Evaluating Vertical Accuracies of Open-Source Digital Elevation Models over Multiple Sites in China Using GPS Control Points
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. DEMs in the Study
2.2.1. AW3D30
2.2.2. ASTER GDEM
2.2.3. SRTM
2.2.4. TanDEM-X
Global DEM | Release Time | Horizontal Resolution | Method | Source |
---|---|---|---|---|
AW3D30 | v1.0: 2016 | 1” | Optical stereo photogrammetry | [27] |
v1.1: 2017 | ||||
v2.1: 2018 | ||||
v2.2: 2019 | ||||
ASTER GDEM | v1: 2009 | 1” | Optical stereo photogrammetry | [28] |
v2: 2011 | ||||
v3: 2019 | ||||
SRTM | v1: 2003 | 1” | InSAR | [29] |
v2: 2006 | 3” | |||
v3: 2013 | 30” | |||
TanDEM-X | 2016 | 3” | InSAR | [30] |
2.3. Reference Data
2.4. Data Processing
2.4.1. Unification of DEM Coordinate Systems
2.4.2. DEM Accuracy Assessment
2.4.3. Precision Statistical Indicators
2.5. Experimental Design
3. Results
3.1. Descriptive Statistics of Overall Vertical Accuracy
3.2. Aspect and Land Cover
3.3. Effects of Variations in Latitude and Longitude on Vertical Accuracy When Using the Same Data Source
4. Discussion
4.1. Summary of Overall Accuracy
4.2. Aspect and Land Cover
4.3. Effects of Variations in Latitude and Longitude on the Vertical Accuracy of the Same Data Source
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Courty, L.G.; Soriano-Monzalvo, J.C.; Pedrozo-Acuña, A. Evaluation of open-access global digital elevation models (AW3D30, SRTM, and ASTER) for flood modelling purposes. J. Flood Risk Manag. 2019, 12, e12550. [Google Scholar] [CrossRef] [Green Version]
- Hawker, L.; Bates, P.; Neal, J.; Rougier, J. Perspectives on digital elevation model (DEM) simulation for flood modeling in the absence of a high-accuracy open access global DEM. Front. Earth Sci. 2018, 6, 233. [Google Scholar] [CrossRef] [Green Version]
- Gdulová, K.; Marešová, J.; Barták, V.; Szostak, M.; Červenka, J.; Moudrý, V. Use of TanDEM-X and SRTM-C data for detection of deforestation caused by bark beetle in Central European Mountains. Remote Sens. 2021, 13, 3042. [Google Scholar] [CrossRef]
- Hui, W.; Yuqi, C.; Bo, Z.; Shifeng, X. Investigation of the effect of cementing ratio on the mechanical properties and strain location of hydrate-bearing sediments by using DEM. J. Nat. Gas Sci. Eng. 2021, 94, 104123. [Google Scholar] [CrossRef]
- Scown, M.W.; Thoms, M.C.; De Jager, N.R. Floodplain complexity and surface metrics: Influences of scale and geomorphology. Geomorphology 2015, 245, 102–116. [Google Scholar] [CrossRef]
- Kübra, B.; Ümmühan, B.F. A comprehensive study on modeling of photovoltaic arrays and calculation of photovoltaic potential using digital elevation model. Energy Sources A 2021, 43, 2609–2633. [Google Scholar]
- Natsagdorj, B.; Dalantai, S.; Sumiya, E.; Bao, Y.; Bayarsaikhan, S.; Batsaikhan, B.; Ganbat, D. Assessment of some meteorology data of average monthly air temperature over Mongolia using digital elevation model (DEM) and GIS techniques. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2021, 43, 117–121. [Google Scholar] [CrossRef]
- Lakshmi, S.E.; Yarrakula, K. Review and critical analysis on digital elevation models. Geofizika 2019, 35, 129–157. [Google Scholar] [CrossRef]
- Satgé, F.; Bonnet, M.P.; Timouk, F.; Calmant, S.; Pillco, R.; Molina, J.; Lavado-Casimiro, W.; Arsen, A.; Crétaux, J.F.; Garnier, J. Accuracy Assessment of SRTM v4 and ASTER GDEM v2 over the Altiplano watershed using ICESat/GLAS data. Int. J. Remote Sens. 2015, 36, 465–488. [Google Scholar] [CrossRef]
- Mesa-Mingorance, J.L.; Mesa-Mingorance, F.J.; Ariza-López, F.J. Accuracy assessment of digital elevation models (DEMs): A critical review of practices of the past three decades. Remote Sens. 2020, 12, 2630. [Google Scholar] [CrossRef]
- Smith, B.; Sandwell, D. Accuracy and resolution of shuttle radar topography mission data. Geophys. Res. Lett. 2003, 30, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Eineder, M. Problems and solutions for InSAR digital elevation model generation of mountainous terrain. Aerospace 2000, 2003, 1–5. [Google Scholar]
- Mukherjee, A.; Rai, R.; Singla, P.; Singh, T.; Patra, A.K. Effect of dem uncertainty on geophysical mass flow via identification of strongly coupled subsystem. Int. J. Uncertain. Quantif. 2019, 6, 589–605. [Google Scholar] [CrossRef]
- Wechsler, S.P. Uncertainties associated with digital elevation models for hydrologic applications: A review. Hydrol. Earth Syst. Sci. 2007, 11, 1481–1500. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, Q.; Shi, W.; Zhao, S. Uncertainty modelling and analysis of volume calculations based on a regular grid digital elevation model (DEM). Comput. Geosci. 2018, 114, 117–129. [Google Scholar] [CrossRef]
- Jarihani, A.A.; Callow, J.N.; McVicar, T.R.; Van Niel, T.G.; Larsen, J.R. Satellite-derived digital elevation model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. J. Hydrol. 2015, 524, 489–506. [Google Scholar] [CrossRef]
- Guan, L.; Pan, H.; Zou, S.; Hu, J.; Zhu, X.; Zhou, P. The impact of horizontal errors on the accuracy of freely available Digital Elevation Models (DEMs). Int. J. Remote Sens. 2020, 41, 7383–7399. [Google Scholar] [CrossRef]
- Grohmann, C.H. Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sens. Environ. 2018, 212, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Zeng, Q.; Jiao, J. Quality assessment of TanDEM-X DEMs, SRTM and ASTER GDEM on selected Chinese sites. Remote Sens. 2021, 13, 1304. [Google Scholar] [CrossRef]
- Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical accuracy of freely available global digital elevation models (Aster, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, H.; Li, R.; Cheng, W.; Zhou, C. A quantitative model to simulate the vertical errors of SRTM3 DEM V4 data at the pixel level in the Shanbei Plateau of China. Int. J. Remote Sens. 2020, 41, 5257–5276. [Google Scholar] [CrossRef]
- Hui, L.; Jiayang, Z. Evaluation of the newly released worldwide AW3D30 DEM over typical landforms of China using two global DEMs and ICESat/GLAS data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 4430–4440. [Google Scholar]
- Chirico, P.G.; Malpeli, K.C.; Trimble, S.M. Accuracy Evaluation of an ASTER-Derived Global Digital Elevation Model (GDEM) Version 1 and Version 2 for Two Sites in Western Africa. GIScience Remote Sens. 2013, 49, 775–801. [Google Scholar] [CrossRef]
- Hirt, C.; Filmer, M.S.; Featherstone, W.E. Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM Ver4.1 and GEODATA DEM-9s Ver3 digital elevation models over Australia. Aust. J. Earth Sci. 2010, 57, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Tridon, D.B.; Bräuti-gam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Wecklich, C.; Gonzalez, C.; Rizzoli, P. TanDEM-X height performance and data coverage. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, TX, USA, 1 July 2017; pp. 4088–4091. [Google Scholar] [CrossRef] [Green Version]
- Available online: http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm (accessed on 23 September 2021).
- Available online: http://gdex.cr.usgs.gov/gdex/ (accessed on 23 September 2021).
- Available online: https://download.geoservice.dlr.de/TDM90 (accessed on 23 September 2021).
- Available online: https://wist.echo.nasa.gov/~wist/api/imswelcome/ (accessed on 23 September 2021).
- Athmania, D.; Achour, H. External validation of the ASTER GDEM2, GMTED2010 and CGIAR-CSI- SRTM v4.1 free access digital elevation models (DEMs) in Tunisia and Algeria. Remote Sens. 2014, 6, 4600–4620. [Google Scholar] [CrossRef] [Green Version]
- del Rosario González-Moradas, M.; Viveen, W. Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sens. Environ. 2020, 237, 111509. [Google Scholar] [CrossRef]
- Zhang, K.; Gann, D.; Ross, M.; Biswas, H.; Li, Y.; Rhome, J. Comparison of TanDEM-X DEM with LiDAR data for accuracy assessment in a coastal urban area. Remote Sens. 2019, 11, 876. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Riddell, A.; Dawson, J. Results of the National GNSS CORS Campaign, September 2014. Record 2015/08. Geoscience Australia, Canberra. 2015. Available online: https://d28rz98at9flks.cloudfront.net/83164/Rec2015_008.pdf (accessed on 15 August 2018).
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data—ScienceDirect. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Ostertagova, E.; Ostertag, O.; Kováč, J. Methodology and Application of the Kruskal-Wallis Test. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, W. A SAS macro for testing differences among three or more independent groups using Kruskal-Wallis and Nemenyi tests. J. Huazhong Univ. Sci. Technol. 2012, 32, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Finer Resolution Observation and Monitoring-Global Land Cover. Available online: http://data.ess.tsinghua.edu.cn/fromglc2017v1.html (accessed on 5 October 2021).
- Alba Fernández, M.V.; Ariza López, F.J.; Jiménez Gamero, M.D. A new approach to the quality control of slope and aspect classes derived from digital elevation models. Remote Sens. 2021, 13, 2069. [Google Scholar] [CrossRef]
- Carolina, G.; Markus, B.; José Luis, B.B.; Rizzoli, P.; Manfred, Z. A Fully automatic algorithm for editing the TanDEM-X global DEM. Remote Sens. 2020, 12, 3961. [Google Scholar] [CrossRef]
- Carrera-Hernández, J.J. Not all DEMs are equal: An evaluation of six globally available 30 m resolution DEMs with geodetic benchmarks and LiDAR in Mexico. Remote Sens. Environ. 2021, 261, 112474. [Google Scholar] [CrossRef]
- Florinsky, I.V.; Skrypitsyna, T.N.; Luschikova, O.S. Comparative accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: A case study on the Zaoksky testing ground, Central European Russia. Remote Sens. Lett. 2018, 9, 706–714. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L.; Shi, X.; Huang, X.; Geng, W. A High precision DEM extraction method based on InSAR data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 211–216. [Google Scholar] [CrossRef] [Green Version]
Group | Latitude | Area | Number of Points | Group | Longitude | Area | Number of Points |
---|---|---|---|---|---|---|---|
1 | 19°N | Wenchang | 18 | 1 | 100°E | Zhangye | 16 |
2 | 21°N | Zhanjiang | 21 | 2 | 103°E | Chengdu | 19 |
3 | 25°N | Ganzhou | 19 | 3 | 109°E | Weinan | 17 |
4 | 29°N | Ningbo | 19 | 4 | 110°E | Zhanjiang | 21 |
Wenchang | 18 | ||||||
5 | 30°N | Wuhan | 17 | 5 | 113°E | Zhengzhou | 20 |
Chengdu | 19 | ||||||
6 | 31°N | Pudong | 40 | 6 | 114°E | Wuhan | 17 |
Nanjing | 16 | Ganzhou | 19 | ||||
7 | 32°N | Hefei | 19 | 7 | 116°E | Fangshan | 18 |
8 | 34°N | Zhengzhou | 20 | 8 | 117°E | Beichen | 31 |
Weinan | 17 | Hefei | 19 | ||||
9 | 37°N | Yantai1 | 17 | 9 | 118°E | Nanjing | 16 |
Yantai2 | 18 | ||||||
10 | 38°N | Zhangye | 16 | 10 | 120°E | Yantai1 | 17 |
11 | 39°N | Fangshan | 18 | 11 | 121°E | Yantai2 | 18 |
Beichen | 30 | Pudong | 40 |
Azimuth (°) | 337.5–22.5 | 22.5–67.5 | 67.5–112.5 | 112.5–157.5 | 157.5–202.5 | 202.5–247.5 | 247.5–292.5 | 292.5–337.5 |
---|---|---|---|---|---|---|---|---|
Aspect | N | NE | E | SE | S | SW | W | NW |
Land Cover Type | Cropland | Artificial Surface |
---|---|---|
Land cover class | 1 | 6 |
Number of points | 155 | 171 |
Study Area | Global DEM | ME | RMSE | STD | LE90 | LE95 | MED | MAD |
---|---|---|---|---|---|---|---|---|
Fangshan | AW3D30 | 2.028 | 2.306 | 1.130 | 1.388 | 1.400 | 2.113 | 0.619 |
ASTER | −4.305 | 6.249 | 4.661 | 3.891 | 10.213 | 6.059 | 1.680 | |
SRTM | 1.064 | 3.136 | 3.036 | 1.999 | 3.027 | 2.333 | 0.954 | |
TanDEM-X | 0.524 | 1.663 | 1.624 | 1.200 | 1.272 | 1.131 | 0.420 | |
Beichen | AW3D30 | 0.085 | 1.621 | 1.645 | 1.478 | 3.144 | 0.830 | 0.575 |
ASTER | 4.789 | 5.473 | 2.693 | 2.565 | 6.856 | 4.929 | 1.740 | |
SRTM | 0.952 | 1.774 | 1.521 | 1.967 | 2.491 | 1.201 | 0.527 | |
TanDEM-X | 0.042 | 1.257 | 1.277 | 1.186 | 1.721 | 0.817 | 0.397 | |
Weinan | AW3D30 | −2.093 | 2.749 | 1.838 | 1.088 | 2.509 | 2.616 | 1.022 |
ASTER | −16.840 | 19.366 | 9.859 | 9.882 | 10.288 | 16.682 | 5.705 | |
SRTM | −3.459 | 3.847 | 1.733 | 1.645 | 1.688 | 4.091 | 0.625 | |
TanDEM-X | −0.450 | 1.516 | 1.493 | 0.692 | 2.943 | 0.758 | 0.302 | |
Zhangye | AW3D30 | −0.563 | 1.676 | 1.631 | 0.588 | 0.830 | 1.187 | 0.834 |
ASTER | −6.718 | 9.155 | 6.423 | 1.636 | 8.495 | 8.939 | 2.613 | |
SRTM | −0.040 | 1.059 | 1.093 | 1.408 | 1.495 | 0.621 | 0.509 | |
TanDEM-X | −1.829 | 1.994 | 0.820 | 0.515 | 1.494 | 2.040 | 0.306 | |
Yantai1 | AW3D30 | −1.554 | 2.134 | 1.508 | 1.521 | 1.649 | 1.263 | 1.010 |
ASTER | −6.245 | 7.418 | 4.509 | 3.595 | 8.718 | 6.586 | 2.886 | |
SRTM | −1.107 | 1.786 | 1.445 | 2.010 | 2.269 | 1.514 | 0.592 | |
TanDEM-X | 0.333 | 1.979 | 2.011 | 0.936 | 4.598 | 0.656 | 0.499 | |
Yantai2 | AW3D30 | 0.244 | 1.788 | 1.823 | 1.725 | 1.980 | 1.055 | 0.552 |
ASTER | −6.264 | 9.564 | 7.436 | 10.116 | 10.168 | 8.040 | 4.162 | |
SRTM | 0.298 | 2.711 | 2.773 | 2.387 | 3.081 | 2.142 | 1.185 | |
TanDEM-X | 0.924 | 2.460 | 2.346 | 1.687 | 4.430 | 1.072 | 0.442 | |
Pudong | AW3D30 | 1.127 | 1.993 | 1.665 | 1.766 | 3.023 | 1.611 | 0.607 |
ASTER | 5.684 | 6.296 | 2.689 | 2.868 | 3.393 | 5.832 | 1.260 | |
SRTM | 1.532 | 2.908 | 2.504 | 2.412 | 4.452 | 2.081 | 0.844 | |
TanDEM-X | 1.123 | 1.714 | 1.311 | 1.264 | 1.768 | 1.065 | 0.662 | |
Nanjing | AW3D30 | 1.168 | 2.015 | 1.696 | 1.223 | 1.613 | 1.551 | 0.642 |
ASTER | 4.629 | 5.493 | 3.055 | 3.952 | 4.502 | 3.817 | 2.490 | |
SRTM | −0.969 | 2.710 | 2.614 | 2.752 | 2.974 | 1.773 | 0.935 | |
TanDEM-X | −0.163 | 0.935 | 2.137 | 1.620 | 2.608 | 0.825 | 0.622 | |
Zhengzhou | AW3D30 | 0.939 | 1.334 | 0.973 | 1.225 | 1.228 | 1.102 | 0.310 |
ASTER | −8.507 | 9.484 | 4.300 | 4.438 | 6.140 | 8.598 | 2.506 | |
SRTM | 0.423 | 1.654 | 1.640 | 1.452 | 2.437 | 0.911 | 0.864 | |
TanDEM-X | −0.728 | 1.523 | 1.372 | 0.862 | 1.059 | 0.752 | 0.427 | |
Hefei | AW3D30 | 0.760 | 1.441 | 1.258 | 1.010 | 1.893 | 0.891 | 0.635 |
ASTER | −6.156 | 7.328 | 4.086 | 5.002 | 5.492 | 6.274 | 2.393 | |
SRTM | −0.031 | 1.125 | 1.156 | 1.011 | 1.119 | 0.850 | 0.181 | |
TanDEM-X | −0.821 | 1.712 | 1.544 | 1.413 | 2.798 | 1.280 | 0.798 | |
Wuhan | AW3D30 | 3.540 | 5.051 | 3.723 | 5.347 | 5.383 | 1.545 | 1.390 |
ASTER | 3.020 | 7.058 | 6.576 | 6.935 | 10.060 | 2.719 | 1.559 | |
SRTM | 3.511 | 4.894 | 3.514 | 2.441 | 4.248 | 3.993 | 1.866 | |
TanDEM-X | 2.060 | 3.182 | 2.499 | 3.070 | 3.729 | 2.272 | 0.942 | |
Ganzhou | AW3D30 | 1.117 | 3.240 | 3.125 | 2.676 | 3.847 | 2.240 | 1.185 |
ASTER | −9.319 | 10.712 | 5.426 | 5.038 | 7.002 | 9.035 | 2.206 | |
SRTM | 0.399 | 3.973 | 4.061 | 4.431 | 4.783 | 2.538 | 1.650 | |
TanDEM-X | 0.575 | 3.540 | 3.589 | 4.247 | 4.555 | 1.172 | 1.047 | |
Chengdu | AW3D30 | 0.658 | 1.094 | 0.898 | 1.078 | 1.171 | 0.659 | 0.520 |
ASTER | −0.013 | 3.199 | 3.287 | 3.274 | 3.509 | 1.858 | 1.244 | |
SRTM | −1.406 | 2.296 | 1.865 | 1.675 | 1.957 | 0.759 | 0.489 | |
TanDEM-X | −0.118 | 0.889 | 0.905 | 1.000 | 1.271 | 0.458 | 0.337 | |
Zhanjiang | AW3D30 | −2.301 | 2.656 | 1.360 | 0.786 | 2.298 | 2.249 | 0.526 |
ASTER | 1.493 | 2.710 | 2.318 | 2.425 | 3.157 | 1.737 | 1.172 | |
SRTM | −0.060 | 2.455 | 2.515 | 1.542 | 5.696 | 1.333 | 0.830 | |
TanDEM-X | −0.740 | 1.434 | 1.258 | 1.340 | 1.501 | 1.014 | 0.758 | |
Wenchang | AW3D30 | −0.582 | 2.209 | 2.193 | 2.570 | 3.801 | 1.461 | 0.816 |
ASTER | 9.571 | 12.627 | 8.475 | 5.518 | 12.457 | 6.725 | 3.240 | |
SRTM | 0.153 | 3.696 | 3.799 | 4.654 | 6.461 | 2.905 | 1.742 | |
TanDEM-X | 1.362 | 2.843 | 2.568 | 3.936 | 4.509 | 0.690 | 0.475 | |
Ningbo | AW3D30 | 1.292 | 2.841 | 2.600 | 1.668 | 2.705 | 1.653 | 1.068 |
ASTER | 7.807 | 8.799 | 4.169 | 5.226 | 5.292 | 7.928 | 2.157 | |
SRTM | 1.069 | 2.485 | 2.305 | 2.556 | 2.985 | 1.896 | 1.079 | |
TanDEM-X | 0.563 | 2.207 | 2.192 | 2.579 | 3.055 | 0.790 | 0.454 |
Significance Level (p-Value) | AW3D30 | SRTM | TanDEM-X |
---|---|---|---|
Latitude | <0.00099 | 0.004 | <0.00099 |
Longitude | <0.00099 | <0.00099 | <0.00099 |
16 study areas | <0.00099 | <0.00099 | <0.00099 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Ran, M.; Xia, H.; Deng, M. Evaluating Vertical Accuracies of Open-Source Digital Elevation Models over Multiple Sites in China Using GPS Control Points. Remote Sens. 2022, 14, 2000. https://doi.org/10.3390/rs14092000
Liu X, Ran M, Xia H, Deng M. Evaluating Vertical Accuracies of Open-Source Digital Elevation Models over Multiple Sites in China Using GPS Control Points. Remote Sensing. 2022; 14(9):2000. https://doi.org/10.3390/rs14092000
Chicago/Turabian StyleLiu, Xiangping, Mengying Ran, Huimin Xia, and Mingjun Deng. 2022. "Evaluating Vertical Accuracies of Open-Source Digital Elevation Models over Multiple Sites in China Using GPS Control Points" Remote Sensing 14, no. 9: 2000. https://doi.org/10.3390/rs14092000
APA StyleLiu, X., Ran, M., Xia, H., & Deng, M. (2022). Evaluating Vertical Accuracies of Open-Source Digital Elevation Models over Multiple Sites in China Using GPS Control Points. Remote Sensing, 14(9), 2000. https://doi.org/10.3390/rs14092000