Ground Surface Subsidence Monitoring Using Sentinel-1 in the “Kostolac” Open Pit Coal Mine
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Geological Setting of the Study Area
2.3. Sentinel-1 Dataset
2.4. Field Observations
2.5. Geotechnical Modelling Inputs
- loess, 30 m thick, γ = 16 kN/m3, Es = 20.0 MPa, the immediate settlement only
- clayey sand, 50 m thick, γ = 18 kN/m3, Es = 10.0 MPa, the immediate settlement only
- coal seam 1, 15 m thick, γ = 12 kN/m3, Es = 1.0 MPa, the immediate settlement only
- clayey sand 10 m thick, γ = 18 kN/m3, Es = 10.0 MPa, the immediate settlement only
- coal seam 2, 15 m thick, γ = 12 kN/m3, Es = 1.0 MPa, the immediate settlement only
- clayey sand 35 m thick, γ = 18 kN/m3, Es = 10.0 MPa, the immediate settlement only
- coal seam 35 m thick, γ = 12 kN/m3, Es = 1.0 MPa, the immediate settlement only
- clayey sand 50 m thick, γ = 18 kN/m3, Es = 10.0 MPa, the immediate settlement only
3. Methods
- Image filtering or preprocessing,
- Processing with SNAP and StaMPS software,
- Employing open source software and scripts for analyzing and visualizing the results.
3.1. Interferometry
3.2. Pre-Processing
3.3. Processing
3.3.1. SNAP Processing
3.3.2. StaMPS Processing
3.4. Post-Processing
3.5. Least Squares and Pelzer Method
4. Results
4.1. Drmno Area
4.2. Klicevac and Bradarac Areas
4.3. Thermal Power Plant Area (TEKO)
Thermal Power Plant Area (TEKO) Leveling Benchmarks
4.4. Kostolac Area
4.5. Settlement Model
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartman, H.L.; Mutmansky, J.M. Introductory Mining Engineering, 2nd ed.; John Wiley: Hoboken, NJ, USA, 2002; ISBN 0-471-34851-1. [Google Scholar]
- Cenni, N.; Fiaschi, S.; Fabris, M. Monitoring of Land Subsidence in the Po River Delta (Northern Italy) Using Geodetic Networks. Remote Sens. 2021, 13, 1488. [Google Scholar] [CrossRef]
- Hu, B.; Chen, J.; Zhang, X. Monitoring the Land Subsidence Area in a Coastal Urban Area with InSAR and GNSS. Sensors 2019, 19, 3181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polcari, M.; Palano, M.; Fernández, J.; Samsonov, S.V.; Stramondo, S.; Zerbini, S. 3D Displacement Field Retrieved by Integrating Sentinel-1 InSAR and GPS Data: The 2014 South Napa Earthquake. Eur. J. Remote Sens. 2016, 49, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Pepe, A. Generation of Earth’s Surface Three-Dimensional (3-D) Displacement Time-Series by Multiple-Platform SAR Data; IntechOpen: Rijeka, Croatia, 2018; ISBN 978-953-51-3742-9. [Google Scholar]
- Bakon, M.; Perissin, D.; Lazecky, M.; Papco, J. Infrastructure Non-Linear Deformation Monitoring via Satellite Radar Interferometry. Procedia Technol. 2014, 16, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Raucoules, D.; Colesanti, C.; Carnec, C. Use of SAR Interferometry for Detecting and Assessing Ground Subsidence. Comptes Rendus Geosci. 2007, 339, 289–302. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Del Soldato, M.; Confuorto, P.; Bianchini, S.; Sbarra, P.; Casagli, N. Review of Works Combining GNSS and InSAR in Europe. Remote Sens. 2021, 13, 1684. [Google Scholar] [CrossRef]
- Graham, L.C. Synthetic interferometer radar for topographic mapping. Proc. IEEE 1974, 62, 763–768. [Google Scholar] [CrossRef]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Luckman, A.J. Correction of SAR Imagery for Variation in Pixel Scattering Area Caused by Topography. IEEE Trans. Geosci. Remote Sens. 1998, 36, 344–350. [Google Scholar] [CrossRef]
- Sun, G.; Ranson, K.J.; Kharuk, V.I. Radiometric Slope Correction for Forest Biomass Estimation from SAR Data in the Western Sayani Mountains, Siberia. Remote Sens. Environ. 2002, 79, 279–287. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J.; et al. Radar Interferometry Techniques for the Study of Ground Subsidence Phenomena: A Review of Practical Issues through Cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Barber, B.C. Theory of Digital Imaging from Orbital Synthetic-Aperture Radar. Int. J. Remote Sens. 1985, 6, 1009–1057. [Google Scholar] [CrossRef]
- Blackledge, J.M. Theory of Imaging with Airborne Synthetic Aperture Radar. Optik 1987, 78, 1–11. [Google Scholar]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; Wiley: New York, NY, USA, 1991; Volume 11. [Google Scholar]
- Scheuer, T.E.; Wong, F.H. Comparison of Sar Processors Based on A Wave Equation Formulation. In Proceedings of the IGARSS’91 Remote Sensing: Global Monitoring for Earth Management, Espoo, Finland, 3–6 June 1991; Volume 2, pp. 635–639. [Google Scholar]
- Runge, H.; Bamler, R. A Novel High Precision SAR Focussing Algorithm Based on Chirp Scaling. In Proceedings of the IGARSS’92 International Geoscience and Remote Sensing Symposium, Houston, TX, USA, 26–29 May 1992; Volume 1, pp. 372–375. [Google Scholar]
- Bamler, R. A Comparison of Range-Doppler and Wavenumber Domain SAR Focusing Algorithms. IEEE Trans. Geosci. Remote Sens. 1992, 30, 706–713. [Google Scholar] [CrossRef]
- Bamler, R.; Schättler, B. SAR Data Acquisition and Image Formation. Geocoding ERS-1 SAR Data Syst. Wichmann-Verl. 1993, 53–102. [Google Scholar]
- Krawczyk, A.; Grzybek, R. An Evaluation of Processing InSAR Sentinel-1A/B Data for Correlation of Mining Subsidence with Mining Induced Tremors in the Upper Silesian Coal Basin (Poland). E3S Web Conf. 2018, 26, 00003. [Google Scholar] [CrossRef] [Green Version]
- Ciampalini, A.; Solari, L.; Giannecchini, R.; Galanti, Y.; Moretti, S. Evaluation of Subsidence Induced by Long-Lasting Buildings Load Using InSAR Technique and Geotechnical Data: The Case Study of a Freight Terminal (Tuscany, Italy). Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101925. [Google Scholar] [CrossRef]
- Bekaert, D.P.S.; Walters, R.J.; Wright, T.J.; Hooper, A.J.; Parker, D.J. Statistical Comparison of InSAR Tropospheric Correction Techniques. Remote Sens. Environ. 2015, 170, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Bekaert, D.; Hooper, A.; Wright, T. A Spatially-Variable Power-Law Tropospheric Correction Technique for InSAR Data. J. Geophys. Res. Solid Earth 2015, 120, 1345–1356. [Google Scholar] [CrossRef]
- Fattahi, H.; Amelung, F. InSAR Uncertainty Due to Orbital Errors. Geophys. J. Int. 2014, 199, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Davidbaekart. Available online: http://davidbekaert.com/download/TRAIN_manual.pdf (accessed on 5 November 2021).
- Github. Available online: https://github.com/dbekaert/TRAIN (accessed on 5 November 2021).
- Shi, X.; Zhang, L.; Zhong, Y.; Zhang, L.; Liao, M. Detection and Characterization of Active Slope Deformations with Sentinel-1 InSAR Analyses in the Southwest Area of Shanxi, China. Remote Sens. 2020, 12, 392. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Cheng, X.; Yang, Y.; Zhang, X.; Guo, Z.; Zou, Y. Investigation on Mining Subsidence Based on Multi-Temporal InSAR and Time-Series Analysis of the Small Baseline Subset—Case Study of Working Faces 22201-1/2 in Bu’ertai Mine, Shendong Coalfield, China. Remote Sens. 2016, 8, 951. [Google Scholar] [CrossRef] [Green Version]
- Pawluszek-Filipiak, K.; Borkowski, A. Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydułtowy Mine in Poland. Remote Sens. 2020, 12, 242. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry. Geosci. Remote Sens. IEEE Trans. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Stamps Software Package. Available online: http://homepages.see.leeds.ac.uk/~earahoo/stamps/ (accessed on 5 November 2021).
- Stamps Software Package. Available online: https://homepages.see.leeds.ac.uk/~earahoo/stamps/StaMPS_Manual_v4.1b1.pdf (accessed on 5 November 2021).
- Bechor, N.B.D.; Zebker, H.A. Measuring Two-Dimensional Movements Using a Single InSAR Pair. Geophys. Res. Lett. 2006, 33, 16. [Google Scholar] [CrossRef] [Green Version]
- Yagüe-Martínez, N.; Prats-Iraola, P.; Rodríguez González, F.; Brcic, R.; Shau, R.; Geudtner, D.; Eineder, M.; Bamler, R. Interferometric Processing of Sentinel-1 TOPS Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2220–2234. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Ke, Y.; Gong, H.; Li, X.; Li, Z. Land Subsidence Prediction in Beijing Based on PS-InSAR Technique and Improved Grey-Markov Model. GISci. Remote Sens. 2017, 54, 797–818. [Google Scholar] [CrossRef]
- Alatza, S.; Papoutsis, I.; Paradissis, D.; Kontoes, C.; Papadopoulos, G.A. Multi-Temporal InSAR Analysis for Monitoring Ground Deformation in Amorgos Island, Greece. Sensors 2020, 20, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 10. [Google Scholar] [CrossRef]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 21–25 July 2003; IEEE: Piscataway, NJ, USA, 2003; Volume 7, pp. 4362–4364. [Google Scholar] [CrossRef]
- Crosetto, M.; Biescas, E.; Duro, J.; Closa, J.; Arnaud, A. Generation of advanced ERS and Envisat interferometric SAR products using the Stable Point Network technique. Photogramm. Eng. Remote Sens. 2008, 74, 443–451. [Google Scholar] [CrossRef]
- Costantini, M.; Falco, S.; Malvarosa, F.; Minati, F. A New Method for Identification and Analysis of Persistent Scatterers in Series of SAR Images. In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 8–11 July 2008; pp. II-449–II-452. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Ding, X.; Jung, H.-S.; Feng, G.; Lee, C.-W. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Boden Bewegungsdienst Deutchland. Available online: https://bodenbewegungsdienst.bgr.de/mapapps/resources/apps/bbd/index.html?lang=en (accessed on 13 March 2023).
- InSAR Norway. Available online: https://insar.ngu.no/ (accessed on 13 March 2023).
- Costantini, M.; Ferretti, A.; Minati, F.; Falco, S.; Trillo, F.; Colombo, D.; Novali, F.; Malvarosa, F.; Mammone, C.; Vecchioli, F.; et al. Analysis of surface deformations over the whole Italian territory by interferometric processing of ERS, Envisat and COSMO-SkyMed radar data. Remote Sens. Environ. 2017, 202, 250–275. [Google Scholar] [CrossRef]
- Bakon, M.; Czikhardt, R.; Papco, J.; Barlak, J.; Rovnak, M.; Adamisin, P.; Perissin, D. remotIO: A Sentinel-1 Multi-Temporal InSAR Infrastructure Monitoring Service with Automatic Updates and Data Mining Capabilities. Remote Sens. 2020, 12, 1892. [Google Scholar] [CrossRef]
- Delgado Blasco, J.M.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, H.; Li, M.; Kang, Y.; Lu, Z. Investigating Ground Subsidence and the Causes over the Whole Jiangsu Province, China Using Sentinel-1 SAR Data. Remote Sens. 2021, 13, 179. [Google Scholar] [CrossRef]
- Mora, O.; Ordoqui, P.; Iglesias, R.; Blanco, P. Earthquake Rapid Mapping Using Ascending and Descending Sentinel-1 TOPSAR Interferograms. Procedia Comput. Sci. 2016, 100, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yang, L.; Wang, W.; Chen, B.; Sun, X. Monitoring Mining Activities Using Sentinel-1A InSAR Coherence in Open-Pit Coal Mines. Remote Sens. 2021, 13, 4485. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Sentinel-1 Big Data Processing with P-SBAS InSAR in the Geohazards Exploitation Platform: An Experiment on Coastal Land Subsidence and Landslides in Italy. Remote Sens. 2021, 13, 885. [Google Scholar] [CrossRef]
- Lu, Z. InSAR imaging of volcanic deformation over cloud-prone areas-Aleutian islands. Photogramm. Eng. Remote Sens. 2007, 73, 245–257. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zhou, J.; Tian, B. The glacier movement estimation and analysis with InSAR in the Qinghai-Tibetan plateau. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; pp. II-578–II-581. [Google Scholar]
- Zhao, F.; Wang, T.; Zhang, L.; Feng, H.; Yan, S.; Fan, H.; Xu, D.; Wang, Y. Polarimetric Persistent Scatterer Interferometry for Ground Deformation Monitoring with VV-VH Sentinel-1 Data. Remote Sens. 2022, 14, 309. [Google Scholar] [CrossRef]
- Cigna, F.; Esquivel Ramírez, R.; Tapete, D. Accuracy of Sentinel-1 PSI and SBAS InSAR Displacement Velocities against GNSS and Geodetic Leveling Monitoring Data. Remote Sens. 2021, 13, 4800. [Google Scholar] [CrossRef]
- Raucoules, D.; Bourgine, B.; de Michele, M.; Le Cozannet, G.; Closset, L.; Bremmer, C.; Veldkamp, H.; Tragheim, D.; Bateson, L.; Crosetto, M.; et al. Validation and intercomparison of Persistent Scatterers Interferometry: PSIC4 project results. J. Appl. Geophys. 2009, 68, 335–347. [Google Scholar] [CrossRef] [Green Version]
- European Space Agency SNAP Software Package. Available online: https://step.esa.int/main/download/snap-download/ (accessed on 5 November 2021).
- European Space Agency SNAP Software Package. Available online: https://step.esa.int/main/doc/tutorials/ (accessed on 5 November 2021).
- European Space Agency SNAP Software Package. Available online: http://step.esa.int/docs/presentations/SNAP_User_Forum/2_SNAP_Introduction%20and%20News.pdf (accessed on 5 November 2021).
- European Space Agency Sentinel-1 Mission. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Introducing_Sentinel-1 (accessed on 5 November 2021).
- European Space Agency Satellite Imaginary. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 5 November 2021).
- Alaska Satellite Facility Data Search. Available online: https://search.asf.alaska.edu/#/ (accessed on 5 November 2021).
- Perović, G.; Ninković, S.; Moritz, H. Least Squares:(Monograph): With 87 Figures and 90 Tables; TON: Belgrade, Serbia, 2005; ISBN 86-907409-0-2. [Google Scholar]
- Pelzer, H. Zur Analyse Geodätischer Deformations-Messungen; DGK, Verlag der Bayer. Akad. d. Wiss.: Munich, Germany, 1971. [Google Scholar]
- Electric Power Industry of Serbia. Available online: http://www.eps.rs/lat/kostolac/Stranice/o-nama-teko.aspx (accessed on 5 November 2021).
- Kostovic, M.; Kostović, N.; Tokalić, R. Coal mining and preparation in Serbia. Podzemn. Rad. 2018, 33, 69–77. [Google Scholar] [CrossRef]
- Electric Power Industry of Serbia Zones of the Influence. Available online: http://www.eps.rs/cir/kostolac/Pages/zastita-zivotne-sredine.aspx (accessed on 5 November 2021).
- Google Earth. Available online: https://earth.google.com/web/@44.75232586,21.27635474,65.88404334a,6766.13237461d,35y,0.25 (accessed on 5 November 2021).
- Geological Information System of Serbia. Available online: http://geoliss.mre.gov.rs/karte/geo300.html (accessed on 5 November 2021).
- Đoković, N.; Mitrović, D.; Životić, D.; Bechtel, A.; Sachsenhofer, R.F.; Matić, V.; Glamočanin, L.; Stojanović, K. Petrographical and organic geochemical study of the lignite from the Smederevsko Pomoravlje field (Kostolac Basin, Serbia). Int. J. Coal Geol. 2018, 195, 139–171. [Google Scholar] [CrossRef] [Green Version]
- Božić, D. Use of Wingtra and AIBOTIX unmanned airborne vehicles in analysis of landslides of open-pit lignite mines. Rep. Serb. Geol. Soc. 2022, 2021, 52–62. [Google Scholar]
- Peduto, D.; Prosperi, A.; Nicodemo, G.; Korff, M. District-scale numerical analysis of settlements related to groundwater lowering in variable soil conditions. Can. Geotech. J. 2022, 6, 978–993. [Google Scholar] [CrossRef]
- Rees, G. Physical Principles of Remote Sensing; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; ISBN 978-1-107-00473-3. [Google Scholar]
- Bamler, R.; Hartl, P. Synthetic Aperture Radar Interferometry. Inverse Probl. 1998, 14, R1–R54. [Google Scholar] [CrossRef]
- Richards, M.A. A Beginner’s Guide to Interferometric SAR Concepts and Signal Processing [AESS Tutorial IV]. IEEE Aerosp. Electron. Syst. Mag. 2007, 22, 5–29. [Google Scholar] [CrossRef]
- Professional Information about on Weather Conditions around the World. Available online: https://www.ogimet.com/gsynres.phtml.en (accessed on 5 November 2021).
- Fattahi, H.; Agram, P.; Simons, M. A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent Advances in SAR Interferometry Time Series Analysis for Measuring Crustal Deformation. Tectonophysics 2012, 514, 1–13. [Google Scholar] [CrossRef]
- MATLAB Is a Programming and Numeric Computing Platform. Available online: https://www.mathworks.com/products/matlab.html (accessed on 5 November 2021).
- Chen, C.W.; Zebker, H.A. Network Approaches to Two-Dimensional Phase Unwrapping: Intractability and Two New Algorithms. J. Opt. Soc. Am. 2000, 17, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.W.; Zebker, H.A. Two-Dimensional Phase Unwrapping with Use of Statistical Models for Cost Functions in Nonlinear Optimization. J. Opt. Soc. Am. 2001, 18, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Zebker, H.A. Phase Unwrapping for Large SAR Interferograms: Statistical Segmentation and Generalized Network Models. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1709–1719. [Google Scholar] [CrossRef] [Green Version]
- Statistical-Cost, Network-Flow Algorithm for Phase Unwrapping. Available online: https://web.stanford.edu/group/radar/softwareandlinks/sw/snaphu/ (accessed on 5 November 2021).
- Shuttle Radar Topography Mission. Available online: https://www2.jpl.nasa.gov/srtm/ (accessed on 22 June 2022).
- Samieie-Esfahany, S.; Hanssen, R.F.; Van Thienen-Visser, K.; Muntendam-Bos, A.; Systems, S. On the effect of horizontal deformation on insar subsidence estimates. In Proceedings of the 2009 Workshop on Fringe, Frascati, Italy, 30 November–4 December 2009. [Google Scholar]
- Foumelis, M. Vector-Based Approach for Combining Ascending and Descending Persistent Scatterers Interferometric Point Measurements. Geocarto Int. 2018, 33, 38–52. [Google Scholar] [CrossRef]
- A Free and Open Source Geographic Information System. Available online: https://qgis.org/en/site/ (accessed on 5 November 2021).
Sat. | First/Last Image | Orbit | Track | Burst | M.I.A. | No. of Images | Polarization |
---|---|---|---|---|---|---|---|
S 1A | 01.10.2016–15.12.2020 | Asc. | 102 | IW1 4–5 | 17.07.2018 | 127 | vv |
24.10.2016–14.12.2020 | Desc. | 80 | IW3 6–7 | 22.07.2018 | 128 | vv | |
S 1B | 07.10.2016–21.12.2020 | Asc. | 102 | IW1 4–5 | 17.07.2018 | 130 | vv |
06.10.2016–20.12.2020 | Desc | 80 | IW3 6–7 | 22.07.2018 | 128 | vv |
Satellite | PS | Max | Min | Mean Uplift | Mean Subsidence |
---|---|---|---|---|---|
Orbit | (LOS) | [mm/year] | [mm/year] | [mm/year] | [mm/year] |
Asc | 79,060 | 6.9 | −8.1 | 0.5 | −1.1 |
Desc | 81,217 | 6.1 | −8.8 | 0.5 | −0.7 |
Asc + Desc | 8951 | 4.1 | −8.2 | 0.5 | −0.7 |
PS | Max | Min | Mean Uplift | Mean Subsidence | Mean |
---|---|---|---|---|---|
Total | [mm/year] | [mm/year] | [mm/year] | [mm/year] | [mm/year] |
93 | 0 | −4.5 | / | −1.5 | −1.5 |
Place | PS | Max | Min | Mean Up. | Mean Sub. | Mean |
---|---|---|---|---|---|---|
[mm/year] | [mm/year] | [mm/year] | [mm/year] | [mm/year] | ||
Klicevac | 235 | 2.4 | −2.2 | 0.5 | −0.5 | 0.2 |
Bradarac | 270 | 1.1 | −8.2 | 0.3 | −1.1 | −1.1 |
PS | Max | Min | Mean Uplift | Mean Subsidence | Mean |
---|---|---|---|---|---|
Total | [mm/year] | [mm/year] | [mm/year] | [mm/year] | [mm/year] |
102 | −0.6 | −5.0 | / | −2.9 | −2.9 |
PS | Max | Min | Mean Uplift | Mean Subsidence | Mean |
---|---|---|---|---|---|
Total | [mm/year] | [mm/year] | [mm/year] | [mm/year] | [mm/year] |
479 | 1.0 | −4.3 | 0.3 | −1.2 | −1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gojković, Z.; Kilibarda, M.; Brajović, L.; Marjanović, M.; Milutinović, A.; Ganić, A. Ground Surface Subsidence Monitoring Using Sentinel-1 in the “Kostolac” Open Pit Coal Mine. Remote Sens. 2023, 15, 2519. https://doi.org/10.3390/rs15102519
Gojković Z, Kilibarda M, Brajović L, Marjanović M, Milutinović A, Ganić A. Ground Surface Subsidence Monitoring Using Sentinel-1 in the “Kostolac” Open Pit Coal Mine. Remote Sensing. 2023; 15(10):2519. https://doi.org/10.3390/rs15102519
Chicago/Turabian StyleGojković, Zoran, Milan Kilibarda, Ljiljana Brajović, Miloš Marjanović, Aleksandar Milutinović, and Aleksandar Ganić. 2023. "Ground Surface Subsidence Monitoring Using Sentinel-1 in the “Kostolac” Open Pit Coal Mine" Remote Sensing 15, no. 10: 2519. https://doi.org/10.3390/rs15102519
APA StyleGojković, Z., Kilibarda, M., Brajović, L., Marjanović, M., Milutinović, A., & Ganić, A. (2023). Ground Surface Subsidence Monitoring Using Sentinel-1 in the “Kostolac” Open Pit Coal Mine. Remote Sensing, 15(10), 2519. https://doi.org/10.3390/rs15102519