Remote Sensing Survey of Altiplano-Puna Volcanic Complex Rocks and Minerals for Planetary Analog Use
Abstract
:1. Introduction
The Altiplano-Puna Volcanic Complex
2. Materials and Methods
2.1. Landsat 8 Operational Land Imager (OLI)
2.2. Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
2.3. Earth Observing-1 (EO-1) Hyperion
3. Results
3.1. Cerro Carcanal and Vicinity
3.1.1. Alteration Minerals
3.1.2. Iron-Bearing Minerals
3.1.3. Silica Percentage
3.2. ALMA/Toconao Village Region
3.2.1. Alteration Minerals
3.2.2. Iron-Bearing Minerals
3.2.3. Silica Percentage and Feldspar Minerals
3.3. Lake Tuyajto/Salar de Talar Region
3.3.1. Alteration Minerals
3.3.2. Iron-Bearing Minerals
4. Discussion
4.1. Evaluation of Mapping Results
4.1.1. Iron-Bearing and Alteration Minerals
4.1.2. Silica Percentage
4.1.3. Feldspar Minerals
4.2. Assessment of Different Datasets and Mapping Techniques
4.3. Re-Emphasis of the APVC for Planetary Analog Use
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Instrument | Data Type | ID 1 | Map |
---|---|---|---|
Landsat 8 OLI | Level 1 Radiance | LC08_L1TP_001075_20200727_20200807_01_T1 | Background imagery |
LC08_L1TP_001076_20200727_20200807_01_T1 | |||
LC08_L1TP_001077_20200727_20200807_01_T1 | |||
LC08_L1TP_233075_20200618_20200625_01_T1 | |||
LC08_L1TP_232076_20200729_20200807_01_T1 | |||
LC08_L1TP_233076_20200805_20200821_01_T1 | |||
LC08_L1TP_232077_20200729_20200807_01_T1 | |||
LC08_L1TP_233077_20200805_20200821_01_T1 | |||
Level 2 Reflectance | LC08_L2SP_233075_20141125_20200910_02_T1 | Iron-bearing minerals, alteration minerals | |
LC08_L2SP_233076_20141109_20200910_02_T1 | |||
LC08_L2SP_233077_20141109_20200910_02_T1 | |||
EO-1 Hyperion | Level 1 Radiance | EO1H2320772002361111PP | Iron-bearing minerals, alteration minerals, feldspar minerals |
EO1H2330752011245110KF | |||
EO1H2330762008075110P2 | |||
EO1H2330762012034110KF | |||
EO1H2330762016250110PF | |||
EO1H2330762016269110PF | |||
Terra ASTER | GED AG 100 | AG100.v003.-21.-068.0001.h5 | Silica percentage |
AG100.v003.-21.-069.0001.h5 | |||
AG100.v003.-22.-068.0001.h5 | |||
AG100.v003.-22.-069.0001.h5 | |||
AG100.v003.-23.-068.0001.h5 | |||
AG100.v003.-23.-069.0001.h5 | |||
AG100.v003.-24.-068.0001.h5 | |||
AG100.v003.-24.-069.0001.h5 |
Appendix B
λs | λc | λl | |
---|---|---|---|
0.783 | 1.003 | 1.225 | 1.548 |
0.793 | 1.013 | 1.235 | 1.558 |
0.803 | 1.023 | 1.245 | 1.568 |
0.813 | 1.033 | 1.255 | 1.578 |
0.824 | 1.044 | 1.266 | 1.588 |
0.844 | 1.064 | 1.286 | 1.609 |
0.854 | 1.074 | 1.296 | 1.619 |
0.864 | 1.084 | 1.629 | |
0.875 | 1.639 | ||
0.884 | 1.649 | ||
1.659 | |||
1.669 | |||
1.679 | |||
1.689 | |||
1.699 | |||
1.709 | |||
0.834 | 1.043 | 1.261 | 1.629 |
Appendix C
SiO2 Abs. Diff. | 0–5 | 5–10 | 10–15 | 15–20 | +20 |
---|---|---|---|---|---|
% of samples | 38 | 25 | 22 | 5 | 10 |
no. samples at CRPG | 0 | 4 | 1 | 0 | 2 |
Appendix D
Appendix E
References
- Farley, K.A.; Williford, K.H.; Stack, K.M.; Bhartia, R.; Chen, A.; de la Torre, M.; Hand, K.; Goreva, Y.; Herd, C.D.; Hueso, R.; et al. Mars 2020 Mission Overview. Space Sci. Rev. 2020, 216, 142. [Google Scholar] [CrossRef]
- Grasset, O.; Dougherty, M.K.; Coustenis, A.; Bunce, E.J.; Erd, C.; Titov, D.; Blanc, M.; Coates, A.; Drossart, P.; Fletcher, L.N.; et al. JUpiter ICy moons Explorer (JUICE): An ESA mission to orbit Ganymede characterise the Jupiter system. Planet. Space Sci. 2013, 78, 1–21. [Google Scholar] [CrossRef]
- Howell, S.M.; Pappalardo, R.T. NASA’s Europa Clipper—A mission to a potentially habitable ocean world. Nat. Commun. 2020, 11, 1311. [Google Scholar] [CrossRef] [PubMed]
- International Space Exploration Coordination Group. The Global Exploration Roadmap. Washington, DC, USA. 2018. Available online: http://www.globalspaceexploration.org (accessed on 1 September 2021).
- Carr, M.H. The Surface of Mars; Cambridge University Press: New York, NY, USA, 2006; pp. 43–76. [Google Scholar]
- Chapman, M. The Geology of Mars Evidence of Earth-Based Analogs; Cambridge University Press: London, UK, 2009; p. 484. [Google Scholar]
- Hörz, F.; Grieve, R.; Heiken, G.; Spudis, P.; Binder, A. Lunar Surface Processes. In Lunar Sourcebook; Heiken, G.H., Vaniman, D.T., French, B.M., Eds.; Cambridge University Press: New York, NY, USA, 1991; pp. 61–120. [Google Scholar]
- Abercromby, A.F.J.; Gernhardt, M.L.; Jadwick, J. Evaluation of dual multi-mission space exploration vehicle operations during simulated planetary surface exploration. Acta Astronaut. 2013, 90, 203–214. [Google Scholar] [CrossRef]
- Eppler, D.; Adams, B.; Archer, D.; Baiden, G.; Brown, A.; Carey, W.; Cohen, B.; Condit, C.; Evans, C.; Fortezzo, C.; et al. Desert Research and Technology Studies (DRATS) 2010 science operations: Operational approaches and lessons learned for managing science during human planetary surface missions. Acta Astronaut. 2013, 90, 224–241. [Google Scholar] [CrossRef] [Green Version]
- Lim, D.S.S.; Abercromby, A.F.J.; Nawotniak, S.E.K.; Lees, D.S.; Miller, M.J. The BASALT research program: Designing and developing mission elements in support of human scientific exploration of Mars. Astrobiology 2019, 19, 245–261. [Google Scholar] [CrossRef]
- Lim, D.S.S.; Heldmann, J.L. Exploring our Solar System through inter-disciplinary, analog research: An overview of the FINESSE, BASALT and SUBSEA programs. Planet. Space Sci. 2021, 199, 105187. [Google Scholar] [CrossRef]
- Young, K.E.; Bleacher, J.E.; Rogers, A.D.; Schmitt, H.H.; McAdam, A.C.; Gary, W.B.; Whelley, P.L.; Scheidt, S.P.; Ito, G.; Knudson, C.A.; et al. The incorporation of field portable instrumentation into human planetary surface exploration. Earth Space Sci. 2018, 5, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Ruff, S.W.; Farmer, J.D. Silica deposits on Mars with features resembling hot spring biosignatures at El Tatio in Chile. Nat. Commun. 2016, 7, 13554. [Google Scholar] [CrossRef]
- Flahaut, J.; Bishop, J.L.; Silvestro, S.; Tedesco, D.; Daniel, I.; Loizeau, D. The Italian Solfatara as an analog for Mars fumarolic alteration. Am. Mineral. 2019, 104, 1565–1577. [Google Scholar] [CrossRef]
- Yant, M.; Young, K.E.; Rogers, A.D.; McAdam, A.C.; Bleacher, J.E.; Bishop, J.L.; Mertzman, S.A. Visible, near-infrared, and mid-infrared spectral characterization of Hawaiian fumarolic alteration near Kilauea’s December 1974 flow: Implications for spectral discrimination of alteration environments on Mars. Am. Mineral. 2018, 103, 11–25. [Google Scholar]
- Aerts, J.W.; van Spanning, R.J.M.; Flahaut, J.; Molenaar, D.; Bland, P.H.; Genge, M.J.; Ehrenfreund, P.; Martins, Z. Microbial communities in sediments from four mildly acidic ephemeral salt lakes in the Yilgarn Craton (Australia)—Terrestrial analogs to ancient Mars. Front. Microbiol. 2019, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Aerts, J.W.; Riedo, A.; Melton, D.J.; Martini, S.; Flahaut, J.; Meierhenrich, U.J. Biosignature analysis of Mars soil analogs from the Atacama Desert: Challenges and implications for future missions to Mars. Astrobiology 2020, 20, 766–784. [Google Scholar] [CrossRef] [PubMed]
- Dickson, J.L.; Head, J.W.; Levy, J.S.; Morgan, G.A.; Marchant, D.R. Gully formation in the McMurdo Dry Valleys, Antarctica: Multiple sources of water, temporal sequence and relative importance in gully erosion and deposition processes. In Martian Gullies and Their Earth Analogues; Conway, S.J., Carrivick, J.L., Carling, P.A., De Haas, T., Harrison, T.N., Eds.; The Geological Society of London: London, UK, 2018. [Google Scholar]
- De Silva, S.L. Altiplano-Puna volcanic complex of the central Andes. Geology 1989, 17, 1102–1106. [Google Scholar] [CrossRef]
- Flahaut, J.; Martinot, M.; Bishop, J.L.; Davies, G.R.; Potts, N. Remote sensing and in situ mineralogic survey of the Chilean salars: An analog to Mars evaporate deposits? Icarus 2017, 282, 152–173. [Google Scholar] [CrossRef] [Green Version]
- Flahaut, J.; González-Maurel, O.; Godoy, B.; Martinot, M.; Guitreau, M. Rheology of the Andean domes as an analog for lunar silicic constructs. In Proceedings of the European Geoscience Union General Assembly, Online, 19–30 April 2021. [Google Scholar]
- Hartley, A.J.; Chong, G. Late Pliocene age for the Atacama Desert: Implications for the desertification of western South America. Geology 2002, 30, 43–46. [Google Scholar] [CrossRef]
- Placzek, C.; Quade, J.; Betancourt, J.L.; Patchett, P.J.; Rech, J.A.; Latorre, C.; Matmon, A.; Holmgren, C.; English, N.B. Climate in the dry central Andes over geologic, millennial, and interannual timescales. Ann. Mo. Bot. Gard. 2009, 96, 386–397. [Google Scholar] [CrossRef]
- Wörner, G.; Schildgen, T.F.; Reich, M. The Central Andes: Elements of an extreme land. Elements 2018, 14, 225–230. [Google Scholar] [CrossRef]
- González-Maurel, O.; Godoy, B.; Le Roux, P.; Rodríguez, I.; Marín, C.; Menzies, A.; Bertin, D.; Morata, D.; Vargas, M. Magmatic differentiation at La Poruña scoria cone, Central Andes, northern Chile: Evidence for assimilation during turbulent ascent processes, and genetic links with mafic eruptions at adjacent San Pedro volcano. Lithos 2019, 338, 28–140. [Google Scholar] [CrossRef]
- De Silva, S.L.; Self, S.; Francis, P.W.; Drake, R.E.; Ramirez, C.R. Effusive silicic volcanism in the Central Andes: The Chao dacite and other young lavas of the Altiplano-Puna Volcanic Complex. J. Geophys. Res. 1994, 99, 17805–17825. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, B.E.; Crowley, J.K. Mineral mapping on the Chilean–Bolivian Altiplano using co-orbital ALI, ASTER and Hyperion imagery: Data dimensionality issues and solutions. Remote Sens. Environ. 2005, 99, 173–186. [Google Scholar] [CrossRef]
- Godoy, B.; Lazcano, J.; Rodríguez, I.; Martínez, P.; Parada, M.A.; Le Roux, P.; Wilke, H.-G.; Polanco, E. Geological evolution of Paniri volcano, Central Andes, northern Chile. J. S. Am. Earth Sci. 2018, 84, 184–200. [Google Scholar] [CrossRef]
- Godoy, B.; Taussi, M.; González-Maurel, O.; Renzulli, A.; Hernández-Prat, L.; Le Roux, P.; Morata, D.; Menzies, A. Linking the mafic volcanism with the magmatic stages during the last 1 Ma in the main volcanic arc of the Altiplano-Puna Volcanic Complex (Central Andes). J. S. Am. Earth Sci. 2019, 95, 102295. [Google Scholar] [CrossRef]
- González-Maurel, O.; Le Roux, P.; Godoy, B.; Troll, V.R.; Deegan, F.; Menzies, A. The great escape: Petrogenesis of low-silica volcanism of Pliocene to Quaternary age associated with the Altiplano-Puna Volcanic Complex of northern Chile (21°10′–22°50′S). Lithos 2019, 105162, 346–347. [Google Scholar] [CrossRef]
- Barthez, M.; Flahaut, J.; Ito, G.; Guitreau, M.; Pik, R. Near-infrared laboratory measurements of feldspathic rocks as a reference for hyperspectral Martian remote sensing data interpretation. In Proceedings of the Europlanet Science Congress, Online, 21 September–9 October 2020. [Google Scholar]
- Flahaut, J.; Barthez, M.; Payet, V.; Fueten, F.; Guitreau, M.; Ito, G.; Allemand, P.; Quantin-Nataf, C. Identification and characterization of new feldspar-bearing rocks in the walls of Valles Marineris, Mars. In Proceedings of the Eleventh Moscow Solar System Symposium, Online, 5–9 October 2020. [Google Scholar]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Hilsenrath, E.; Ward, A. Earth science mission operations, Part I: Flight operations—Orchestrating NASA’s fleet of Earth observing satellites. Earth Obs. 2016, 28, 4–13. [Google Scholar]
- Gillespie, A.R.; Kahle, A.B.; Walker, R.E. Color enhancement of highly correlated images. I. Decorrelation and HSI contrast stretches. Remote Sens. Environ. 1986, 20, 209–235. [Google Scholar] [CrossRef]
- Rockwell, B.W.; Gnesda, W.R.; Hofstra, A.H. Improved Automated Identification and Mapping of Iron Sulfate Minerals, Other Mineral Groups, and Vegetation Using Landsat 8 Operational Land Imager Data, San Juan Mountains, Colorado, and Four Corners Region; U.S. Geological Survey Scientific Investigations Map 3466, 1 Sheet, Scale 1:325,000, 37-p. Pamphlet; US Geological Survey: Reston, VA, USA, 2021. [CrossRef]
- Rockwell, B.W. Automated Mapping of Mineral Groups and Green Vegetation from Landsat Thematic Mapper Imagery with an Example from the San Juan Mountains; Colorado. U.S. Geological Survey Scientific Investigations Map 3252, 25-p. Pamphlet, 1 Map Sheet, Scale 1:325,000; US Geological Survey: Reston, VA, USA, 2012. [CrossRef]
- Berk, A.; Conforti, P.; Kennett, R.; Perkins, T.; Hawes, F.; van den Bosch, J. MODTRAN6: A major upgrade of the MODTRAN radiative transfer code. In Proceedings of the SPIE 9088, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 90880H, Baltimore, MA, USA, 13 June 2014. [Google Scholar]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998, 36, 1062–1071. [Google Scholar] [CrossRef] [Green Version]
- Hulley, G.C.; Hook, S.J.; Abbot, E.; Malakar, N.; Islam, T.; Abrams, M. The ASTER Global Emissivity Dataset (ASTER GED): Mapping Earth’s emissivity at 100 meter spatial scale. Geophys. Res. Lett. 2015, 42, 7966–7976. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B. Knowledge-based geologic mapping with imaging spectrometers. Remote Sens. Rev. 1993, 8, 3–28. [Google Scholar] [CrossRef]
- Lyon, R.J.P. Evaluation of Infrared Spectrophotometry for Compositional Analysis of Lunar and Planetary Soils: Rough and Powdered Surfaces, Final Report, Part 2; NASA contract NASr-49(04); Stanford Research Institute: Menlo Park, CA, USA, 1964. [Google Scholar]
- Lyon, R.J.P. Analysis of rocks by spectral infrared emission (8–25 µm). Econ. Geol. 1965, 60, 715–736. [Google Scholar] [CrossRef]
- Vincent, R.K.; Thomson, F. Spectral compositional imaging of silicate rocks. J. Geophys. Res. 1972, 17, 2465–2473. [Google Scholar] [CrossRef]
- Hook, S.J.; Dmochowski, J.E.; Howard, K.A.; Rowan, L.C.; Karlstrom, K.E.; Stock, J.M. Mapping variations in weight percent silica measured from multispectral thermal infrared imagery—Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico. Remote Sens. Environ. 2005, 95, 273–289. [Google Scholar] [CrossRef]
- Pan, C.; Rogers, A.D.; Michalski, J.R. Thermal and near-infrared analyses of central peaks of Martian impact craters: Evidence for a heterogeneous Martian crust. J. Geophys. Res. Planets 2015, 120, 662–688. [Google Scholar] [CrossRef]
- Sabine, C.; Realmuto, V.J.; Taranik, J.V. Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, Desolation Wilderness, northern Sierra Nevada, California. J. Geophys. Res. 1994, 99, 4261–4271. [Google Scholar] [CrossRef]
- Smith, M.R.; Bandfield, J.L.; Cloutis, E.A.; Rice, M.S. Hydrated silica on Mars: Combined analysis with near-infrared and thermal-infrared spectroscopy. Icarus 2013, 223, 633–648. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote Sens. Environ. 2019, 230, 111196. [Google Scholar] [CrossRef]
- Payet, V.; Flahaut, J.; Ito, G.; Barthez, M.; Breton, S. Automated denoising for mineral identification on hyperspectral data. In Proceedings of the 11th Moscow International Symposium, Moscow, Russia, 5–9 October 2020; Available online: https://ms2020.cosmos.ru/docs/11M-S3-Abstract_book_full_version_04.pdf (accessed on 1 April 2021).
- Middleton, E.M.; Ungar, S.G.; Mandl, D.J.; Ong, L.; Frye, S.W.; Campbell, P.E.; Landis, D.R.; Young, J.P.; Pollack, N.H. The Earth Observing One (EO-1) satellite mission: Over a decade in space. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 243–256. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.S.; Robertson, D.C. MODTRAN®: A Moderate Resolution Model for LOWTRAN 7; GL-TR-89-0122; Geophysics Laboratory: Hanscom Air Force Base, MA, USA, 1989. [Google Scholar]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, J.H.; Chetwynd, J.H., Jr.; Adler-Golden, S.M. MODTRAN® cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Berk, A.; Acharya, P.K.; Bernstein, L.S.; Anderson, G.P.; Chetwynd, J.H., Jr.; Hoke, M.L. Reformulation of the MODTRAN® band model for finer spectral resolution. In Proceedings of the SPIE, Orlando, FL, USA, 27 March 2000; Volume 4049. [Google Scholar]
- Morfitt, R.; Barsi, J.; Levy, R.; Markham, B.; Micijevic, E.; Ong, L.; Scaramuzza, P.; Vanderwerff, K. Landsat-8 Operational Land Imager (OLI) radiometric performance on-orbit. Remote Sens. 2015, 7, 2208–2237. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, J.D.; Black, S.R. Hyperspectral Analytics in ENVI Target Detection and Spectral Mapping Methods. 2018. Available online: http://www.spectroexpo.com/wp-content/uploads/2021/03/Hyperspectral_Whitepaper.pdf (accessed on 1 March 2021).
- Green, A.A.; Berman, M.; Switzer, R.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 56, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data. In Summaries of the Fifth Annual JPL Airborne Geosciences Workshop. Jet Propuls. Lab. Spec. Publ. 1995, 95, 23–26. [Google Scholar]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; U.S. Geological Survey Data Series 1035; US Geological Survey: Reston, VA, USA, 2017; p. 61.
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)—Interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F. Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nat. Geosci. 2013, 6, 1008–1012. [Google Scholar] [CrossRef]
- Wray, J.J.; Hansen, S.T.; Dufek, J.; Swayze, G.A.; Murchie, S.L.; Seelos, F.P.; Skok, J.R.; Irwin, R.P., III; Ghiorso, M.S. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat. Geosci. 2013, 6, 1013–1017. [Google Scholar] [CrossRef]
- Rogers, A.D.; Nekvasil, H. Feldspathic rocks on Mars: Compositional constraints from infrared spectroscopy and possible formation mechanisms. Geophys. Res. Lett. 2015, 42, 2619–2626. [Google Scholar] [CrossRef] [Green Version]
- Rogers, A.D.; Farrand, W.H. Spectral evidence for alkaline rocks and compositional diversity among feldspathic light-toned terrains on Mars. Icarus 2022, 376, 114883. [Google Scholar] [CrossRef]
- Adams, J.B.; Goullaud, L.H. Plagioclase feldspars: Visible and near infrared diffuse reflectance as applied to remote sensing. In Proceedings of the 9th Lunar and Planetary Science Conference, 2901–2909, Houston, TX, USA, 13–17 March 1978. [Google Scholar]
- Cheek, L.C.; Pieters, C.M. Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely. Am. Mineral. 2014, 99, 1871–1892. [Google Scholar] [CrossRef]
- Viviano-Beck, C.E.; Seelos, F.P.; Murchie, S.L.; Kahn, E.G.; Seelos, K.D.; Taylor, H.W.; Taylor, K.; Ehlmann, B.L.; Wiseman, S.M.; Mustard, J.F.; et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res. Planets 2014, 119, 1403–1431. [Google Scholar] [CrossRef] [Green Version]
- Servicio Nacional de Geología y Minería. Mapa Geológico de Chile: Versión Digital; Publicación Geológica Digital, No. 7, Versión 1.0, 2004 [CD-ROM]; Servicio Nacional de Geología y Minería: Santiago, Chile, 2004. [Google Scholar]
- Thompson, A.J.B.; Thompson, J.F.H. Atlas of Alteration a Field and Petrographic Guide to Hydrothermal Alteration Minerals; Geological Association of Canada: St. John’s, NL, Canada, 1996. [Google Scholar]
- Godoy, B.; Wörner, G.; Kojima, S.; Aguilera, F.; Simon, K.; Hartmann, G. Low-pressure evolution of arc magmas in thickened crust: The San Pedro–Linzor volcanic chain, Central Andes, Northern Chile. J. South Am. Earth Sci. 2014, 52, 24–42. [Google Scholar] [CrossRef]
- Schmitt, A.K.; de Silva, S.L.; Trumbull, R.B.; Emmermann, R. Magma evolution in the Purico ignimbrite complex, northern Chile: Evidence for zoning of a dacitic magma by injection of rhyolitic melts following mafic recharge. Contrib. Mineral. Petrol. 2001, 140, 680–700. [Google Scholar] [CrossRef]
- Hulley, G.C.; Hughes, C.G.; Hook, S.J. Quantifying uncertainties in land surface temperature and emissivity retrievals from ASTER and MODIS thermal infrared data. J. Geophys. Res. 2012, 117, D23113. [Google Scholar] [CrossRef] [Green Version]
- Glotch, T.D.; Lucey, P.G.; Bandfield, J.L.; Greenhagen, B.T.; Thomas, I.R.; Elphic, R.C.; Bowles, N.; Wyatt, M.B.; Allen, C.C.; Donaldson Hanna, K.; et al. Highly silicic compositions on the Moon. Science 2010, 329, 1510–1513. [Google Scholar] [CrossRef] [Green Version]
- Marín, C.; Rodríguez, I.; Godoy, B.; González-Maurel, O.; Le Roux, P.; Medina, E.; Bertín, D. Eruptive history of La Poruña scoria cone, Central Andes, Northern Chile. Bull. Volcanol. 2020, 82, 74. [Google Scholar] [CrossRef]
- Carter, J.; Poulet, F.; Bibring, J.-P.; Mangold, N.; Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: Updated global view. J. Geophys. Res. Planets 2013, 118, 831–858. [Google Scholar] [CrossRef]
- Murchie, S.; Mustard, J.F.; Ehlmann, B.L.; Milliken, R.E.; Bishop, J.L.; McKeown, N.K.; Noe Dobrea, E.Z.; Seelos, F.P.; Buczkowski, D.L.; Wiseman, S.M.; et al. A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter. J. Geophys. Res. Planets 2009, 114, E00D06. [Google Scholar] [CrossRef]
- Christensen, P.R.; Jakosky, B.M.; Kieffer, H.H.; Malin, M.C.; McSween, H.Y., Jr.; Nealson, K.; Mehall, G.L.; Silverman, S.H.; Ferry, S.; Caplinger, M.; et al. The Thermal Emission Imaging System THEMIS for the Mars 2001 Odyssey mission. Space Sci. Rev. 2004, 110, 85–130. [Google Scholar] [CrossRef]
- Murchie, S.; Arvidson, R.; Bedini, P.; Beisser, K.; Bibring, J.-P.; Bishop, J.; Boldt, J.; Cavender, P.; Choo, T.; Clancy, R.T.; et al. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res. 2007, 112, E05S03. [Google Scholar] [CrossRef]
- McEwen, A.S.; Robinson, M.S. Mapping of the Moon by Clementine. Adv. Space Res. 1997, 19, 1523–1533. [Google Scholar] [CrossRef]
- Ohtake, M.; Haruyama, J.; Matsunaga, T.; Yokota, Y.; Morota, T.; Honda, C.; LISM Team. Performance and scientific objectives of the SELENE (KAGUYA) Multiband Imager. Earth Planets Space 2008, 60, 257–264. [Google Scholar] [CrossRef] [Green Version]
- Green, R.O.; Pieters, C.; Mouroulis, P.; Eastwood, M.; Boardman, J.; Glavich, T.; Isaacson, P. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: Instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res. 2011, 116, E00G19. [Google Scholar] [CrossRef] [Green Version]
- Paige, D.A.; Foote, M.C.; Greenhagen, B.T.; Schofield, J.T.; Calcutt, S.; Vasavada, A.R.; Preston, D.J.; Taylor, F.W.; Allen, C.C.; Snook, K.J.; et al. The Lunar Reconnaissance Orbiter Diviner Lunar Radiometer Experiment. Space Sci. Rev. 2010, 150, 125–160. [Google Scholar] [CrossRef] [Green Version]
- Ehlmann, B.L.; Klima, R.I.; Bennett, C.L.; Blaney, D.; Bowles, N.; Calcutt, S.; Dickson, J.; Donaldson Hanna, K.; Edwards, C.S.; Green, R.; et al. Lunar Trailblazer: A pioneering smallsat for lunar water and lunar geology. In Proceedings of the 52nd Lunar and Planetary Science Conference, 2548, Virtual, 15–19 March 2021. [Google Scholar]
- Pieters, C.M.; Noble, S.K. Space weathering on airless bodies. J. Geophys. Res. Planets 2016, 121, 1865–1884. [Google Scholar] [CrossRef]
- Henderson, B.G.; Jakosky, B.M. Near-surface thermal gradients and their effects on mid-infrared emission spectra of planetary surfaces. J. Geophys. Res. 1994, 99, 19063–19073. [Google Scholar] [CrossRef]
- Logan, L.M.; Hunt, G.R. Emission spectra of particulate silicates under simulated lunar conditions. J. Geophys. Res. 1970, 75, 6539–6548. [Google Scholar] [CrossRef]
- Arnold, J.A.; Glotch, T.D.; Lucey, P.G.; Song, E.; Thomas, I.R.; Bowles, N.E.; Greenhagen, B.T. Constraints on olivine-rich rock types on the Moon as observed by Diviner and M3: Implications for the formation of the lunar crust. J. Geophys. Res. Planets 2016, 121, 1342–1361. [Google Scholar] [CrossRef]
- Greenhagen, B.T.; Lucey, P.G.; Wyatt, M.B.; Glotch, T.D.; Allen, C.C.; Arnold, J.A.; Bandfield, J.L.; Bowles, N.E.; Donaldson Hanna, K.L.; Hayne, P.O.; et al. Global silicate mineralogy of the Moon from the Diviner Lunar Radiometer. Science 2010, 329, 1507–1509. [Google Scholar] [CrossRef] [Green Version]
- Godoy, B. Evolución Petrológica de la Cadena Volcánica San Pedro-Linzor (21°30′S–22°10′S), Norte de Chile, y Su Relación con la Geodinámica Andina. Ph.D. Thesis, Universidad Católica del Norte, Antofagasta, Chile, 2014. [Google Scholar]
- Godoy, B.; Wörner, G.; Le Roux, P.; de Silva, S. Sr- and Nd- isotope variations along the Pleistocene San Pedro—Linzor volcanic chain, N. Chile: Tracking the influence of the upper crustal Altiplano-Puna Magma Body. J. Volcanol. Geotherm. Res. 2017, 341, 172–186. [Google Scholar] [CrossRef]
- Francis, P.W.; Roobol, M.J.; Walker, G.P.L.; Cobbold, P.R.; Coward, M. The San Pedro and San Pablo volcanoes of northern Chile and their hot avalanche deposits. Geol. Rundsch. 1974, 63, 357–388. [Google Scholar] [CrossRef]
- Freymuth, H.; Brandmeier, M.; Wörner, G. The origin and crust/mantle mass balance of Central Andean ignimbrite magmatism constrained by oxygen and strontium isotopes and erupted volumes. Contrib. Mineral. Petrol. 2015, 169, 58. [Google Scholar] [CrossRef]
- Mamani, M.; Tassara, A.; Wörner, G. Composition and structural control of crustal domains in the Central Andes. Geochem. Geophys. Geosyst. 2008, 9. [Google Scholar] [CrossRef]
- Rogers, G.; Hawkesworth, C.J. A geochemical traverse across the North Chilean Andes: Evidence for crust generation from the mantle wedge. Earth Planet. Sci. Lett. 1989, 91, 271–285. [Google Scholar] [CrossRef]
Index Number | Index Name | Formula 1 |
---|---|---|
1 | Ferric iron 1 “redness” | 4/2 |
2 | Ferric iron 2 | 4/2 × (4 + 6)/5 |
3 | Ferrous iron, coarse-grained ferric iron, fire ash 2 | (3 + 6)/(4 + 5) |
4 | Clay, sulfate, mica, marble 2 | 6/7 − 5/4 |
5 | Iron sulfate | 2/1 − 5/4 |
SiO2 Abs. Diff. | 0–3 | 3–6 | 6–9 | 9–12 | +12 |
---|---|---|---|---|---|
% of samples | 40 | 28 | 18 | 10 | 3 |
no. samples at CRPG | 5 | 3 | 2 | 1 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ito, G.; Flahaut, J.; González-Maurel, O.; Godoy, B.; Payet, V.; Barthez, M. Remote Sensing Survey of Altiplano-Puna Volcanic Complex Rocks and Minerals for Planetary Analog Use. Remote Sens. 2022, 14, 2081. https://doi.org/10.3390/rs14092081
Ito G, Flahaut J, González-Maurel O, Godoy B, Payet V, Barthez M. Remote Sensing Survey of Altiplano-Puna Volcanic Complex Rocks and Minerals for Planetary Analog Use. Remote Sensing. 2022; 14(9):2081. https://doi.org/10.3390/rs14092081
Chicago/Turabian StyleIto, Gen, Jessica Flahaut, Osvaldo González-Maurel, Benigno Godoy, Vincent Payet, and Marie Barthez. 2022. "Remote Sensing Survey of Altiplano-Puna Volcanic Complex Rocks and Minerals for Planetary Analog Use" Remote Sensing 14, no. 9: 2081. https://doi.org/10.3390/rs14092081
APA StyleIto, G., Flahaut, J., González-Maurel, O., Godoy, B., Payet, V., & Barthez, M. (2022). Remote Sensing Survey of Altiplano-Puna Volcanic Complex Rocks and Minerals for Planetary Analog Use. Remote Sensing, 14(9), 2081. https://doi.org/10.3390/rs14092081