A Multi-Robot Coverage Path Planning Method for Maritime Search and Rescue Using Multiple AUVs
Abstract
:1. Introduction
1.1. Related Works
1.2. Motivation
- (a)
- (b)
- According to the usage of the SSS, the target is discovered by interpreting sonar images of sub-areas one by one after completing the task [28]. Hence, concentrating the possible target areas on a few sub-tasks and first interpreting the sonar images containing the possible target areas can help to discover the target quickly.
- (c)
- All the AUVs start from the same initial position, limited by the AUV deployment mode. Instead, most MCPP methods assume that the initial position of robots can be placed anywhere [18].
- (d)
- (e)
1.3. Contribution
- This research summarizes the specificities of real maritime SAR projects using multi-AUV equipped with SSS. This lays the foundation for future research related to maritime SAR missions.
- Considering the specificities, this research formulates a novel constrained MCPP problem and proposed a customized MCPP method. The multi-AUV paths generated by the proposed method facilitate discovering the target quickly and accurately and balancing multi-AUV workload.
- For the proposed area partitioning method, a variable conversion transforms the deflection angles of the split lines to the AUV sequences. It helps to simplify the solving process and reduce the solution space.
2. Problem Definition
2.1. MCPP Problem for Maritime SAR Mission
2.2. Area Partitioning Problem
2.3. Single-AUV Coverage Path Planning Problem
3. Method
3.1. Area Partitioning Method
3.1.1. Spatial Structure of the Task Area
3.1.2. Variable Conversion under the Structure
3.1.3. Determination of Optimal Split Lines
3.2. Single-AUV Coverage Path Planning Method
3.3. Computational Complexity Analysis
4. Results
4.1. Simulations
4.1.1. Simulations with Different Numbers of AUVs
4.1.2. Comparison with Existing MCPP Methods
4.2. Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm A1 Customized Backtracking Method |
Input:, , |
Output:,, O |
1: = = ∞; i = 1; j = 1;//initialization |
2: whiledo |
3: while do |
4: calculate (j,, ) |
5: if is Available then |
6: ; |
7: break |
8: else |
9: ; |
10: ; |
11: compare and record = min ; |
12: = argmin ; |
13: end if |
14: end while |
15: if then |
16: |
17: else |
18: BACKTRACKING; |
19: end if |
20: if all elements in are settled then |
21: calculate ; |
22: = min(); O = argmin ; |
23: end if |
24: end while |
25: if O is then |
26: |
27: |
28: calculate (O ) |
29: end if |
Appendix B
Algorithm A2 Available Function |
Input: |
Output: |
1: ; |
2: calculate according to O; |
3: if then |
4: |
5: end if |
References
- Grza̧dziel, A. Results from developments in the use of a scanning sonar to support diving operations from a rescue ship. Remote Sens. 2020, 12, 693. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhao, J.; Gong, Q.; Huang, C.; Zheng, G.; Ma, J. Real-time underwater maritime object detection in side-scan sonar images based on transformer-YOLOv5. Remote Sens. 2021, 13, 3555. [Google Scholar] [CrossRef]
- Yang, T.; Jiang, Z.; Sun, R.; Cheng, N.; Feng, H. Maritime search and rescue based on group mobile computing for unmanned aerial vehicles and unmanned surface vehicles. IEEE Trans. Ind. Inform. 2020, 16, 7700–7708. [Google Scholar] [CrossRef]
- Cho, S.W.; Park, H.J.; Lee, H.; Shim, D.H.; Kim, S.Y. Coverage path planning for multiple unmanned aerial vehicles in maritime search and rescue operations. Comput. Ind. Eng. 2021, 161, 107612. [Google Scholar] [CrossRef]
- Almadhoun, R.; Taha, T.; Seneviratne, L.; Zweiri, Y. A survey on multi-robot coverage path planning for model reconstruction and mapping. SN Appl. Sci. 2019, 1. [Google Scholar] [CrossRef] [Green Version]
- Popović, M.; Vidal-Calleja, T.; Hitz, G.; Chung, J.J.; Sa, I.; Siegwart, R.; Nieto, J. An informative path planning framework for UAV-based terrain monitoring. Auton. Robot. 2020, 44, 889–911. [Google Scholar] [CrossRef] [Green Version]
- Rajan, R.; Otte, M.; Sofge, D. Optimizing multiagent area coverage using dynamic global potential fields. In Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI), Bangalore, India, 18–21 November 2018. [Google Scholar] [CrossRef]
- Tsiogkas, N.; Lane, D.M. An evolutionary algorithm for online, resource-constrained, multivehicle sensing mission planning. IEEE Robot. Autom. Lett. 2018, 3, 1199–1206. [Google Scholar] [CrossRef] [Green Version]
- Lakshmanan, A.K.; Mohan, R.E.; Ramalingam, B.; Le, A.V.; Veerajagadeshwar, P.; Tiwari, K.; Ilyas, M. Complete coverage path planning using reinforcement learning for Tetromino based cleaning and maintenance robot. Autom. Constr. 2020, 112, 103078. [Google Scholar] [CrossRef]
- Hassan, M.; Liu, D. Simultaneous area partitioning and allocation for complete coverage by multiple autonomous industrial robots. Auton. Robot. 2017, 41, 1609–1628. [Google Scholar] [CrossRef]
- Dong, W.; Liu, S.; Ding, Y.; Sheng, X.; Zhu, X. An artificially weighted spanning tree coverage algorithm for decentralized flying robots. IEEE Trans. Autom. Sci. Eng. 2020, 17, 1689–1698. [Google Scholar] [CrossRef]
- Kapanoglu, M.; Alikalfa, M.; Ozkan, M.; Yazıcı, A.; Parlaktuna, O. A pattern-based genetic algorithm for multi-robot coverage path planning minimizing completion time. J. Intell. Manuf. 2010, 23, 1035–1045. [Google Scholar] [CrossRef]
- Luo, C.; Yang, S.X.; Li, X.; Meng, M.Q.H. Neural-dynamics-driven complete area coverage navigation through cooperation of multiple mobile robots. IEEE Trans. Ind. Electron. 2017, 64, 750–760. [Google Scholar] [CrossRef]
- Sipahioglu, A.; Kirlik, G.; Parlaktuna, O.; Yazici, A. Energy constrained multi-robot sensor-based coverage path planning using capacitated arc routing approach. Robot. Auton. Syst. 2010, 58, 529–538. [Google Scholar] [CrossRef]
- Ulusoy, G. The fleet size and mix problem for capacitated arc routing. Eur. J. Oper. Res. 1985, 22, 329–337. [Google Scholar] [CrossRef]
- Yazici, A.; Kirlik, G.; Parlaktuna, O.; Sipahioglu, A. A dynamic path planning approach for multirobot sensor-based coverage considering energy constraints. IEEE Trans. Cybern. 2014, 44, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Kim, J. Multi-robot global sonar survey in the presence of strong currents. Ocean Eng. 2019, 188, 106316. [Google Scholar] [CrossRef]
- Kapoutsis, A.C.; Chatzichristofis, S.A.; Kosmatopoulos, E.B. DARP: Divide areas algorithm for optimal multi-robot coverage path planning. J. Intell. Robot. Syst. 2017, 86, 663–680. [Google Scholar] [CrossRef] [Green Version]
- Nair, V.G.; Guruprasad, K.R. GM-VPC: An algorithm for multi-robot coverage of known spaces using generalized voronoi partition. Robotica 2019, 38, 845–860. [Google Scholar] [CrossRef]
- Alitappeh, R.J.; Jeddisaravi, K. Multi-robot exploration in task allocation problem. Appl. Intell. 2021, 52, 2189–2211. [Google Scholar] [CrossRef]
- Balampanis, F.; Maza, I.; Ollero, A. Area partition for coastal regions with multiple UAS. J. Intell. Robot. Syst. 2017, 88, 751–766. [Google Scholar] [CrossRef]
- Viet, H.H.; Dang, V.H.; Choi, S.; Chung, T.C. BoB: An online coverage approach for multi-robot systems. Appl. Intell. 2014, 42, 157–173. [Google Scholar] [CrossRef]
- Choset, H. Coverage of known spaces: The boustrophedon cellular decomposition. Auton. Robot. 2000, 9, 247–253. [Google Scholar] [CrossRef]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. Sensor-driven online coverage planning for autonomous underwater vehicles. IEEE/ASME Trans. Mechatron. 2013, 18, 1827–1838. [Google Scholar] [CrossRef]
- Akbari, A.; Eiselt, H.A.; Pelot, R. A maritime search and rescue location analysis considering multiple criteria, with simulated demand. INFOR Inf. Syst. Oper. Res. 2017, 56, 92–114. [Google Scholar] [CrossRef]
- OTOTE, D.A.; Li, B.; Ai, B.; Gao, S.; Xu, J.; Chen, X.; Lv, G. A decision-making algorithm for maritime search and rescue plan. Sustainability 2019, 11, 2084. [Google Scholar] [CrossRef] [Green Version]
- Yao, P.; Qiu, L.; Qi, J.; Yang, R. AUV path planning for coverage search of static target in ocean environment. Ocean Eng. 2021, 241, 110050. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, X.; Chu, Z.; Yang, Y.; Shi, J. Active learning for recognition of shipwreck target in side-scan sonar image. Remote Sens. 2019, 11, 243. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Guo, J. Real time map generation using sidescan sonar scanlines for unmanned underwater vehicles. Ocean Eng. 2014, 91, 252–262. [Google Scholar] [CrossRef]
- Muthugala, M.V.J.; Samarakoon, S.B.P.; Elara, M.R. Toward energy-efficient online Complete Coverage Path Planning of a ship hull maintenance robot based on Glasius Bio-inspired Neural Network. Expert Syst. Appl. 2022, 187, 115940. [Google Scholar] [CrossRef]
- Collins, L.; Ghassemi, P.; Esfahani, E.T.; Doermann, D.; Dantu, K.; Chowdhury, S. Scalable Coverage Path Planning of Multi-Robot Teams for Monitoring Non-Convex Areas. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021. [Google Scholar] [CrossRef]
- Dutta, A.; Bhattacharya, A.; Kreidl, O.P.; Ghosh, A.; Dasgupta, P. Multi-robot informative path planning in unknown environments through continuous region partitioning. Int. J. Adv. Robot. Syst. 2020, 17, 172988142097046. [Google Scholar] [CrossRef]
- Cai, C.; Chen, J.; Yan, Q.; Liu, F.; Zhou, R. A prior information-based coverage path planner for underwater search and rescue using autonomous underwater vehicle (auv) with side-scan sonar. IET Radar Sonar Navig. 2022. [Google Scholar] [CrossRef]
- Krout, D.; Fox, W.; El-Sharkawi, M. Probability of target presence for multistatic sonar ping sequencing. IEEE J. Ocean Eng. 2009, 34, 603–609. [Google Scholar] [CrossRef]
- Acar, E.U.; Choset, H.; Rizzi, A.A.; Atkar, P.N.; Hull, D. Morse decompositions for coverage tasks. Int. J. Robot. Res. 2002, 21, 331–344. [Google Scholar] [CrossRef]
- Guastella, D.C.; Cantelli, L.; Giammello, G.; Melita, C.D.; Spatino, G.; Muscato, G. Complete coverage path planning for aerial vehicle flocks deployed in outdoor environments. Comput. Electr. Eng. 2019, 75, 189–201. [Google Scholar] [CrossRef]
- Balampanis, F.; Maza, I.; Ollero, A. Area decomposition, partition and coverage with multiple remotely piloted aircraft systems operating in coastal regions. In Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016. [Google Scholar] [CrossRef]
- Acar, E.; Choset, H.; Lee, J.Y. Sensor-based coverage with extended range detectors. IEEE Trans. Robot. 2006, 22, 189–198. [Google Scholar] [CrossRef]
- Priestley, H.; Ward, M. A multipurpose backtracking algorithm. J. Symb. Comput. 1994, 18, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Guldal, S.; Baugh, V.; Allehaibi, S. N-Queens solving algorithm by sets and backtracking. In Proceedings of the SoutheastCon 2016, Norfolk, VA, USA, 30 March–3 April 2016. [Google Scholar] [CrossRef]
- Vasquez-Gomez, J.I.; Marciano-Melchor, M.; Valentin, L.; Herrera-Lozada, J.C. Coverage path planning for 2d convex regions. J. Intell. Robot. Syst. 2019, 97, 81–94. [Google Scholar] [CrossRef]
- Yordanova, V.; Gips, B. Coverage path planning with track spacing adaptation for autonomous underwater vehicles. IEEE Robot. Autom. Lett. 2020, 5, 4774–4780. [Google Scholar] [CrossRef]
- Gabriely, Y.; Rimon, E. Spanning-tree based coverage of continuous areas by a mobile robot. In Proceedings of the Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation, Seoul, Republic of Korea, 21–26 May 2001. [Google Scholar] [CrossRef]
- Azpúrua, H.; Freitas, G.M.; Macharet, D.G.; Campos, M.F.M. Multi-robot coverage path planning using hexagonal segmentation for geophysical surveys. Robotica 2018, 36, 1144–1166. [Google Scholar] [CrossRef]
- Ai, B.; Jia, M.; Xu, H.; Xu, J.; Wen, Z.; Li, B.; Zhang, D. Coverage path planning for maritime search and rescue using reinforcement learning. Ocean Eng. 2021, 241, 110098. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
A | Task area |
Subarea assigned to | |
Energy capacities of AUVs | |
, | Objective functions |
Total number of AUVs | |
, | Number of Z before and after partitioning |
O | Order of AUVs |
Probability of discovering the target | |
Path of | |
Probability of detecting the target | |
Probability of target presence | |
Map from to S | |
r | Identifier of AUV |
Area of task area A | |
Expected area of subarea | |
Real area of subarea | |
Z | Possible target area |
Deflection angle from y-axis | |
Optimal deflection angles of split lines | |
Deflection angle of possible target area |
O | ||
---|---|---|
3 | 1 2 3 | 55.46 75.75 |
4 | 1 3 4 2 | 46.50 60.81 74.48 |
5 | 3 2 4 1 5 | 30.69 56.10 67.88 79.01 |
6 | 4 3 6 5 2 1 | 39.06 53.58 59.39 68.21 78.99 |
7 | 7 1 3 2 6 5 4 | 27.06 49.95 59.00 67.95 71.63 79.96 |
8 | 1 3 6 7 5 8 4 2 | 30.24 44.73 51.15 59.24 65.93 73.00 81.26 |
Method | Number of Turns |
---|---|
DARP | 84 |
BoB | 102 |
Proposed method | 31 |
Item | Unit | Parameter | |
---|---|---|---|
AUV | Weight | kg | 15 |
Length | m | 1.53 | |
Nominal Speed | kn | 3 | |
Maximum Forward Speed | kn | 8 | |
Navigation Accuracy | m | 5.00 | |
Turning Radius | m | 5.00 | |
Maximum Depth | m | 50.00 | |
SSS | Range | m | 30.00 |
Frequency | kHz | 330 | |
Beam Width | 1.8 × 60 | ||
Range Resolution | 0.2% of Range |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Chen, J.; Yan, Q.; Liu, F. A Multi-Robot Coverage Path Planning Method for Maritime Search and Rescue Using Multiple AUVs. Remote Sens. 2023, 15, 93. https://doi.org/10.3390/rs15010093
Cai C, Chen J, Yan Q, Liu F. A Multi-Robot Coverage Path Planning Method for Maritime Search and Rescue Using Multiple AUVs. Remote Sensing. 2023; 15(1):93. https://doi.org/10.3390/rs15010093
Chicago/Turabian StyleCai, Chang, Jianfeng Chen, Qingli Yan, and Fen Liu. 2023. "A Multi-Robot Coverage Path Planning Method for Maritime Search and Rescue Using Multiple AUVs" Remote Sensing 15, no. 1: 93. https://doi.org/10.3390/rs15010093
APA StyleCai, C., Chen, J., Yan, Q., & Liu, F. (2023). A Multi-Robot Coverage Path Planning Method for Maritime Search and Rescue Using Multiple AUVs. Remote Sensing, 15(1), 93. https://doi.org/10.3390/rs15010093