A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Plans and Geospatial Error
2.3. Data Acquisition
2.3.1. ASD TerraSpec Halo Handheld Spectrometer Mineral Identifier
2.3.2. UAV Nano-Hyperspec
2.3.3. PlanetScope Dove-R
2.3.4. Sentinel-2 2A
2.4. Spectral Data Post-Processing
2.4.1. Unsupervised Band Ratio Classification of Fe(III) Iron and Pixel Distribution Maps
2.4.2. NDVI, NDWI, and Fractioned Water Pixel Analysis
2.4.3. Spectral Signatures of Known Fe(III) Iron Occurrences
3. Results
3.1. Fe(III) Iron Distribution Maps and Spectral Linear Regression
3.2. NDWI and FWP Analysis Results
4. Discussion
4.1. Remote Sensing as Means of Detecting AMD
Fe(III) Iron Distribution at Wheal Maid
4.2. The Impacts of Nearby Waterbodies on AMD Mapping
4.3. Limitations
4.4. Future Research
5. Conclusions
- The visible-to-shortwave infrared surface measurements of AMD material support the initial hypothesis, such that when the areal and spaceborne Fe(III) iron reflectance values increased, so did the surface Fe(III) iron reflectance values.
- Spectral signatures resembling the spectral profile of goethite were detected on Wheal Maid’s surface and from space, in areas known for goethite formation.
- A decrease in spatial resolution saw increases in the total amount of fractioned water pixels, which was caused by a nearby waterbody. Fractioned water pixels lower Fe(III) iron reflectance, and may cause erroneous results.
- Proximity to waterbodies and geospatial error must be noted when mapping AMD, especially in lower resolution sensors, as they are less resilient to soil moisture and more prone to overlapping.
- Hyperspectral imaging emerged as the most promising in terms of AMD mapping, yet it works well in tandem with other instruments of different spatial resolutions.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Spectral Signatures of Goethite Across Sensors
References
- Skousen, J. Acid Mine Drainage. Green Lands 1995, 25, 52–55. [Google Scholar]
- Banfield, J.F.; Welch, S.A. Microbial controls on the mineralogy of the environment. In Environmental Mineralogy; Vaughan, D.J., Wogelius, R.A., Eds.; Mineralogical Society of Great Britain and Ireland: London, UK, 2000; Volume 2, ISBN 978-963-463-133-0. [Google Scholar]
- Singer, P.C.; Stumm, W. Kinetics of the oxidation of ferrous iron. In Proceedings of the Second Symposium on Coal Mine Drainage Research, National Coal Association/Bituminous Coal Research, Pittsburgh, Pennsylvania, 14–15 May 1968; Wiley: New York, NY, USA, 1968; pp. 12–34. [Google Scholar]
- Peppas, A.; Komnitsas, K.; Halikia, I. Use of organic covers for Acid Mine Drainage control. Miner. Eng. 2000, 13, 563–574. [Google Scholar] [CrossRef]
- Kwong, Y.T.J.; Whitley, G.; Roach, P. Natural Acid Rock Drainage associated with black shale in the Yukon territory, Canada. Appl. Geochem. 2009, 24, 221–231. [Google Scholar] [CrossRef]
- Maus, V.; Giljum, S.; Gutschlhofer, J.; da Silva, D.M.; Probst, M.; Gass, S.L.; Luckeneder, S.; Lieber, M.; McCallum, I. A global-scale data set of mining areas. Sci. Data 2020, 7, 289. [Google Scholar] [CrossRef]
- Skousen, J.; Rose, A.; Geidel, G.; Foreman, J.; Evans, R.; Hellier, W. Handbook of technologies for avoidance and remediation of Acid Mine Drainage. Natl. Mine Land Reclam. Cent. Morgant. 1998, 1998, 131. [Google Scholar]
- Lottermoser, B. Predicting Acid Mine Drainage: Past, present, future. Min. Rep. 2015, 2015, 151. [Google Scholar]
- Bowles, J.F.W. Hydroxides. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Oxford, UK, 2021; pp. 442–451. ISBN 978-0-08-102909-1. [Google Scholar]
- Schwertmann, U. Effect of PH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner. 1983, 31, 277–284. [Google Scholar] [CrossRef]
- Das, S.; Hendry, M.J.; Essilfie-Dughan, J. Transformation of two-line ferrihydrite to goethite and hematite as a function of pH and temperature. Environ. Sci. Technol. 2011, 45, 268–275. [Google Scholar] [CrossRef]
- Desborough, G.A.; Smith, K.S.; Lowers, H.A.; Swayze, G.A.; Hammarstrom, J.M.; Diehl, S.F.; Leinz, R.W.; Driscoll, R.L. Mineralogical and chemical Characteristics of some natural jarosites. Geochim. Cosmochim. Acta 2010, 74, 1041–1056. [Google Scholar] [CrossRef] [Green Version]
- Fraser, S.J. Discrimination and identification of ferric oxides using satellite thematic mapper data: A Newman case study. Int. J. Remote Sens. 1991, 12, 614–635. [Google Scholar] [CrossRef]
- Gopinathan, P.; Parthiban, S.; Magendran, T.; Al-Quraishi, A.M.F.; Singh, A.K.; Singh, P.K. Mapping of ferric (Fe3+) and ferrous (Fe2+) iron oxides distribution using band ratio techniques with aster data and geochemistry of Kanjamalai and Godumalai, Tamil Nadu, south India. Remote Sens. Appl. Soc. Environ. 2020, 18, 100306. [Google Scholar]
- Jackisch, R.; Lorenz, S.; Zimmermann, R.; Möckel, R.; Gloaguen, R. Drone-borne hyperspectral monitoring of Acid Mine Drainage: An example from the Sokolov Lignite district. Remote Sens. 2018, 10, 385. [Google Scholar] [CrossRef] [Green Version]
- Mielke, C.; Boesche, N.K.; Rogass, C.; Kaufmann, H.; Gauert, C.; De Wit, M. Spaceborne mine waste mineralogy monitoring in South Africa, applications for modern push-broom missions: Hyperion/Oli and Enmap/Sentinel-2. Remote Sens. 2014, 6, 6790–6816. [Google Scholar] [CrossRef] [Green Version]
- Sabins, F.F. Remote sensing for mineral exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Kalinowski, A.; Oliver, S. Aster Mineral Index Processing Manual; Geoscience Australia: Canberra, Australia, 2004. [Google Scholar]
- Lottermoser, B.G.; Glass, H.J.; Page, C.N. Sustainable natural remediation of abandoned tailings by metal-excluding heather (Calluna Vulgaris) and gorse (Ulex Europaeus), Carnon Valley, Cornwall, Uk. Ecol. Eng. 2011, 37, 1249–1253. [Google Scholar] [CrossRef]
- Malvern Panalytical ASD TerraSpec Halo User Manual. 2021. Available online: https://www.Malvernpanalytical.Com/En/Support/Product-Support/Asd-Range/Terraspec-Range/Terraspec-Halo-Mineral-Identifier#manuals (accessed on 1 December 2022).
- Malvern Panalytical. ASD TerraSpec Halo. Malvern Panalytical. Available online: https://www.malvernpanalytical.com/en/support/product-support/asd-range/terraspec-range/terraspec-halo-mineral-identifier (accessed on 1 December 2022).
- Headwall Photonics. Hyperspectral Remote-Sensing Applications. Available online: https://www.headwallphotonics.com/solutions/remote-sensing (accessed on 1 December 2022).
- Planet Team. Understanding PlanetScope Instruments. Available online: https://developers.planet.com/docs/apis/data/sensors/ (accessed on 1 December 2022).
- European Space Agency. Sentinel-2 Overview, Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2/overview (accessed on 1 December 2022).
- Weidong, L.; Baret, F.; Xingfa, G.; Qingxi, T.; Lanfen, Z.; Bing, Z. Relating soil surface moisture to reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar] [CrossRef]
- Fitch, V.; Parbhakar-Fox, A.; Crane, R.; Newsome, L. Evolution of sulfidic legacy mine tailings: A review of the Wheal Maid Site, Uk. Minerals 2022, 12, 848. [Google Scholar] [CrossRef]
- Van Veen, E.M.; Lottermoser, B.G.; Parbhakar-Fox, A.; Fox, N.; Hunt, J. A new test for plant bioaccessibility in sulphidic wastes and soils: A Case study from the Wheal Maid historic tailings repository in Cornwall, Uk. Sci. Total Environ. 2016, 563, 835–844. [Google Scholar] [CrossRef]
- Crane, R.A.; Sinnett, D.E.; Cleall, P.J.; Sapsford, D.J. Physicochemical composition of wastes and co-located environmental designations at legacy mine sites in the South West of England and Wales: Implications for their resource potential. Resour. Conserv. Recycl. 2017, 123, 117–134. [Google Scholar] [CrossRef]
- Jones, K. Bioinformatic Analysis of Biotechnologically Important Microbial Communities. Ph.D. Thesis, University of Exeter, Exeter, UK, 2018. Available online: https://ore.exeter.ac.uk/repository/handle/10871/34543?show=full (accessed on 1 December 2022).
- Tang, J.; Oelkers, E.; Declercq, J.; Bowell, R. Effects of pH on arsenic mineralogy and stability in Poldice valley, Cornwall, United Kingdom. Geochemistry 2021, 81, 125798. [Google Scholar] [CrossRef]
- Carrick District Council. Carrick District Council Environmental Protection Act 1990, Part2a—Section 78b Record of Determination of Wheal Maid Tailings Lagoons, Gwennap, Cornwall as Contaminated Land. Available online: https://www.cornwall.gov.uk/media/05bnw12m/2008-09-16-record-of-determination.pdf (accessed on 1 December 2022).
- URS Wheal Maid Tailings Lagoon Part IIA Investigation; URS: San Francisco, CA, USA, 2007.
- Van Diggelen, F. GPS Accuracy: Lies, Damn Lies, and Statistics 2007. Available online: https://www.gpsworld.com/gps-accuracy-lies-damn-lies-and-statistics/ (accessed on 1 December 2022).
- ESRI ArcGIS Pro Desktop 2022. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview (accessed on 1 December 2022).
- Malvern Panalytical NIR Support Team. Service and Support: Geospatial Error of ASD Halo Device. Available online: https://www.malvernpanalytical.com/en/support/contact-support/support (accessed on 1 December 2022).
- TEXO DSI TEXO DSI—Drone Survery and Inspection. Available online: https://texodsi.co.uk/ (accessed on 3 December 2022).
- Headwall Photonics Hyperspectral Remote-Sensing Applications: UAV Nano-Hyperspec Drone Service. Available online: https://www.headwallphotonics.com/products/vnir-400-1000nm (accessed on 3 December 2022).
- Ritter, N. Geotiff Format Specification. 1995. Available online: http://geotiff.maptools.org/spec/geotiffhome.html (accessed on 3 December 2022).
- Planet Developers Planet Explorer 2022. Available online: https://www.planet.com/explorer/ (accessed on 2 December 2022).
- Zhao, Y.; Liu, D. A Robust and adaptive spatial-spectral fusion model for PlanetScope and Sentinel-2 Imagery. GISci. Remote Sens. 2022, 59, 520–546. [Google Scholar] [CrossRef]
- Olthof, I.; Fraser, R.H.; Schmitt, C. Landsat-based mapping of thermokarst lake dynamics on the Tuktoyaktuk Coastal Plain, Northwest Territories, Canada since 1985. Remote Sens. Environ. 2015, 168, 194–204. [Google Scholar] [CrossRef]
- Cooley, S.W.; Smith, L.C.; Stepan, L.; Mascaro, J. Tracking dynamic northern surface water changes with high-frequency Planet CubeSat imagery. Remote Sens. 2017, 9, 1306. [Google Scholar] [CrossRef] [Green Version]
- Planet Labs Planet Imagery Product Specifications Document 2018. Available online: https://assets.planet.com/docs/Combined-Imagery-Product-Spec-Dec-2018.pdf (accessed on 1 December 2022).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Bailin, Y.; Xingli, W. Spectral reflectance features of rocks and ores and their applications. Chin. J. Geochem. 1991, 10, 188–195. [Google Scholar] [CrossRef]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for geological applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Sklute, E.C.; Kashyap, S.; Dyar, M.D.; Holden, J.F.; Tague, T.; Wang, P.; Jaret, S.J. Spectral and morphological characteristics of synthetic nanophase iron (oxyhydr) oxides. Phys. Chem. Miner. 2018, 45, 1–26. [Google Scholar] [CrossRef]
- Wang, R.-S.; Xiong, S.-Q.; Nie, H.-F.; Liang, S.N.; Qi, Z.R.; Yang, J.Z.; Yan, B.K.; Zhao, F.Y.; Fan, J.H.; Ge, D.Q. Remote sensing technology and its application in geological exploration. Acta Geol. Sin. 2011, 85, 1699–1743. [Google Scholar]
- Hao, L.; Zhang, Z.; Yang, X. Mine Tailing extraction indexes and model using remote-sensing images in Southeast Hubei Province. Environ. Earth Sci. 2019, 78, 493. [Google Scholar] [CrossRef] [Green Version]
- Massey, F.J., Jr. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, UK, 2013; ISBN 0-19-969316-1. [Google Scholar]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Lenhardt, J. Spectral Profiles: Improve Classification before You Click Run. ArcGIS Blog. 2022. Available online: https://www.esri.com/arcgis-blog/products/arcgis-pro/imagery/spectral-profiles-classification/ (accessed on 1 December 2022).
- R Core Team. R: A Language and Environment for Statistical Computing: Statistics Were Done Using R 4.1.1 (R Core Team, 2022), and the ASD Reader (Roudier, 2017) Packages. 2022. Available online: https://www.r-project.org/ (accessed on 1 December 2022).
- GraphPad Software Spectral Signature Graphs Were Created Using GraphPad Prism Version 9.4.1 for Windows 2022. Available online: https://www.graphpad.com/scientific-software/prism/ (accessed on 1 December 2022).
- Kruse, F.A.; Dwyer, J.L. The effects of AVIRIS atmospheric calibration methodology on identification and quantitative mapping of surface mineralogy, Drum Mountains, Utah. In Proceedings of the JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop, Volume 1: AVIRIS Workshop, Washington, DC, USA, 25–29 October 1993. [Google Scholar]
- European Space Agency Level-2A Algorithm Overview 2022. Available online: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (accessed on 4 December 2022).
- Vilas, F.; Hatch, E.C.; Larson, S.M.; Sawyer, S.R.; Gaffey, M.J. Ferric iron in primitive asteroids: A 0.43-mm absorption feature. Icarus 1993, 102, 225–231. [Google Scholar] [CrossRef]
- Roger, C. World Trade Center USGS Ferric-Ferrous Map. 2016. Available online: https://pubs.usgs.gov/of/2001/ofr-01-0429/ (accessed on 1 December 2022).
- Castro-Gomes, J.P.; Silva, A.P.; Cano, R.P.; Suarez, J.D.; Albuquerque, A. potential for reuse of tungsten mining waste-rock in technical-artistic value-added products. J. Clean. Prod. 2012, 25, 34–41. [Google Scholar] [CrossRef]
- Zoran, M.; Savastru, R.; Savastru, D.; Tautan, M.N.M.; Miclos, S.I.; Dumitras, D.C.; Julea, T. Optospectral techniques for mining waste characterization in Baia Mare Region, Romania. J. Optoelectron. Adv. Mater. 2010, 12, 159–164. [Google Scholar]
- Kabas, S.; Acosta, J.A.; Zornoza, R.; Faz Cano, A.; Carmona, D.M.; Martinez-Martinez, S. Integration of landscape reclamation and design in a mine tailing in Cartagena-La Unión, SE Spain. Int. J. Energy Environ. 2011, 5, 301–308. [Google Scholar]
- Dutt, A.K.; Noble, A.G.; Costa, F.J.; Thakur, S.K.; Thakur, R.; Sharma, H.S. Spatial Diversity and Dynamics in Resources and Urban Development: Volume 1: Regional Resources; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 94-017-9771-4. [Google Scholar]
- Wu, S.; Ren, J.; Chen, Z.; Jin, W.; Liu, X.; Li, H.; Pan, H.; Guo, W. Influence of reconstruction scale, spatial resolution and pixel spatial relationships on the sub-pixel mapping accuracy of a double-calculated spatial attraction Model. Remote Sens. Environ. 2018, 210, 345–361. [Google Scholar] [CrossRef]
- Niroumand-Jadidi, M.; Vitti, A. Reconstruction of river boundaries at sub-pixel resolution: Estimation and spatial allocation of water fractions. ISPRS Int. J. Geo-Inf. 2017, 6, 383. [Google Scholar] [CrossRef] [Green Version]
- Suresh, M.; Jain, K. Subpixel level mapping of remotely sensed image using colorimetry. Egypt. J. Remote Sens. Space Sci. 2018, 21, 65–72. [Google Scholar] [CrossRef]
- Isikdogan, F.; Bovik, A.C.; Passalacqua, P. Surface water mapping by deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4909–4918. [Google Scholar] [CrossRef]
Instrument | Products | Wavelength Range (nm) | Interoperable Band Ratios (with Central Wavelengths) |
---|---|---|---|
ASD TerraSpec Halo handheld spectrometer [20,21] | Mineralogical scalars; Spectral signature profiles (ASD binary files); Ore mineralogy | 350–2500 | Fe3+i * scalar (742 nm/500 nm) |
UAV Nano-Hyperspec [22] | 50 mm2 (12-bit hyperspectral products) | 400–1000 (270 bands) | Bands1/bands2 (665 nm/560 nm) |
PlanetScope PS2.SD [23] | 3 m2 (8-bit multispectral products) | 464–888 (4 bands) | Bands3/bands2 (666/566 nm) |
Sentinel-2 2A/1C [24] | 4 bands at 10 m2; 6 bands at 20 m2; 3 bands at 60 m2 (8-bit multispectral products) | 443–2190 (13 bands) | Bands4/bands3 (665/560 nm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalkley, R.; Crane, R.A.; Eyre, M.; Hicks, K.; Jackson, K.-M.; Hudson-Edwards, K.A. A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations. Remote Sens. 2023, 15, 76. https://doi.org/10.3390/rs15010076
Chalkley R, Crane RA, Eyre M, Hicks K, Jackson K-M, Hudson-Edwards KA. A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations. Remote Sensing. 2023; 15(1):76. https://doi.org/10.3390/rs15010076
Chicago/Turabian StyleChalkley, Richard, Rich Andrew Crane, Matthew Eyre, Kathy Hicks, Kim-Marie Jackson, and Karen A. Hudson-Edwards. 2023. "A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations" Remote Sensing 15, no. 1: 76. https://doi.org/10.3390/rs15010076