% | |
Natural Grassland | 0 | 0 | 8 | 0 | 119 | 4940 | 0 | 2 | 8 | 10 | 39 | 5126 | 96.37% | |
Agricultural areas | 0 | 27 | 0 | 0 | 29 | 0 | 5177 | 0 | 0 | 0 | 2 | 5235 | 98.89% | |
Dense Forest | 0 | 22 | 1 | 0 | 0 | 12 | 0 | 5002 | 15 | 0 | 331 | 5383 | 92.92% | |
Mixed Forest | 50 | 0 | 2 | 11 | 1 | 44 | 0 | 8 | 4758 | 0 | 218 | 5092 | 93.44% | |
Mineral Extraction | 0 | 0 | 12 | 0 | 43 | 2 | 0 | 0 | 0 | 5192 | 0 | 5249 | 98.91% | |
Shrub | 4 | 9 | 1 | 0 | 10 | 44 | 0 | 45 | 115 | 0 | 4915 | 5143 | 95.57% | |
Predicted overall | 5314 | 5212 | 4945 | 5137 | 5271 | 5108 | 5242 | 5066 | 5002 | 5317 | 5586 | 57,200 | OR: 96.52% | |
Precision | 97.14% | 97.74% | 98.71% | 99.59% | 94.25% | 96.71% | 98.76% | 98.74% | 95.12% | 97.65% | 87.99% | OP: 96.58% |
Kappa Coefficient | OA |
---|---|
0.962 | 96.51% |
Dataset | CPU | GPU |
---|---|---|
7,722,000 images | ~13 h | ~5 h |
Model | OA | Kappa | LULCs |
---|---|---|---|
SVM | 81.45% | 0.79 | 11 |
RF | 85.44% | 0.84 | 11 |
ANN | 82.84% | 0.80 | 11 |
Our approach | 96.51% | 0.962 | 11 |
Training Time (GPU) | OA | OP | OR | Kappa | Model |
---|---|---|---|---|---|
10.75 h | 96.01% | 96.08% | 96.03% | 0.956 | AlexNet |
13.2 h | 91.47% | 93.69% | 91.42% | 0.906 | ZFNet |
12.6 h | 81.11% | 81.59% | 81.04% | 0.792 | GoogleNet |
14.1 h | 9.30% | 12.40% | 10.54% | 0.140 | VGGNet16 |
14.5 h | 8.90% | 11.56% | 9.21% | 0.120 | VGGNet19 |
11 h | 96.34% | 96.35% | 96.37% | 0.960 | ResNet18 |
11.75 h | 92.54% | 93.14% | 92.50% | 0.918 | ResNet50 |
13.4 h | 96.18% | 96.35% | 96.18% | 0.958 | DenseNet121 |
14 h | 94.93% | 95.25% | 94.92% | 0.944 | EfficientNetB7 |
5 h | 96.51% | 96.58% | 96.52% | 0.962 | Our approach |
Reference Paper | OA | LULCs | RS Data | Study Area | CNN-Based Model |
---|---|---|---|---|---|
[3] | 81.5% | 8 | Aerial image | Hameln (Germany) | SegNet |
[7] | 88% | 7 | S2 | Gambella National Park (Ethiopia) | LinkNet-34 |
[22] | 82.52% | 5 | S2 | Northwest France | FCN |
[23] | 64.7 | 11 | S2 | Northern part of the Iberian Peninsula plateau (Spain) | UNet |
[54] | 94.9% | 8 | S2 | Eastern part of Changxing County and the central part of Nanxun District, Zhejiang Province | Transformer |
Proposed approach | 96.51% | 11 | S2 | Las Piedras and Palacé sub-basins (Colombia) | LeNet |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrechea-Castillo, D.A.; Solano-Correa, Y.T.; Muñoz-Ordóñez, J.F.; Pencue-Fierro, E.L.; Figueroa-Casas, A. Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning. Remote Sens. 2023, 15, 2521. https://doi.org/10.3390/rs15102521
Arrechea-Castillo DA, Solano-Correa YT, Muñoz-Ordóñez JF, Pencue-Fierro EL, Figueroa-Casas A. Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning. Remote Sensing. 2023; 15(10):2521. https://doi.org/10.3390/rs15102521
Chicago/Turabian StyleArrechea-Castillo, Darwin Alexis, Yady Tatiana Solano-Correa, Julián Fernando Muñoz-Ordóñez, Edgar Leonairo Pencue-Fierro, and Apolinar Figueroa-Casas. 2023. "Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning" Remote Sensing 15, no. 10: 2521. https://doi.org/10.3390/rs15102521
APA StyleArrechea-Castillo, D. A., Solano-Correa, Y. T., Muñoz-Ordóñez, J. F., Pencue-Fierro, E. L., & Figueroa-Casas, A. (2023). Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning. Remote Sensing, 15(10), 2521. https://doi.org/10.3390/rs15102521