Estimating Hourly Surface Solar Irradiance from GK2A/AMI Data Using Machine Learning Approach around Korea
Abstract
:1. Introduction
2. Materials
2.1. GEO-KOMPSAT-2A (GK2A)
2.2. In Situ Measurements
3. Methods
3.1. Data Processing
3.1.1. Extraterrestrial Solar Radiation (ESR)
3.1.2. Standardization of Input Variables
3.2. ML Approach
3.2.1. Hyperparameters
3.2.2. Feature Permutation
3.3. Statistical Analysis
4. Results
4.1. Input Data Correlations
4.2. Training History
4.3. Evaluation against KMA ASOS Stations
4.4. Evaluation against KHOA IORS and NIFoS Flux Towers
4.5. Error Characteristics
5. Discussions
5.1. Feature Permutation
5.2. Spatial Distribution of SSI around Korea
5.2.1. GK2A/AMI SSI
5.2.2. KMA ASOS SSI
5.3. Gap in the In Situ SSI
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, L.; Yan, G.; Wang, T.; Ren, H.; Calbó, J.; Zhao, J.; McKenzie, R. Estimation of surface shortwave radiation components under all sky conditions: Modeling and sensitivity analysis. Remote Sens. Environ. 2012, 123, 457–469. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–323. [Google Scholar] [CrossRef]
- Wang, H.; Pinker, R.T. Shortwave radiative fluxes from MODIS: Model development and implementation. J. Geophys. Res. Atmos. 2009, 114, D20201. [Google Scholar] [CrossRef]
- Mueller, R.W.; Matsoukas, C.; Gratzki, A.; Behr, H.D.; Hollmann, R. The CM-SAF operational scheme for the satellite based retrieval of solar surface irradiance—A LUT based eigenvector hybrid approach. Remote Sens. Environ. 2009, 113, 1012–1024. [Google Scholar] [CrossRef]
- Liang, S.; Zhao, X.; Liu, S.; Yuan, W.; Cheng, X.; Xiao, Z.; Zhang, X.; Liu, Q.; Cheng, J.; Tang, H.; et al. A long-term Global Land Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 2013, 6, 5–33. [Google Scholar] [CrossRef]
- Wang, Y.; Buermann, W.; Stenberg, P.; Smolander, H.; Häme, T.; Tian, Y.; Hu, J.; Knyazikhin, Y.; Myneni, R.B. A new parameterization of canopy spectral response to incident solar radiation: Case study with hyperspectral data from pine dominant forest. Remote Sens. Environ. 2003, 85, 304–315. [Google Scholar] [CrossRef]
- Ye, Z.X.; Cheng, W.M.; Zhao, Z.Q.; Guo, J.Y.; Ding, H.; Wang, N. Interannual and seasonal vegetation changes and influencing factors in the extra-high mountainous areas of Southern Tibet. Remote Sens. 2019, 11, 1392. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Gitelson, A.A.; Wardlow, B.D.; Verma, S.B.; Suyker, A.E. Estimating daily gross primary production of maize based only on MODIS WDRVI and shortwave radiation data. Remote Sens. Environ. 2011, 115, 3091–3101. [Google Scholar] [CrossRef]
- Cai, W.; Yuan, W.; Liang, S.; Zhang, X.; Dong, W.; Xia, J.; Fu, Y.; Chen, Y.; Liu, D.; Zhang, Q. Improved estimations of gross primary production using satellite-derived photosynthetically active radiation. J. Geophys. Res. Biogeosci. 2014, 119, 110–123. [Google Scholar] [CrossRef]
- Roundy, J.K.; Ferguson, C.R.; Wood, E.F. Impact of land-atmospheric coupling in CFSv2 on drought prediction. Clim. Dyn. 2014, 43, 421–434. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, A.; Wild, M.; Brunetti, M.; Guijarro, J.A.; Hakuba, M.Z.; Calbó, J.; Mystakidis, S.; Bartok, B. Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 2015, 120, 9555–9569. [Google Scholar]
- Ahmed, N.A.; Miyatake, M. A novel maximum power point tracking for photovoltaic applications under partially shaded insolation conditions. Electr. Power Syst. Res. 2008, 78, 777–784. [Google Scholar] [CrossRef]
- Kang, S.; Selosse, S.; Maizi, N. Strategy of bioenergy development in the largest energy consumers of Asia (China, India, Japan and South Korea). Energy Strateg. Rev. 2015, 8, 56–65. [Google Scholar] [CrossRef]
- Chen, W.M.; Kim, H.; Yamaguchi, H. Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan. Energy Policy 2014, 74, 319–329. [Google Scholar] [CrossRef]
- Meloni, D.; Di Biagio, C.; Di Sarra, A.; Monteleone, F.; Pace, G.; Sferlazzo, D.M. Accounting for the solar radiation influence on downward longwave irradiance measurements by pyrgeometers. J. Atmos. Oceanic Tech. 2012, 29, 1629–1643. [Google Scholar]
- Yang, K.; Koike, T. A general model to estimate hourly and daily solar radiation for hydrological studies. Water Resour. Res. 2005, 41, W10403. [Google Scholar]
- Bisht, G.; Venturini, V.; Islam, S.; Jiang, L.E. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens. Environ. 2005, 97, 52–67. [Google Scholar] [CrossRef]
- Zhang, X.; Liang, S.; Zhou, G.; Wu, H.; Zhao, X. Generating Global Land Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data. Remote Sens. Environ. 2014, 152, 318–332. [Google Scholar] [CrossRef]
- Wu, H.; Ying, W. Benchmarking machine learning algorithms for instantaneous net surface shortwave radiation retrieval using remote sensing data. Remote Sens. 2019, 11, 2520. [Google Scholar] [CrossRef] [Green Version]
- Hou, N.; Zhang, X.; Zhang, W.; Wei, Y.; Jia, K.; Yao, Y.; Jiang, B.; Cheng, J. Estimation of surface downward shortwave radiation over china from himawari-8 ahi data based on random forest. Remote Sens. 2020, 12, 181. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Liang, S.; Li, R.; Jia, A. A synergic study on estimating surface downward shortwave radiation from satellite data. Remote Sens. Environ. 2021, 264, 112639. [Google Scholar] [CrossRef]
- Gristey, J.J.; Feingold, G.; Glenn, I.B.; Schmidt, K.S.; Chen, H. On the relationship between shallow cumulus cloud field properties and surface solar irradiance. Geophys. Res. Lett. 2020, 47, e2020GL090152. [Google Scholar] [CrossRef]
- Lee, S.; Choi, J. Daytime Cloud Detection Algorithm Based on a Multitemporal Dataset for GK-2A Imagery. Remote Sens. 2021, 13, 3215. [Google Scholar] [CrossRef]
- Jang, J.C.; Lee, S.; Sohn, E.H.; Noh, Y.J.; Miller, S.D. Combined dust detection algorithm for Asian Dust events over East Asia using GK2A/AMI: A case study in October 2019. Asia Pac. J. Atmos. Sci. 2021, 58, 45–64. [Google Scholar] [CrossRef]
- WMO. Guide to Instruments and Methods of Observations; WMO: Geneva, Switzerland, 2018; Volume 8. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Duffie, J.A.; Beckman, W.A. Solar Engineering of Thermal Process; John Wiley and Sons: New York, NY, USA, 1991. [Google Scholar]
- Tayfur, G.; Singh, V.P. ANN and fuzzy logic models for simulating event-based Rainfall-Runoff. J. Hydraul. Eng. 2006, 132, 1321–1330. [Google Scholar] [CrossRef] [Green Version]
- Dawson, C.; Wilby, R. An artificial neural network approach to rainfall-runoff modelling. Int. Assoc. Sci. Hydrol. Bull. 1998, 43, 47–66. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Chen, C.L.; He, K.; Tang, X. Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhou, Z.; Wang, B.; Miao, L.; Zong, H. A novel CNN-based method for accurate ship detection in HR optical remote sensing images via rotated bounding box. IEEE Trans. Geosci. Remote Sens. 2020, 59, 686–699. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Clevert, D.-A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by Exponential Linear Units (ELUs). arXiv 2015, arXiv:151107289. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning (ICML), Lille, France, 6–11 July 2015. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Nowlan, S.J.; Hinton, G.E. Simplifying neural networks by soft weight-sharing. Neural Comp. 1992, 4, 473–493. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Murugan, P.; Durairaj, S. Regularization and optimization strategies in deep convolutional neural network. arXiv 2017, arXiv:1712.04711. [Google Scholar]
- Friedman, J.H. Recent Advances in Predictive (Machine) Learning. J. Classif. 2006, 23, 175–197. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.C.; Sohn, E.H.; Park, K.H.; Lee, S. Estimation of daily potential evapotranspiration in real-time from GK2A/AMI data using artificial neural network for the Korean Peninsula. Hydrology 2021, 8, 129. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Zamani Joharestani, M.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere 2019, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- McGovern, A.; Lagerquist, R.; Gagne, D.J.; Jergensen, G.E.; Elmore, K.L.; Homeyer, C.R.; Smith, T. Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning. Bull. Amer. Meteor. Soc. 2019, 100, 2175–2199. [Google Scholar] [CrossRef]
- Wang, B.; Lin, H. Rainy Season of the Asian–Pacific Summer Monsoon. J. Clim. 2002, 15, 386–398. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Zhang, X.; Hou, N.; Zhang, W.; Jia, K.; Yao, Y. Estimation of surface downward shortwave radiation over China from AVHRR data based on four machine learning methods. Sol. Energy 2019, 177, 32–46. [Google Scholar] [CrossRef]
- Wang, W.; Feng, J.; Xu, F. Estimating downward shortwave solar radiation on clear-sky days in heterogeneous surface using LM-BP neural network. Energies 2021, 14, 273. [Google Scholar] [CrossRef]
- Park, J.K.; Das, A.; Park, J.H. A new approach to estimate the spatial distribution of solar radiation using topographic factor and sunshine duration in South Korea. Energy Convers. Manag. 2015, 101, 30–39. [Google Scholar] [CrossRef]
- Alsharif, M.H.; Kim, J. Optimal Solar Power System for Remote Telecommunication Base Stations: A Case Study Based on the Characteristics of South Korea’s Solar Radiation Exposure. Sustainability 2016, 8, 942. [Google Scholar] [CrossRef] [Green Version]
- Alsharif, M.H.; Kim, J.; Kim, J.H. Opportunities and challenges of solar and wind energy in South Korea: A review. Sustainability 2018, 10, 1822. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.H.; Kwon, W.T.; Ryoo, S.B. Review of the researches on Changma and future observational study (KORMEX). Adv. Atmos. Sci. 1997, 14, 207–222. [Google Scholar] [CrossRef]
- Ha, K.-J.; Park, S.-K.; Kim, K.-Y. On interannual characteristics of Climate Prediction Center merged analysis precipitation over the Korean peninsula during the summer monsoon season. Int. J. Clim. 2005, 25, 99–116. [Google Scholar] [CrossRef]
- You, C.H.; Lee, D.I.; Jang, S.M.; Jang, M.; Uyeda, H.; Shinoda, T.; Kobayashi, F. Characteristics of rainfall systems accompanied with Changma front at Chujado in Korea. Asia-Pac. J. Atmos. Sci. 2010, 46, 41–51. [Google Scholar] [CrossRef]
- KMA. Abnormal Climate Report 2020; KMA: Seoul, Korea, 2021; p. 212. (In Korean) [Google Scholar]
- Gristey, J.J.; Feingold, G.; Glenn, I.B.; Schmidt, K.S.; Chen, H. Surface solar irradiance in continental shallow cumulus cloud fields: Observations and large-eddy simulation. J. Atmos. Sci. 2020, 77, 1065–1080. [Google Scholar] [CrossRef]
- Huang, G.; Li, Z.; Li, X.; Liang, S.; Yang, K.; Wang, D.; Zhang, Y. Estimating surface solar irradiance from satellites: Past, present, and future perspectives. Remote Sens. Environ. 2019, 233, 111371. [Google Scholar] [CrossRef]
- Liang, S.; Zheng, T.; Liu, R.; Fang, H.; Tsay, S.C.; Running, S. Estimation of incident photosynthetically active radiation from Moderate Resolution Imaging Spectrometer data. J. Geophys. Res. Atmos. 2006, 111, D15208. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Xie, Z.; Dai, A.; Shi, C.; Chen, F. Evaluation of satellite and reanalysis products of downward surface solar radiation over East Asia: Spatial and seasonal variations. J. Geophys. Res. Atmos. 2013, 118, 3431–3446. [Google Scholar] [CrossRef]
Category | Channel No. | Channel Name | Wavelength (Full Width at Half Maximum) | Resolution |
---|---|---|---|---|
Visible channels | 1 | VIS (VIS0.4) | 0.431–0.479 μm | 1.0 km |
2 | VIS (VIS0.5) | 0.5025–0.5175 μm | 1.0 km | |
3 | VIS (VIS0.6) | 0.625–0.66 μm | 0.5 km | |
Near-infrared channels | 4 | VNIR (VIS0.8) | 0.8495–0.8705 μm | 1.0 km |
5 | SWIR (NR1.3) | 1.373–1.383 μm | 2.0 km | |
6 | SWIR (NR1.6) | 1.601–1.619 μm | 2.0 km | |
Mid-wave infrared channels | 7 | MWIR (IR3.8) | 3.74–3.96 μm | 2.0 km |
8 | MWIR (IR6.3) | 6.061–6.425 μm | 2.0 km | |
9 | MWIR (IR6.9) | 6.89–7.01 μm | 2.0 km | |
10 | MWIR (IR7.3) | 7.258–7.433 μm | 2.0 km | |
Long-wave infrared channels | 11 | TIR (IR8.7) | 8.44–8.76 μm | 2.0 km |
12 | TIR (IR9.6) | 9.543–9.717 μm | 2.0 km | |
13 | TIR (IR10.5) | 10.25–10.61 μm | 2.0 km | |
14 | TIR (IR11.2) | 11.08–11.32 μm | 2.0 km | |
15 | TIR (IR12.3) | 12.15–12.45 μm | 2.0 km | |
16 | TIR (IR13.3) | 13.21–13.39 μm | 2.0 km |
Specification | Parameter | Configuration |
---|---|---|
Conv1d Flatten layer | The number of filters | 16, 32, 64 |
Dense layer | The number of nodes | 100, 200, 300 |
The number of layers | 1, 2, 3 | |
Regularization | L1 regularization parameter | 10−3, 10−5, 0 |
L2 regularization parameter | 10−3, 10−5, 0 |
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean (MJ m−2) | 8.400 | 12.068 | 16.051 | 20.451 | 19.212 | 20.069 | 16.872 | 14.931 | 13.542 | 13.075 | 9.665 | 8.721 |
Min. (MJ m−2) | 6.975 | 10.944 | 15.190 | 19.359 | 18.422 | 17.771 | 14.963 | 12.784 | 12.115 | 12.097 | 8.856 | 7.592 |
Max. (MJ m−2) | 9.115 | 12.840 | 16.514 | 21.040 | 19.800 | 20.706 | 18.355 | 16.613 | 14.941 | 14.017 | 10.549 | 10.110 |
Month | Jan. | Feb. | Mar. | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. (MJ m−2) | 4.872 | 7.709 | 14.041 | 18.247 | 16.672 | 16.422 | 13.963 | 11.952 | 10.943 | 10.975 | 6.696 | 5.885 |
Station | 115 | 115 | 185 | 101 | 172 | 185 | 185 | 108 | 169 | 101 | 127 | 184 |
Max. (MJ m−2) | 9.396 | 13.301 | 16.933 | 21.493 | 20.010 | 21.053 | 20.008 | 17.594 | 16.332 | 14.845 | 11.209 | 10.425 |
Station | 159 | 159 | 156 | 156 | 184 | 159 | 102 | 258 | 102 | 258 | 159 | 159 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.-C.; Sohn, E.-H.; Park, K.-H. Estimating Hourly Surface Solar Irradiance from GK2A/AMI Data Using Machine Learning Approach around Korea. Remote Sens. 2022, 14, 1840. https://doi.org/10.3390/rs14081840
Jang J-C, Sohn E-H, Park K-H. Estimating Hourly Surface Solar Irradiance from GK2A/AMI Data Using Machine Learning Approach around Korea. Remote Sensing. 2022; 14(8):1840. https://doi.org/10.3390/rs14081840
Chicago/Turabian StyleJang, Jae-Cheol, Eun-Ha Sohn, and Ki-Hong Park. 2022. "Estimating Hourly Surface Solar Irradiance from GK2A/AMI Data Using Machine Learning Approach around Korea" Remote Sensing 14, no. 8: 1840. https://doi.org/10.3390/rs14081840
APA StyleJang, J. -C., Sohn, E. -H., & Park, K. -H. (2022). Estimating Hourly Surface Solar Irradiance from GK2A/AMI Data Using Machine Learning Approach around Korea. Remote Sensing, 14(8), 1840. https://doi.org/10.3390/rs14081840