A Robot Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC Instance Segmentation Network for Dynamic Scenes
Abstract
:1. Introduction
- To solve the problem of the imprecise segmentation of the object’s contour, a hybrid dilated CNN is used as backbone network to increase the receptive field. In the empty convolution operation, the expansion rate of each layer can be designed as [1,2,3], and the top layer can obtain broader pixel information to improve the information utilization rate;
- CQE algorithm is proposed, which can enhance the contour of the object. CQE is composed of 4 convolution layers and 3 full connection layers. It is fused with hybrid dilated CNN to form an end-to-end contour enhancement network. This can significantly improve the elimination ability of dynamic feature points, especially the feature points falling on the contour;
- Although high-precision contour can be obtained through the CQE model, it needs a large amount of calculation, which adversely affects the real-time performance of visual SLAM based on instance segmentation. Therefore, the BAS-DP lightweight contour extraction algorithm is proposed. The BAS-DP algorithm converts the contour information surrounding the target into the best polygon surrounding the target, which can greatly reduce the data file and make the calculation speed faster on the basis of preserving the contour accuracy.
2. The Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC Instance Segmentation Network
2.1. Tracking Module with CO-HDC Instance Segmentation
2.1.1. Complex Feature Extraction Based on Hybrid Dilated CNN
2.1.2. Contour Enhancement Based on CQE
2.1.3. The Lightweight Contour Extraction Algorithm Based on BAS-DP
2.2. Pose Optimization
2.3. Global Optimization Module and Mapping Module
3. Tests and Results Analysis
3.1. Experiment of CO-HDC Instance Segmentation Algorithm
- the selection of network hyperparameters to achieve the precise and fast segmentation;
- comparison of different backbone networks.
3.1.1. The Network Hyperparameters Selection and Controlled Experiment
3.1.2. Comparison of Different Backbone Networks
3.2. Experiment of Visual SLAM Based on CO-HDC
3.2.1. Feature Point Extraction and Matching after CO-HDC Instance Segmentation
3.2.2. Using Datasets to Test the Preference of ORB-SLAM2 and Instance Visual SLAM Based on CO-HDC Algorithm
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- García-Fernández, Á.F.; Hostettler, R.; Särkkä, S. Rao-Blackwellized Posterior Linearization Blackward SLAM. IEEE Trans. Veh. Technol. 2019, 68, 4734–4747. [Google Scholar] [CrossRef]
- Evers, C.; Naylor, P.A. Optimized Self-localization for SLAM in Dynamic Scenes Using Probability Hypothesis Density filters. IEEE Trans. Signal Process. 2018, 66, 863–878. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Hwang, S.; Kim, W.J.; Lee, S. SAM-Net: LiDAR Depth Inpainting for 3D Static Map Generation. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1–16. [Google Scholar] [CrossRef]
- Cattaneo, D.; Vaghi, M.; Valada, A. LCDNET: Deep Loop Closure Detection and Point Cloud Registration for Lidar SLAM. IEEE Trans. Robot. 2022, 38, 1–20. [Google Scholar] [CrossRef]
- Li, J.; Aubin-Fournier, P.L.; Skonieczny, K. SLAAM: Simultaneous Localization and Additive Manufacturing. IEEE Trans. Robot. 2021, 37, 334–349. [Google Scholar] [CrossRef]
- Hussain, A.; Memon, A.R.; Wang, H.; Wang, Y.; Miao, Y.; Zhang, X. S-VIT: Stereo Visual-Inertial Tracking of Lower Limb for Physio therapy Rehabilitation in Context of Comprehensive Evaluation of SLAM Systems. IEEE Trans. Autom. Sci. Eng. 2021, 19, 1550–1562. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Tardós, J.D. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras. IEEE Trans. Robot. 2017, 33, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Shi, Q.; Zhao, S.; Cui, X.; Lu, M.; Jia, M. Anchor self-localization algorithm based on UWB ranging and inertial measurements. Tsinghua Sci. Technol. 2019, 24, 728–737. [Google Scholar] [CrossRef]
- Yang, S.; Scherer, S. Monocular Object and Plane SLAM in Structured Environments. IEEE Robot. Autom. Lett. 2019, 4, 3145–3152. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Wang, H.; Huang, G.; Zhang, H. Sequence-based sparse optimization methods for long-term loop closure detection in visual SLAM. Auton. Robot. 2018, 42, 1323–1335. [Google Scholar] [CrossRef]
- Yuan, J.; Zhu, W.; Dong, X.; Sun, F.; Zhang, X.; Sun, Q.; Huang, Y. A Novel Approach to Inage-Sequence-Based Mobile Robot Place Recognition. IEEE Trans. Syst. 2021, 51, 5377–5391. [Google Scholar]
- Ntalampiras, S. Moving Vehicle Classification Using Wireless Acoustic Sensor Networks. IEEE Trans. Eng. Top. Comput. Intell. 2018, 2, 129–138. [Google Scholar] [CrossRef]
- Zhu, J.; Jia, Y.; Li, M.; Shen, W. A New System to Construct Dense Map with Pyramid Stereo Matching Network and ORB-SLAM2. In Proceedings of the International Conference on Computer and Communications, Chengdu, China, 10–13 December 2021; pp. 430–435. [Google Scholar]
- Fan, T.; Wang, H.; Rubenstein, M.; Murphey, T. CPL-SLAM: Efficient and Certifiably Correct Planar Graph-Based SLAM Using the Complex Number Representation. IEEE Trans. Robot. 2020, 36, 1719–1737. [Google Scholar] [CrossRef]
- Han, L.; Xu, L.; Bobkov, D.; Steinbach, E.; Fang, L. Real-Time Global Registration for Globally Consistent RGB-D SLAM. IEEE Trans. Robot. 2019, 35, 498–508. [Google Scholar] [CrossRef]
- Gomez-Ojeda, R.; Moreno, F.A.; Zuniga-Noël, D.; Scaramuzza, D.; Gonzalez-Jimenez, J. PL-SLAM: A Stereo SLAM System through the Combination of Points and Line Segments. IEEE Trans. Robot. 2019, 35, 734–746. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Zhang, X.; Yuan, J.; Song, J.; Fang, Y. A Novel Global Localization Approach Based on Structual Unit Encoding and Multiple Hypothesis Tracking. IEEE Trans. Instrum. Meas. 2019, 68, 4427–4442. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, X.; Wen, J.; Yuan, J.; Fang, Y. Autonomous Indoor Exploration Via Polygon Map Construction and Graph-Based SLAM Using Directional Endpoint Features. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1531–1542. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Chen, L.; Cheng, H.; Tu, W.; Cao, D.; Li, Q. RDC-SLAM: A Real-Time Distributed Cooperative SLAM System Based on 3D LiDAR. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1–10. [Google Scholar] [CrossRef]
- Guo, C.X.; Sartipi, K.; DuToit, R.C.; Georgiou, G.A.; Li, R.; O’Leary, J.; Nerurkar, E.D.; Hesch, J.A.; Roumeliotis, S.I. Resource-Aware Large- Scale Cooperative Three -Dimensional Mapping Using Multiple Mobile Devices. IEEE Trans. Robot. 2018, 34, 1349–1369. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Zhe, X.; Tian, W. Three-Dimensional Cooperative Mapping for Connected and Automated Vehicles. IEEE Trans. Ind. Elecronice 2020, 67, 6649–6657. [Google Scholar] [CrossRef]
- Chu, X.; Lu, Z.; Gesbert, D.; Wang, L.; Wen, X. Vehicle Localization via Cooperative Channel Mapping. IEEE Trans. Veh. Technol. 2021, 70, 5719–5733. [Google Scholar] [CrossRef]
- Yassin, A.; Nasser, Y.; Al-Dubai, A.Y.; Awad, M. MOSAIC: Simultaneous Localization and Environment Mapping Using nnWave Without A-Priori Knowledge. IEEE Access 2018, 6, 68932–68947. [Google Scholar] [CrossRef]
- De Lima, C.; Belot, D.; Berkvens, R.; Bourdoux, A.; Dardari, D.; Guillaud, M.; Isomursu, M.; Lohan, E.-S.; Miao, Y.; Barreto, A.N.; et al. Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities Challenges. IEEE Access 2021, 9, 26902–26925. [Google Scholar] [CrossRef]
- Aladsani, M.; Alkhateeb, A.; Trichopoulos, G.C. Leveraging mmWAVE Imaging and Communications for Simultaneous Localization and Mapping. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 4539–4543. [Google Scholar]
- Fascista, A.; Coluccia, A.; Wymeersch, H.; Seco-Granados, G. Downlink Single-Snapshot Localization and Mapping with a Single-Antenna Receiver. IEEE Trans. Wirel. Commun. 2021, 20, 4672–4684. [Google Scholar] [CrossRef]
- Saputra, M.R.U.; Lu, C.X.; de Gusmao, P.P.B.; Wang, B.; Markham, A.; Trigoni, N. Graph-Based Thermal-Inertial SLAM With Probabilistic Neural Networks. IEEE Trans. Robot. 2021, 37, 1–19. [Google Scholar] [CrossRef]
- Poulose, A.; Han, D.S. Hybrid Indoor Localization Using IMU Sensors and Smartphone Camera. Sensors 2019, 19, 5084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, J.H.; Choe, Y.; Park, C.G. Photometric Visual-Inertial Navigation with Uncertainty-Aware Ensembles. IEEE Trans. Robot. 2021, 37, 1–14. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodríguez, J.J.G.; Montiel, J.M.; Tardós, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual-Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Muñoz-Salinas, R.; Medina-Carnicer, R. UcoSLAM: Simultaneous localization and mapping by fusion of keypoints and squared planar markers. Pattern Recognit. 2020, 101, 107193. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Wang, Y.; Xiong, R.; Li, D.; Tang, L.; Yin, H.; Zhao, L. Persistent Stereo Visual Localization on Cross-Modal Invariant Map. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4646–4658. [Google Scholar] [CrossRef]
- Chou, C.C.; Chou, C.F. Efficient and Accurate Tightly-Coupled Visual-Lidar SLAM. IEEE Trans. Intell. Transp. Syst. 2021, 22, 1–15. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Li, W.; Li, H.; Lu, R. Robust Lidar-Based Localization Scheme for Unmanned Ground Vehicle via Multisensor Fusion. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5633–5643. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, S.; Li, Q.; Chen, J.; Leung, V.C.; Song, H. Global Visual and Semantic Observations for Outdoor Robot Localization. IEEE Trans. Netw. Sci. Eng. 2021, 8, 2909–2921. [Google Scholar] [CrossRef]
- Han, S.; Xi, Z. Dynamic scene semantics SLAM based on semantic segmentation. IEEE Access 2020, 8, 43563–43570. [Google Scholar] [CrossRef]
- Li, F.; Chen, W.; Xu, W.; Huang, L.; Li, D.; Cai, S.; Yang, M.; Xiong, X.; Liu, Y.; Li, W. A mobile robot visual SLAM system with enhanced semantics segmentation. IEEE Access 2020, 8, 25442–25458. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Tang, Q. Mask R-CNN based on semantic RGB-D SLAM for dynamics scenes. In Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, Hong Kong, China, 8–12 July 2019; pp. 1151–1156. [Google Scholar]
- Ai, Y.; Rui, T.; Lud, M.; Fu, F.; Liu, S.; Wang, S. DDL-SLAM: A robust RGB-D SLAM in dynamic environments combined with deep learning. IEEE Access 2020, 8, 162335–162342. [Google Scholar] [CrossRef]
- Javed, Z.; Kim, G.-W. A comparative study of recent real time semantic segmentation algorithms for visual semantic SLAM. In Proceedings of the IEEE International Conference on Big Date and Smart Computing, Online, 10–13 December; pp. 474–476.
- Qian, H.; Ding, P. An improved ORB-SLAM2 in dynamic scene with instance segmentation. In Proceedings of the International Workshop on Research, Education and Development on Unmanned Aerial Systems, Cranfield, UK, 25–27 November 2019; pp. 185–191. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT Real-time Instance Segmentation. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9157–9166. [Google Scholar]
- Bista, S.R.; Hall, D.; Talbot, B.; Zhang, H.; Dayoub, F.; Sünderhauf, N. Evaluating the impact of semantic segmentation and pose estimation on dense semantic SLAM. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Prague, Czech Republic, 27 September–1 October 2021; pp. 5328–5335. [Google Scholar]
- Yu, C.; Liu, Z.; Liu, X.J.; Xie, F.; Yang, Y.; Wei, Q.; Fei, Q. DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1168–1174. [Google Scholar]
- Wu, Y.; Luo, L.; Yin, S.; Yu, M.; Qiao, F.; Huang, H.; Shi, X.; Wei, Q.; Liu, X. An FPGA Based Energy Efficient DS-SLAM Accelerator for Mobile Robots in Dynamic Environment. Appl. Sci. 2021, 11, 1828. [Google Scholar] [CrossRef]
- Bescos, B.; Fácil, J.M.; Civera, J.; Neira, J. DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes. IEEE Robot. Autom. Lett. 2018, 3, 4076–4083. [Google Scholar] [CrossRef] [Green Version]
- Bescos, B.; Campos, C.; Tardós, J.D.; Neira, J. DynaSLAM II: Tightly-Coupled Multi-Object Tracking and SLAM. IEEE Robot. Autom. Lett. 2021, 6, 5191–5198. [Google Scholar] [CrossRef]
- Endo, Y.; Sato, K.; Yamashita, A.; Matsubayashi, K. Indoor Positioning and Obstacle Detection for Visually Impaired Navigetion System based on LSD-SLAM. In Proceedings of the International Conference on Biometrics and Kansei Engineering, Kyoto, Japan, 15–17 September 2017; pp. 158–162. [Google Scholar]
- Cui, L.; Ma, C. SOF-SLAM: A Semantic Visual SLAM for Dynamic Environments. IEEE Access 2019, 7, 166528–166539. [Google Scholar] [CrossRef]
- Whelan, T.; Leutenegger, S.; Salas-Moreno, R.; Ben, G.; Davison, A. ElasticFusion: Dense SLAM without A Pose Graph. In Proceedings of the Conference on Robotics—Science and Systems, Rome, Italy, 13–17 July; pp. 1–23.
- Ran, T.; Yuan, L.; Zhang, J.; Tang, D.; He, L. RS-SLAM: A robust semantic SLAM in dynamic environment based on RGB-D sensor. IEEE Sens. J. 2021, 21, 20657–20664. [Google Scholar] [CrossRef]
- Ballester, I.; Fontan, A.; Civera, J.; Strobl, K.H.; Triebel, R. DOT: Dynamic object tracking for visual SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation, Xi’an, China, 31 May–4 June 2021; pp. 11705–11711. [Google Scholar]
- Mingachev, E.; Lavrenov, R.; Tsoy, T.; Matsuno, F.; Svinin, M.; Suthakorn, J.; Magid, E. Comparison of ROS-Based Monocular Visual SLAM Methods: DSO, LDSO, ORB-SLAM2 and DynaSLAM. In Proceedings of the Interactive Collaborative Robotics, St Petersburg, Russia, 7–9 October 2020; pp. 222–233. [Google Scholar]
- Xia, L.; Cui, J.; Shen, R.; Xu, X.; Gao, Y.; Li, X. A survey of image semantics-based visual simultaneous localization and mapping: Application-oriented solutions to autonomous navigation of mobile robots. Int. J. Adv. Robot. Syst. 2020, 17, 1–17. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, M.; Meng, M.Q.-H. Improving RGB-D SLAM in dynamic environments: A motion removal approach. Robot. Auton. Syst. 2017, 89, 110–122. [Google Scholar] [CrossRef]
- Xie, X.; Li, C.; Yang, X.; Xi, J.; Chen, T. Dynamic Receptive Field-Based Object Detection in Aerial Imaging. Acta Opt. Sin. 2020, 40, 0415001. [Google Scholar]
- Dong, X.; Ouyang, Z.; Guo, Z.; Niu, J. Polarmask-tracker: Lightweight multi-object tracking and segmentation model for edge device. In Proceedings of the IEEE International Conference on Parallel, New York, NY, USA, 30 September–3 October 2021; pp. 689–696. [Google Scholar]
- Fu, J.; Liu, J.; Tian, H.; Li, Y.; Bao, Y.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15 June 2019; pp. 3141–3149. [Google Scholar]
- Concha, A.; Burri, M.; Briales, J.; Forster, C.; Oth, L. Instant Visual Odometry Initialization for Mobile AR. IEEE Trans. Vis. Comput. Graph. 2021, 27, 4226–4235. [Google Scholar] [CrossRef] [PubMed]
- Faessler, M.; Fontana, F.; Forster, C.; Scaramuzza, D. Automatic Re-Initialization and Failure Recovery for Aggressive Flight with a Monocular Vision-Based Quadrotor. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 1722–1729. [Google Scholar]
- Sanchez-Lopez, J.L.; Arellano-Quintana, V.; Tognon, M.; Campoy, P.; Franchi, A. Visual Marker based Multi-Sensor Fusion State Estimaion. In Proceedings of the 2017 IFAC, Toulouse, France, 9–14 July 2017; pp. 16003–16008. [Google Scholar]
- Leitinger, E.; Meyer, F.; Hlawatsch, F.; Witrisal, K.; Tufvesson, F.; Win, M.Z. A Belief Propagation Algorithm for Multipath-Based SLAM. IEEE Trans. Wirel. Commun. 2019, 18, 5613–5629. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Bao, A.; Su, J. Hybrid bird’s-eye edge based semantic visual SLAM for automated valet parking. In Proceedings of the IEEE International Conference on Robotics and Automation, Xi’an, China, 31 May–4 June 2021; pp. 11546–11552. [Google Scholar]
- Chang, J.; Dong, N.; Li, D. A real-time dynamics object segmentation framework for SLAM system in dynamic scenes. IEEE Trans. Instrum. Meas. 2021, 70, 2513708–2513716. [Google Scholar] [CrossRef]
- Xiong, Y.; Liao, R.; Zhao, H.; Hu, R.; Bai, M.; Yumer, E.; Urtasun, R. UPSNet: A unified panoptic segmentation network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15 June 2019; pp. 8810–8818. [Google Scholar]
Sensor | Robustness | Accuracy | Cost | Information Provided |
---|---|---|---|---|
visual | susceptible to light | high | cheap | rich semantic information |
lidar | high | higher | expensive | only depth and position |
mmWave | higher | high in long distance, low in short distance | expensive | only distance and position |
visual + IMU | susceptible to light | high | normal | rich semantic information |
lidar + IMU | high | higher | expensive | only distance and position |
visual + lidar | high | higher | more expensive | rich semantic information |
Algorithm | Frontend | Mapping | Whether Segmentation Network Is Independent | Accuracy of Contour Segmentation | Efficiency in Dynamic Environment |
---|---|---|---|---|---|
DS-SLAM | feature based | sparse | yes | low | higher |
DynaSLAM | feature based | sparse | no | normal | high |
LSD-SLAM + Deeplab V2 | direct | semi dense | no | normal | low |
SOF-SLAM | feature based | sparse | no | low | normal |
ElasticFusion | ICP | dense | no | higher | low |
RS-SLAM | feature based | dense | no | high | low |
DOT + ORB-SLAM2 | feature based | sparse | no | low | normal |
Hyperparameters | Test 1 | Test 2 | Test 3 | Test 4 | Test 5 |
---|---|---|---|---|---|
Train obj. | 2081 | 2081 | 2520 | 3005 | 3005 |
Val obj. | 537 | 537 | 632 | 826 | 826 |
Train imag. | 680 | 680 | 820 | 1014 | 1014 |
Val imag. | 120 | 120 | 140 | 180 | 180 |
Epochs | 100 | 200 | 200 | 400 | 400 |
Mini-mask Shape | 56 × 56 | 56 × 56 | 56 × 56 | 56 × 56 | 56 × 56 |
Img. size | 1024 × 800 | 1024 × 800 | 1024 × 800 | 1024 × 800 | 1920 × 1080 |
RPN Anchor Scales | (32, 64, 128, 256) | (32, 64, 128, 256) | (32, 64, 128, 256) | (32, 64, 128, 256) | (32, 64, 128, 256) |
Pre-train Model | NO | NO | NO | NO | NO |
mIoU | 0.485 | 0.492 | 0.535 | 0.498 | 0.294 |
mAP(IoU > 0.5) | 0.569 | 0.586 | 0.495 | 0.565 | 0.395 |
mAP(IoU > 0.7) | 0.472 | 0.488 | 0.406 | 0.485 | 0.289 |
Hyperparameters | Test 6 | Test 7 | Test 8 | Test 9 | Test 10 |
Train obj. | 3005 | 3005 | 3005 | 1573 | 1573 |
Val obj. | 826 | 826 | 826 | 537 | 537 |
Train imag. | 1014 | 1014 | 1014 | 480 | 480 |
Val imag. | 180 | 180 | 180 | 120 | 120 |
Epochs | 100 | 100 | 100 | 100 | 100 |
Mini-mask Shape | 28 × 28 | 28 × 28 | 28 × 28 | 28 × 28 | 28 × 28 |
Img. size | 1024 × 800 | 1920 × 1080 | 1920 × 1080 | 1920 × 1080 | 1920 × 1080 |
RPN Anchor Scales | (32, 64, 128, 256) | (16, 32, 64, 128) | (8, 16, 32, 64) | (8, 16, 32,64) | (8, 16, 32,64) |
Pre-train Model | NO | NO | NO | NO | Yes |
mIoU | 0.545 | 0.565 | 0.652 | 0.429 | 0.684 |
mAP(IoU > 0.5) | 0.558 | 0.573 | 0.716 | 0.345 | 0.725 |
mAP(IoU > 0.7) | 0.489 | 0.493 | 0.575 | 0.294 | 0.585 |
Backbone Network | Train Time/h | Speed/FPS | Model Weight /MB | Accuracy S > 90 |
---|---|---|---|---|
HDCNet | 13.21 | 6.65 | 163.21 | 95.1% |
ResNet50 | 12.65 | 6.25 | 186.75 | 93.4% |
ResNet101 | 20.73 | 4.60 | 268.86 | 93.8% |
MobileNet V1 | 14. 61 | 5.27 | 207.82 | 84.5% |
Evaluation | Methods | Rmse (m) | Mean (m) | Median (m) | Std (m) | Min (m) | Max (m) |
---|---|---|---|---|---|---|---|
Absolute trajectory error | ORB-SLAM2 | 0.760252 | 0.690474 | 0.639742 | 0.318165 | 0.022187 | 1.715618 |
Proposed SLAM | 0.027541 | 0.023047 | 0.018764 | 0.015077 | 0.001505 | 0.141699 | |
Relative pose error | ORB-SLAM2 | 1.134662 | 0.922296 | 0.845839 | 0.660930 | 0.000000 | 3.203089 |
Proposed SLAM | 0.038877 | 0.033508 | 0.030002 | 0.019715 | 0.000000 | 0.186828 |
Evaluation | Methods | Rmse (m) | Mean (m) | Median (m) | Std (m) | Min (m) | Max (m) |
---|---|---|---|---|---|---|---|
Absolute trajectory error | ORB-SLAM2 | 0.638354 | 0.560560 | 0.635890 | 0.305399 | 0.050749 | 1.246406 |
Proposed SLAM | 0.209539 | 0.195746 | 0.203446 | 0.074766 | 0.029710 | 0.364841 | |
Relative pose error | ORB-SLAM2 | 0.957366 | 0.763961 | 0.734479 | 0.526331 | 0.000000 | 2.128197 |
Proposed SLAM | 0.326175 | 0.240677 | 0.103095 | 0.220147 | 0.000000 | 0.584625 |
Evaluation | Methods | Rmse (m) | Mean (m) | Median (m) | Std (m) | Min (m) | Max (m) |
---|---|---|---|---|---|---|---|
Absolute trajectory error | ORB-SLAM2 | 0.597385 | 0.503305 | 0.461168 | 0.321796 | 0.033516 | 1.243515 |
Proposed SLAM | 0.071849 | 0.195746 | 0.030831 | 057592 | 0.003704 | 0.428562 | |
Relative pose error | ORB-SLAM2 | 0.927718 | 0.763961 | 0.734479 | 0.526331 | 0.000000 | 2.128197 |
Proposed SLAM | 0.117698 | 0.052240 | 0.023353 | 0.105470 | 0.000000 | 0.606306 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xie, F.; Huang, L.; Yang, J.; Liu, X.; Shi, J. A Robot Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC Instance Segmentation Network for Dynamic Scenes. Remote Sens. 2022, 14, 2114. https://doi.org/10.3390/rs14092114
Chen J, Xie F, Huang L, Yang J, Liu X, Shi J. A Robot Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC Instance Segmentation Network for Dynamic Scenes. Remote Sensing. 2022; 14(9):2114. https://doi.org/10.3390/rs14092114
Chicago/Turabian StyleChen, Jinjie, Fei Xie, Lei Huang, Jiquan Yang, Xixiang Liu, and Jianjun Shi. 2022. "A Robot Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC Instance Segmentation Network for Dynamic Scenes" Remote Sensing 14, no. 9: 2114. https://doi.org/10.3390/rs14092114
APA StyleChen, J., Xie, F., Huang, L., Yang, J., Liu, X., & Shi, J. (2022). A Robot Pose Estimation Optimized Visual SLAM Algorithm Based on CO-HDC Instance Segmentation Network for Dynamic Scenes. Remote Sensing, 14(9), 2114. https://doi.org/10.3390/rs14092114