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Abstract: Net surface shortwave radiation (NSSR) is one of the most important fundamental
parameters in various land processes. Benefiting from its efficient nonlinear fitting ability, machine
learning algorithms have a great potential in the retrieval of NSSR. However, few studies have
explored the level of accuracy that machine learning algorithms can reach for different land covers on
the worldwide scale and what the optimal independent variables are in the machine learning-based
NSSR model. To guide the use of machine learning algorithms correctly in the retrieval of NSSR,
it is necessary to give a comprehensive analysis from algorithm complexity, accuracy, and other
aspects. In this study, three classic machine learning algorithms, including Random Forest (RF),
Artificial Neural Network (ANN), and Support Vector Regression (SVR), were built well to estimate
instantaneous NSSR with optimal hyperparameters by elaborately selecting different independent
variables, including top of atmosphere (TOA) channel spectral reflectance, geographic parameters,
surface information, and atmosphere conditions. Global FLUXNET in situ measurements throughout
2014 were used to validate the accuracies of retrieved NSSR over various land cover types. The root
mean square error (RMSE) is below 55 W/m2, and the distributions of error histogram are also similar.
Approximately 50% of absolute error were within 25 W/m2. There was a performance difference of
NSSR estimations in various surface types, and the performance of three machine learning methods in
a specific surface type was also different. However, the RF method may be considered as the optimal
methodology to retrieve NSSR from MODIS data, owing to its relatively better precision and concise
hyperparameter-tuned process. The importance analysis of the proposed independent variables of
NSSR retrieval shows that the introduction of geographic information can effectively reduce the error
of NSSR retrieval, and surface information and atmosphere information are not necessary. It was also
found that a combination of geographic information and blue band TOA reflectance already have
a pretty good accuracy in NSSR retrieval, which implies there is a possibility to transfer our NSSR
model to other satellite sensors, especially with insufficient channels. In a word, the NSSR model
with machine learning algorithms would be an efficient, concise, and general method in the future.

Keywords: net surface shortwave radiation; MODIS; FLUXNET; Random Forest; Artificial Neural
Network; Support Vector Regression

1. Introduction

Net surface radiation characterizes the surface radiation budget and plays a critical role in
ecological, physical, biogeochemical, and hydrological processes [1,2]. As the main component of net
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surface radiation, net surface shortwave radiation (NSSR) is calculated as the difference between surface
incident shortwave radiation and the amount of radiation reflected back into the atmosphere by the
surface [3] and represents the amount of solar radiation absorbed by the surface. Therefore, the ability
to better monitor instantaneous NSSR globally is essential to better understand existing feedbacks
between the surface energy cycles and the effects of climate change [4]. It is widely recognized that
remote sensing technology from the satellite is a convenient and effective method to study Earth
sciences, including surface radiation balance, ecosystem dynamics, and climate change [5–7]. Thus,
reliable global NSSR retrieval from satellite remote sensing data at a high spatial and temporal
resolution is required.

In recent years, traditional approaches of retrieving NSSR from satellite data have involved
statistical/empirical approaches, physically-based approaches, and mixed approaches [3]. The aim of
statistical/empirical approaches is to establish the statistical/empirical relationship between measured
NSSR and observations at the top of atmosphere (TOA) directly [8–10]. Specifically, Pinker and
Corio [9] made direct estimations of NSSR using NOAA5 satellite data, finding that a high correlation
exists between TOA observations and in situ NSSR. However, the physically-based methods consider
the complete radiative transfer process with satellite-retrieved physical properties of the surface,
atmosphere, and geometric optics [11–13]. For example, the NSSR can be successfully retrieved by
introducing parameterization of the absorption and scattering effects of water vapor, cloud, and aerosol
in the atmosphere [12]. The mixed approaches combine the statistical/empirical method with the
physically-based method, which are widely used for estimating instantaneous NSSR in the field of
traditional approaches [5,14,15]. For instance, based on numerous moderate resolution atmospheric
transmission model (MODTRAN) simulations of various atmosphere and geographic conditions,
Tang [15] built the NSSR model from the moderate resolution imaging spectroradiometer (MODIS) data
on the Terra platform by introducing the least square method in the fitting of the relationship of TOA
observations and ground NSSR. However, these traditional methods usually apply numerous specific
formulas, which may not have good representations of real interactions. Many coefficients of formulas
should be fitted, which are always limited by the initial values with the iterative solution algorithm. In
addition, atmosphere conditions (clear sky or cloudy sky) should usually be distinguished in traditional
approaches [5,15,16], leading to the high complexity of the NSSR retrieval model. Consequently,
concise and accurate approaches with the latest methodologies for generating instantaneous NSSR
are needed.

Generally, the NSSR is a nonlinear function of spectral information, surface properties, atmosphere
conditions, and geographic parameters [4,5,14,17,18]. Nowadays, machine learning algorithms are
widely used in remote sensing retrievals with the regression mission, due to its powerful ability of
adaptive nonlinear fitting [19]. Machine learning algorithms can automatically learn and organize
the recognition of inner data patterns, without prespecifying the specific type of relationship between
dependent and independent variables [20]. In NSSR retrieval applications, the variables of satellite
channel reflectance [17,21,22], geographic parameters [17,21,22], atmosphere precipitable water [17],
cloud information [21,23], surface properties [23], and other auxiliary data are universally regarded
as independent variables. Note that the accuracy of these studies with machine learning methods
is usually better than that of traditional methods. However, such research was usually based on a
simulated dataset or on a few in situ observations, leading to a worse generalization of the NSSR
model [17,21,22]. Some research applied ground auxiliary measurements or poor available data as
independent variables of the NSSR model [23], causing the difficulty of acquisition of global NSSR.
Few studies researched the different performance of NSSR retrieval using machine learning algorithms
on various surface types, and the importance of variables affecting NSSR and the necessary variable are
not provided. Thus, the machine learning algorithm for retrieving NSSR, having a better generalization
ability, better global promotion, and better accuracy, is expected.

The purpose of this study is to explore the level of accuracy machine learning algorithms can
reach for different land covers worldwide, and what the optimal independent variables are in the
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machine learning-based instantaneous NSSR model. Here, three classic machine learning algorithms,
including Random Forest (RF), Artificial Neural Network (ANN), and Support Vector Regression
(SVR), were used to build the NSSR model. MODIS remote sensing data were chosen as the drive
sources of the NSSR model because they have a relatively high temporal and spatial resolution and
there are various easy-available global products, including fundamental observations, land products,
and atmosphere products [24]. Global FLUXNET in situ data of various surface types were used
to evaluate the accuracy of the proposed NSSR model. Our study gives a detailed analysis of the
performance of the machine learning-based NSSR models on different surface types; the importance
and optimal combination of independent variables affecting NSSR were also analyzed.

2. Materials and Methods

2.1. Data

2.1.1. In Situ Data

FLUXNET is a network of globally distributed micrometeorological tower sites that measure
turbulent flux, carbon dioxide, and water vapor exchange between terrestrial ecosystems and the
atmosphere, using the eddy covariance method [25]. The flux measurement sites are linked across
a confederation of regional networks in America (AmeriFlux), Europe (EuroFlux), Asia (AsiaFlux),
Australia (OzFlux), and so on [26]. The FLUXNET community has harmonized, standardized, and
gap-filled these regional networks to create the latest dataset, FLUXNET2015 Dataset [27], which
contains the measurements of 212 sites. Some sites provide observations at a half-hourly temporal
resolution, and some stations provide hourly observations [28].

In our study, a total of 95 tower sites, which have effective observations from throughout 2014,
were selected. Figure 1 shows the distribution of those aforementioned observing sites, and these
sites represent a variety of surface types, ecosystem conditions, climate characters, and geographic
environments. The proposed NSSR models will be evaluated by observations of these sites. However,
these sites are mostly distributed in Europe, North America, and Australia. Their representability
may be relatively limited considering the variation of the climate and ground surface condition. The
distribution of land cover types is also shown on the map, which is defined by the International
Geosphere-Biosphere Programme (IGBP) [29]. Here, the MCD12C1 product, provided by the United
States Geological Survey [30], was used to acquire the distribution of global IGBP land cover types. The
classification classes and description of land cover types are introduced in Table 1, and it can be found
that the 95 selected sites cover 12 kinds of surface types. There are 19 sites of evergreen needleleaf
forests (ENF), 9 sites of evergreen broadleaf forests (EBF), 1 site of deciduous needleleaf forests (DNF),
11 sites of deciduous broadleaf forests (DBF), 6 sites of mixed forests (MF), 1 site of closed shrublands
(CSH), 4 sites of open shrublands (OSH), 4 sites of woody savannas (WSA), 4 sites of savannas (SAV),
14 sites of grasslands (GRA), 12 sites of permanent wetlands (WET), and 10 sites of croplands (CRO).
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Figure 1. Distribution of the 95 selected sites from the FLUXNET2015 dataset and International
Geosphere-Biosphere Programme (IGBP) surface types.

Table 1. IGBP land cover classification classes and descriptions.

Surface Type Description

Water Bodies At least 60% of area is covered by permanent water bodies.
Evergreen Needleleaf Forests Dominated by evergreen conifer trees (canopy >2 m). Tree cover >60%.
Evergreen Broadleaf Forests Dominated by evergreen broadleaf and palmate trees (canopy >2 m). Tree cover >60%.

Deciduous Needleleaf Forests Dominated by deciduous needleleaf (larch) trees (canopy >2 m). Tree cover >60%.
Deciduous Broadleaf Forests Dominated by deciduous broadleaf trees (canopy >2 m). Tree cover >60%.

Mixed Forests Dominated by neither deciduous nor evergreen (40%–60% of each) tree type (canopy
>2 m). Tree cover >60%.

Closed Shrublands Dominated by woody perennials (1–2 m height) >60% cover.
Open Shrublands Dominated by woody perennials (1–2 m height) 10%–60% cover.
Woody Savannas Tree cover 30%–60% (canopy >2 m).

Savannas Tree cover 10%–30% (canopy >2 m).
Grasslands Dominated by herbaceous annuals (<2 m).

Permanent Wetlands Permanently inundated lands with 30%–60% water cover and >10% vegetated cover.
Croplands At least 60% of area is cultivated cropland.

Urban and Built-up Lands At least 30% impervious surface area, including building materials, asphalt, and
vehicles.

Cropland/Natural Vegetation
Mosaics

Mosaics of small-scale cultivation 40%–60% with natural tree, shrub, or herbaceous
vegetation.

Permanent Snow and Ice At least 60% of area is covered by snow and ice for at least 10 months of the year.

Barren At least 60% of area is nonvegetated barren (sand, rock, soil) areas with less than 10%
vegetation.

The FLUXNET2015 dataset has over 200 variables—among them, measured data, derived data,
quality flags, uncertainty quantification variables, and results from intermediate data processing
steps [31]. The measured data include flux energy (shortwave radiation, longwave radiation, latent
heat, sensible heat), meteorological factors (air temperature, precipitation, specific humidity), and
many auxiliary data. The NSSR of tower sites can be calculated as the difference between measured
incoming shortwave radiation and measured outgoing shortwave radiation at the surface.

2.1.2. Remote Sensing Data

The first MODIS instrument, with a 10:30 equatorial crossing time, was launched aboard Terra
in 1999, providing the MOD Series products; the second MODIS instrument, with a 13:30 equatorial
crossing time, was launched aboard the Aqua platform in 2002, providing the MYD Series products
[32,33]. Both Terra- and Aqua-MODIS instruments view the entire Earth’s surface every 1 to 2 days,
acquiring radiance of 36 spectral bands in wavelengths from 0.405 to 14.385 µm at three spatial
resolutions—250, 500, and 1000 m. Note that observations of first 7 spectral bands are usually
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used to estimate NSSR, which consists of a red band (0.620–0.670 µm), a near-infrared band (NIR,
0.841–0.876 µm), a blue band (0.459–0.479 µm), a green band (0.545–0.565 µm), and three shortwave
infrared bands (SWIR, 1.230–1.250; 1.628–1.652; and 2.105–2.155 µm) [34]. MODIS instrument
observations are produced by the National Aeronautics and Space Administration (NASA), providing
various products about global dynamics and processes occurring on the land and in the lower
atmosphere [35,36]. The twin-MODIS products can contribute to a range of Earth science areas,
including Surface radiation balance, ecosystem dynamics, and agriculture studies.

In our study, both MOD series products and MYD series products were obtained to ensure the
dataset size of NSSR machine learning application. Taking MOD series product as an example, MOD02,
MOD03, MOD05, MOD09, and MOD35 images passing through the selected 95 sites were downloaded
throughout 2014 [37]. For surface sites with a half-hourly temporal resolution, the time gap between
the in-situ observations and satellite data is 15 min. For sites with an hourly temporal resolution, on
the other hand, the time gap is 30 min. The MOD02 product provides calibrated and geolocated TOA
spectral radiance of MODIS channels, and TOA spectral reflectance of solar reflective bands are also
offered. The geolocation fields, including latitude, longitude, viewing zenith angle (VZA), and solar
zenith angle (SZA) can be acquired in the MOD03 product; the atmosphere precipitable water product
(MOD05) consists of column water–vapor amounts, applying a near-infrared algorithm; the MOD09
product provides an estimate of the surface spectral reflectance as it would be measured at ground level
in the absence of atmospheric scattering or absorption, including the first 7 channels of MODIS. The
MODIS cloud mask product (MOD35) assigns 4 clear-sky confidence levels (confident clear, probably
clear, uncertain clear, cloudy) to each pixel in a remote sensing image, with the algorithm employing a
series of visible and infrared threshold and consistency tests to specify confidence.

Specifically, the spatial resolution of MOD02, MOD03, MOD05, and MOD35 products is around
1 km, and these products provide instantaneous observations. Different from the above products, the
spatial resolution of the MOD09 product used is around 0.05 degrees, and the temporal resolution is
daily. In addition, the MCD12C1 product was used to acquire the IGBP surface type of selected sites
and map the distribution of global IGBP land cover types in 2014.

2.2. Methodology

2.2.1. Net Surface Shortwave Radiation Retrieval Methodology

Generally, the relationship between NSSR and its independent variables (channel reflectance,
geographic information, surface information, and atmosphere information) can be expressed by the
following formula:

NSSR = f (channel re f lectance, geographic, sur f ace, atmosphere) (1)

where function f represents the nonlinear relationship between dependent variable NSSR and its
independent variables. Machine learning methods are essentially used to fit this nonlinear relationship,
i.e., to develop an instantaneous NSSR retrieval model with various MODIS data.

Figure 2 shows the flowchart of net surface shortwave radiation retrieval methodology, and it can
be found that the reflectance of MODIS’ first 7 spectral bands at TOA level (R1–R7), latitude (LAT), VZA,
SZA, atmosphere precipitable water (w), the reflectance of MODIS first 7 spectral bands at surface level
(SR1–SR7), and cloud mask (4 clear-sky confidence levels: CM1–CM4) are regarded as independent
variables. Note that machine learning methods can acquire richer atmospheric information through
the difference between the TOA channel reflectance and surface channel reflectance. More surface
information like vegetation spectral indices (RVI, NDVI, NDBI, NDMI, and so on) [38–42] and surface
albedo can be learned by exploring the inherent pattern of surface channel reflectance with machine
learning methods. Table 2 shows the selected independent variables for the proposed NSSR model
and their acronyms. In addition, the detailed description of several machine learning methods and the
procedure of datasets is introduced as follows.
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Figure 2. Flowchart of net surface shortwave radiation retrieval methodology.

Table 2. Selected independent variables for the net surface shortwave radiation (NSSR) model and
their acronyms.

Independent Variable Acronym

TOA MODIS red band reflectance R1
TOA MODIS near infrared band reflectance R2

TOA MODIS blue band reflectance R3
TOA MODIS green band reflectance R4

TOA MODIS shortwave infrared band reflectance -1 R5
TOA MODIS shortwave infrared band reflectance -2 R6
TOA MODIS shortwave infrared band reflectance -3 R7

Latitude LAT
Viewing Zenith Angle VZA

Solar Zenith Angle SZA
Atmosphere precipitate water w

Surface MODIS red band reflectance SR1
Surface MODIS near infrared band reflectance SR2

Surface MODIS blue band reflectance SR3
Surface MODIS green band reflectance SR4

Surface MODIS shortwave infrared band reflectance -1 SR5
Surface MODIS shortwave infrared band reflectance -2 SR6
Surface MODIS shortwave infrared band reflectance -3 SR7

Cloud mask–confident clear CM1
Cloud mask–probably clear CM2
Cloud mask–uncertain clear CM3

Cloud mask–cloudy CM4

2.2.2. Brief Introduction of Machine Learning Algorithms

In our study, three classical machine learning algorithms, including Random Forest (RF), Artificial
Neural Network (ANN), and Support Vector Regression (SVR), were used to build the NSSR retrieval
model, and the intercomparison was also analyzed. Though these algorithms all seem to work as a
‘black box’, the inner model structure, criterion, and mechanism are different.

(a) Random Forest
Random Forest is an ensemble learning method, which is constructed by a set of classification

and regression trees (CART) that can be used for regression for predicting a continuous response
variable [43]. Every bootstrap sample for each CART is randomly selected from pre-datasets, and
the features used are also extracted randomly from all features in a certain proportion. Specifically,
every CART can train a nonlinear fitting model to estimate NSSR with the defined bootstrap sample;
the output NSSR of RF is an average of the outputs of an individual CART [44]. Hence, because of
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its ‘bagging’ thought, RF algorithms typically yield a reduced bias of the estimations and, in general,
good accuracies.

As described above, there are primarily two hyperparameters (N-ESTIMATORS and
MAX-FEATURES) in the RF method: N-ESTIMATORS is the number of CARTs used to build
the model. MAX-FEATURES is the maximum number of features applied in an individual CART. To
obtain the optimal hyperparameters in the proposed NSSR estimation model, various combinations of
MAX-FEATURES and N-ESTIMATORS were utilized. Other hyperparameters like ‘MAX-DEPTH’,
‘MIN-SAMPLES-SPLIT’, and ‘MIN-SAMPLES-LEAF’ can be set to default. The root mean squared
error (RMSE) would be regarded as the main indicator to evaluate the optimal hyperparameters of the
RF method. The RF method in our study was implemented within the Python environment with the
widely used Scikit-learn package.

RF provides evaluations for the independent variables that are more important in the regression to
quantify the attribution of the independent variables to the dependent variable [45]. For any variable,
this importance is assessed by the decrease in RMSE of corresponding datasets if the values of that
variable are considered. In addition, the variables’ importance evaluated by the RF method was further
used to explore optimal variable combinations of NSSR retrieval and help to simplify the inputs while
preserving the robustness and accuracy of the model.

(b) Artificial Neural Network
Artificial Neural Network is a computing system vaguely inspired by the biological neural

networks that constitute animal brains which is based on a collection of connected nodes called artificial
neurons [46,47]. The standard ANN model comprises three layers, namely, input layer (some artificial
neurons with NSSR independent variables), hidden layer (certain artificial neurons), and output layer
(one artificial neuron with NSSR). It can be found that one hidden layer is recognized to be enough for
most problems [48,49]; the most important step is to determine what architecture-related parameters
will improve accuracy, such as the number of hidden nodes, the activation functions, the optimization
algorithms, and so on.

The neurons of different layers are fully connected, and each connection has a weight that evaluates
the strength of the signal. The signal at a connection between artificial neurons is a real number, and
the output of each artificial neuron is computed by some nonlinear function (Relu, Sigmoid, Tanh, and
so on) of the weighted sum of its inputs [50]. The most prominently employed neural network method
is backpropagation, where backpropagation distributes the error term back up through the layers by
modifying the weights at each artificial neuron.

The ANN method in the study was implemented within the Python environment with the
Tensorflow/Keras package. The hyperparameter EPOCH represents the times that an entire dataset is
passed forward and backward through the neural network; usually, the performance of ANN will be
stable with increasing EPOCH. The number of artificial neurons in the hidden layer should be tuned
to ensure the optimal accuracy of the model. In addition, the applied activate function of ANN in
our study is the Relu function, and the optimization algorithm designed is RMSprop with the default
learning rate.

(c) Support Vector Regression
Support Vector Machine, proposed by Cortes and Vapnik in 1995, has been widely used because

of its strength in dealing with linearly high-dimensional and nonseparable datasets. Hyperplanes in
SVM are decision boundaries that help to classify the data points, and support vectors are data points
that are closer to the hyperplane and influence the position and orientation of the hyperplane [51]. The
objective of the SVM is to find an optimal hyperplane (has the maximum margin between support
vectors) in feature space for classification problems. A version of SVM for the regression problem was
proposed, called Support Vector Regression (SVR). Analogously, the model produced by SVR depends
only on the cost function of specific support vectors within the hyperplane.

When the linear hyperplane of SVR cannot be found, data points are projected from a
low-dimensional feature space to a high-dimensional feature space, using kernel functions (linear,
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radial basis, sigmoid, and polynomial) [52]. In our study, the chosen kernel function of SVR was
popular Gaussian radial basis function (RBF), which has two hyperparameters: penalty coefficient
(C) and gamma. The hyperparameter C tells the SVM optimization how much you want to avoid
misclassifying each training example—a large C will cause a smaller-margin hyperplane, while a very
small C causes a larger-margin hyperplane even if the hyperplane misclassifies more points. The
hyperparameter gamma sets the width of the bell-shaped curve of RBF, and the large gamma will
narrow the RVF bell-shape. Various combinations of hyperparameter C and hyperparameter gamma
should be tuned to ensure the optimal performance of SVR. In addition, the SVR method in the study
was implemented within the Python environment with the Scikit-learn package.

2.2.3. Dataset Processing

As described above, there are two types of main data applied in the study: in situ data and
remote sensing data, which should be matched in the time–space and spatial-space. The pixels of
MODIS images closest to the selected FLUXNET sites are extracted to obtain independent variables.
Note that MODIS products apply universal time coordinated (UTC), while the time reported in
FLUXNET2015 datasets is local standard time, so time zone convention should be carried out with time
zone information in site metadata. To ensure the NSSR model output is being compared to ground
truth, the data are quality-controlled to minimize the uncertainties: (1) abnormal and invalid data
of independent variables are excluded; for example, fill values like ‘−9999’ and ‘nan’ were deleted;
(2) several improvements are already applied to the dependent variable (in situ data) quality control
protocols, with only data having good quality flags (QF = 0) being sorted; (3) high fluctuation of in situ
data affects the accuracy of measurements, so observations whose standard deviation was beyond the
threshold within 90 min were excluded. Here, the third quartile of set of standard deviation (around
60 W/m2) was chosen as the threshold. In addition to the abovementioned preprocessing, the Z-score
normalization (mean = 0, standard deviation = 1) method was applied to numeric data of independent
variables. In addition, the One-Hot encoding method was applied to categorical data of independent
variables; for example, the Cloud Mask attribute will be encoded into four attributes: CM1, CM2, CM3,
and CM4, representing four clear-sky confidence levels.

The whole dataset was randomly separated into two datasets, with 80% made part of the train
dataset and 20% made part of the test dataset. In the 3-fold cross-validation method, the train dataset
is randomly partitioned into three equal sized subsamples, where a single subsample is retained as
the validation dataset, and the remaining two subsamples are still regarded as the train dataset. The
cross-validation process is then repeated 3 times, with each of the three subsamples used exactly
once as the validation dataset. The machine learning algorithms are initially fit on the train dataset
that is a set of examples used to fit the inner parameters (such as weights of connections between
artificial neurons in ANN). The fitted model is successively validated with a validation dataset, which
usually can help to tune the model’s hyperparameters (such as the number of neurons in the hidden
layer of ANN). Note that the average of 3 times RMSE on validation datasets was regarded as the
indicator to obtain optimal hyperparameter combinations. Finally, the test dataset that has never
been used is applied to evaluate the generalization and performance of the fitted model with optimal
hyperparameter combinations.

2.2.4. Statistical Analysis

All models for NSSR estimations were evaluated by the bias, RMSE, and coefficient of determination
(R2), which are commonly used as measurable indicators for regression problems. Bias can determine if
the model is overestimating or underestimating; RMSE is a quadratic scoring rule that also measures the
average magnitude of the error (differences between estimation and actual observation); R2 are often
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used for explaining how well-selected independent variables explain the variability in the dependent
variable. The expressions are given as follows:

Bias =
1
n

n∑
i=1

(Ŷi −Yi) (2)

RMSE =

√√
1
n

n∑
i=1

(Ŷi −Yi)
2

(3)

R2 = 1−

n∑
i=1

(Ŷi −Yi)
2

n∑
i=1

(Ŷi −Yi)
2

(4)

where Ŷi refers to the estimated NSSR, Yi represents the corresponding reference NSSR, Yi is the
average of all reference NSSR, and n represents the total number of data involved.

3. Results and Discussion

3.1. Comparions of Normalized Independent Variables for the Train Dataset and Test Dataset

After several data processing steps as outlined above, the size of the whole effect dataset was
38,980, which consisted of train dataset (80%, size = 31,184) and test dataset (20%, size = 7796). Figure 3
shows the boxplot of normalized independent variables of the train dataset and test dataset. The blue
box represents the quartiles of a certain variable, the band inside the box is the second quartile (the
median), and the red triangle represents the average of the data. The ends of the whiskers beyond
the box represent the 5th and the 95th percentile, while the individual points beyond whiskers are
considered outliers. As shown in the figure, it can be found that the distribution of certain variables
was similar between the train dataset and test dataset, illustrating the rationality of data separation. 10 of 21 
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3.2. Evaluation of Machine Learning Algorithms Applied in NSSR Retrieval

3.2.1. Development and Validation of Random Forest

There are primarily two key hyperparameters (MAX-FEATURES and N-ESTIMATORS) that can
be tuned to improve the predictive ability of the Random Forest model. We firstly set combinations
of hyperparameters in a wide range (MAX-FEATURES 6–17 with an interval of 1; N-ESTIMATORS:
100–2500 with an interval of 200). Then, narrowing the scope with the RMSE indicator (a lower RMSE
generally represents a better model), we finally set MAX-FEATURES from 8 to 12 with an interval
of 1, and N-ESTIMATORS from 1300 to 2100 with an interval of 50. Figure 4 shows the RMSE of
cross-validation of the RF method with various hyperparameter combinations, where the optimal
RMSE is 59.89 W/m2 with optimal MAX-FEATURES 9 and optimal N-ESTIMATORS 1650. Note that
values of RMSE are not sensitive in a specific range of hyperparameters, which illustrates the concise
procedure of the RF method in NSSR estimation.

 10 of 21 

 

 
Figure 3. Boxplot of normalized independent variables of the train dataset and test dataset. 

3.2. Evaluation of Machine Learning Algorithms Applied in NSSR Retrieval  

3.2.1. Development and Validation of Random Forest  

There are primarily two key hyperparameters (MAX-FEATURES and N-ESTIMATORS) that can 
be tuned to improve the predictive ability of the Random Forest model. We firstly set combinations 
of hyperparameters in a wide range (MAX-FEATURES 6–17 with an interval of 1; N-ESTIMATORS: 
100–2500 with an interval of 200). Then, narrowing the scope with the RMSE indicator (a lower RMSE 
generally represents a better model), we finally set MAX-FEATURES from 8 to 12 with an interval of 
1, and N-ESTIMATORS from 1300 to 2100 with an interval of 50. Figure 4 shows the RMSE of cross-
validation of the RF method with various hyperparameter combinations, where the optimal RMSE is 
59.89 W/m2 with optimal MAX-FEATURES 9 and optimal N-ESTIMATORS 1650. Note that values of 
RMSE are not sensitive in a specific range of hyperparameters, which illustrates the concise procedure 
of the RF method in NSSR estimation. 

 
Figure 4. Cross-validation root mean square error (RMSE) of the Random Forest (RF) method with
various hyperparameter combinations.

After obtaining the optimal hyperparameter combinations in the RF method, the test dataset was
applied in evaluating the performance and generalization of the fitted RF model for NSSR retrieval.
Figure 5 shows a comparison of estimated instantaneous NSSR and in situ reference NSSR in test
datasets, where points are distributed closely around the 1:1 line. The density of points is also shown in
the figure: Red represents more scatters gathering and blue represents fewer. The bias, RMSE, and R2

of comparison are −0.19 W/m2, 52.39 W/m2, and 0.96, respectively. The results imply that the proposed
RF method is feasible and effective to estimate the instantaneous NSSR with MODIS data.
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3.2.2. Development and Validation of Artificial Neural Network

As described above, the ANN method has many hyperparameters (EPOCH, the number of
artificial neurons in hidden layer, activate function, optimization algorithm, batch size, and so on)
to be set. We found that the RMSE of the ANN method was already stable before 10,000 EPOCH,
and the condition of the Relu activate function, RMSprop optimization algorithm, and 30 batch size
was suitable for NSSR estimation. Under the premise of these hyperparameters, the most important
hyperparameter number of hidden layer nodes should be tuned to ensure the optimal accuracy of
the ANN model. Considering the time-consuming nature of this process, we finally set numbers of
nodes from 3 to 123 with an interval of 5. Figure 6 shows that the RMSE of cross-validation in the
ANN method depends on the number of hidden layer nodes, with fewer nodes causing an underfitting
phenomenon, while too many nodes cause an overfitting phenomenon (a big difference between the
RMSE of train dataset and validation dataset). The optimal number of hidden layer nodes is 53, where
the optimal RMSE is 58.68 W/m2. 12 of 21 
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In the condition of the above optimal hyperparameter combinations in the ANN method, the
comparison of estimated instantaneous NSSR and in situ reference NSSR in test datasets is shown in
Figure 7. The points are distributed closely around the 1:1 line, and the distribution of point density
is also similar to that for the RF method. The bias, RMSE, and R2 of comparison are 0.21 W/m2,
54.04 W/m2, and 0.96, respectively, which also illustrates the good performance of the ANN method
for NSSR estimation.
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3.2.3. Development and Validation of Support Vector Regression

The combinations of hyperparameter C and hyperparameter gamma should be tuned to ensure
the performance of the SVR method for estimating NSSR. After preliminary exploration, we set C in an
unequal interval (28, 29, 210, 211, 212) and gamma in an unequal interval (2−6, 2−5, 2−4, 2−3, 2−2, 2−1),
and Figure 8a shows the RMSE of cross-validation with these combinations. The optimal RMSE was
found to be in the condition of C 210–212 and gamma near 2−4. Hence, another narrow combination
should be carried out to determine specific hyperparameters: C from 500 to 4100 with an interval of
250, and gamma from 0.03 to 0.10 with an interval of 0.01. It can be found that the optimal RMSE is
58.68 W/m2 in the condition of hyperparameter C 3750 and hyperparameter gamma 0.05 (Figure 8b).
Note that values of RMSE of cross-validation are very sensitive to the magnitude of hyperparameters in
the SVR method, leading to the high complexity of SVR method tuning. The comparison of estimated
instantaneous NSSR and in situ reference NSSR in SVR method with a test dataset has an overall bias
of −0.73 W/m2, an RMSE of 51.73 W/m2, and an R2 of 0.96 (Figure 9). The pretty good results also
imply that the proposed SVR method is a feasible way to retrieve NSSR.
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3.3. Accuracy Intercomparison of Different Machine Learning Algorithms

An evaluation of the machine learning algorithms (RF, ANN, SVR) in MODIS-derived
instantaneous NSSR was carried out (Figures 5, 7, and 9). The error statistics (bias, RMSE, and R2) of
the three models are comparative, and the pattern of comparison points is also similar. Particularly,
Figure 10 shows the histogram of the NSSR estimation error with the three machine learning algorithms,
where the horizontal coordinate represents the difference between the estimated NSSR and station
reference NSSR, and the vertical coordinate is the frequency. The lines across histograms can better
represent the distinction of three machine learning algorithms in error distribution. It can be found
that approximately 50% of the absolute difference of all the samples are below 25 W/m2, and 75% of the
samples are below 50 W/m2 in all machine learning algorithms. Further, the SVR and RF method have
more scatters than the ANN method in low values of NSSR estimation error. In terms of computational
efficiencies, the RF method spends less time to develop the NSSR model than the SVR method and the
ANN method. For example, the RF, SVR and ANN will take about 4, 24 and 12 h to train 100 times,
respectively. What is more, the SVR method costs the most computer resources when applied to train
numerous data, due to its inner complex algorithm to acquire the support vectors.
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Compared with the error results in previous studies [4,5,14,17,53], the traditional methods for
estimating NSSR have an RMSE around 60–80 W/m2, while MODIS-derived instantaneous NSSR
retrievals using machine learning algorithms including RF, ANN, and SVR have a better accuracy
(RMSE less than 55 W/m2). Considering the better performance and concise model development, it can
be concluded that the proposed methods are feasible and effective to estimate the NSSR. The residual
error of the estimated NSSR can be explained by the spatial resolution difference between remotely
sensed data and in situ measurements, the uncertainty of channel reflectance, atmosphere parameters
and surface information, the noise of observations of selected sites, the parallax effect caused by high
clouds, and so on. Note that the proposed estimations of NSSR were based on numerous tower sites of
various surface types, illustrating that our models have a better generalization.

Table 3 shows the error statistics of the proposed NSSR retrievals in different IGBP surface types
with the test dataset. Generally, there is a performance difference of NSSR estimations in various
surface types. Specifically, it can be found that OSH scatters have the best results (around 40 W/m2

RMSE) in all machine learning algorithms, and the scatters of forest surface (ENF, EBF, DNF, DBF, MF)
tend to have a poor performance (around 60 W/m2 RMSE) in NSSR estimations. Some grassy surfaces,
including WSA, SAV, and GRA, are also suitable for instantaneous NSSR retrieval with MODIS data,
having an RMSE of around 46 W/m2 for all proposed machining learning methods. What is more, the
performance of three machine learning methods in some surface type is also different. For example, the
RMSE of scatters in the condition of DNF, WSA, and CRO with the RF method is much smaller than
that with the ANN method and the SVR method, but the phenomenon is opposite in the condition of
MF land cover. Except for scatters of OSH and WSA, the error statistics of different IGBP surface types
in the ANN method are similar to those in the SVR method.
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Table 3. Error statistics of NSSR retrieval using machine learning algorithms in different IGBP
surface types.

Type Size
RF ANN SVR

Bias RMSE R2 Bias RMSE R2 Bias RMSE R2

ENF 1276 −10.28 60.25 0.95 −5.52 58.22 0.96 −5.51 55.57 0.96
EBF 401 6.69 62.59 0.95 2.74 60.81 0.95 3.56 58.93 0.95
DNF 117 −9.94 61.35 0.90 −15.76 80.18 0.84 −20.8 80.51 0.84
DBF 639 −10.60 59.65 0.95 −11.62 62.73 0.94 −14.81 60.73 0.95
MF 290 −9.77 52.31 0.95 −4.08 47.21 0.96 −5.86 46.09 0.96

CSH 104 15.55 53.84 0.96 6.69 52.46 0.96 7.30 50.43 0.96
OSH 520 8.32 39.77 0.98 7.49 42.70 0.98 4.76 38.25 0.98
WSA 218 −6.55 45.48 0.94 −7.07 53.05 0.92 −1.38 48.50 0.94
SAV 268 10.51 46.45 0.95 −3.03 44.02 0.96 1.67 41.63 0.96
GRA 1759 6.42 46.09 0.97 7.24 47.76 0.97 4.89 46.08 0.97
WET 1474 −2.85 53.38 0.96 −3.01 56.62 0.95 −4.15 53.38 0.96
CRO 730 7.26 46.77 0.97 10.31 51.61 0.96 10.44 50.44 0.96
All 7796 −0.19 52.39 0.96 0.21 54.04 0.96 −0.73 51.73 0.96

For exploring the seasonal characteristics of errors in NSSR estimations, the performance of
machine learning algorithms over typical months like (Jan, Apr, Jul and Oct) was shown in the Table 4.
Considering that magnitude of radiation in different months can be quite different, the normalized
RMSE (NRMSE) was used to evaluate the performance, which is the ratio of RMSE to the average of
reference values. It can be found that the NRMSE in Jul and Oct are lower than those in Jan and Apr.
In addition, all machine learning algorithms have worst NRMSE in Jan and worst bias in Jul.

Table 4. Error statistics of NSSR retrieval using machine learning algorithms in typical months.

Month Size
RF ANN SVR

Bias NRMSE R2 Bias NRMSE R2 Bias NRMSE R2

January 612 −5.60 20.0% 0.95 4.36 20.3% 0.95 0.62 18.4% 0.96
April 669 −5.01 14.2% 0.96 −2.11 15.9% 0.96 −4.66 15.5% 0.96
July 777 9.80 12.5% 0.97 5.06 13.2% 0.96 5.94 12.2% 0.97

October 626 −1.09 13.7% 0.96 −3.39 13.4% 0.96 −3.33 13.1% 0.97

3.4. Importance Analysis of the Independent Variables

There are, in total, 22 independent variables applied in NSSR retrieval, where variables R1–R7 are
the TOA channel reflectance of MODIS’ first seven channels, variables LAT, SZA, and VZA represent
geographic information, variable w is atmosphere precipitable water, variables SR1–SR7 represent
surface information, and CM1–CM4 can provide the clear-sky confidence level.

As described above, RF methodology can provide the importance of independent variables in the
estimation (Figure 11), which can help with the analysis of the optimal combinations of independent
variables in NSSR retrieval. Note that the importance score only gives a relative ranking by regarding
the contribution of the independent variables. It can be found that the SZA variable contributes the
most to estimated NSSR (the conclusion was consistent with previous research [12]), followed by SR3
variable and SR4 variable. Further, clear-sky confidences (CM1–CM4) have almost no contribution to
NSSR, which can be explained by the introduction of other variables (R1–R7, SR1–SR7), helping to
learn the cloud information and other atmosphere parameters. The change of the R1–R7 importance
scores is similar to that for SR1–SR7 because of a high correlation between TOA channel reflectance
and surface channel reflectance, and the atmosphere effect contributes to the difference. In addition,
the LAT variable and the w variable also have a relatively high importance score in the proposed
NSSR retrieval.
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To explore the optimal variables of NSSR retrieval, various cases of combinations of independent
variables were carried out. It is worth mentioning that the RF, ANN, and SVR methods have a
comparative precision in general after the above comparisons. Consequently, only the RF method was
used to build the NSSR model for each individual case, and numerous combinations of hyperparameters
in the RF method were also tuned to guarantee the optimal accuracy of each NSSR model. Table 5
shows the description and error statistics of the proposed cases for NSSR estimation. CASE 1 considers
all independent variables, and CASE 2 only includes the TOA channel reflectance of MODIS’ first seven
bands. Note that TOA spectral information (R1–R7) is the foundation for MODIS-derived applications,
and CASES 3–9 represent the combinations of TOA spectral information and other information. For
example, CASE 3 is a combination of TOA spectral information and geographic information (LAT,
SZA, and VZA), CASE 5 is with surface information (SR1–SR7), and details of other cases are described
in Table 5. It can be concluded that the introduction of geographic information can effectively reduce
the error of NSSR retrieval, for the reason that the RMSE of some cases having geographic parameters
(CASES 1, 3, 6, 7, and 9, where the RMSE is around 53 W/m2) is much smaller than that of other cases
(CASES 2, 4, 5, and 8, where the RMSE is around 84 W/m2). When comparing CASE 1 to CASE 3,
we can draw the conclusion that consideration of abundant variables can only slightly improve the
error, while causing a higher difficulty of data acquisition and higher complexity of the NSSR model.
Consequently, surface information and atmosphere information are not necessary when the NSSR
retrieval methodology is applied to other satellite sensors.

CASES 10–15 were carried out to explore the mobility and robustness of the proposed NSSR model,
i.e., if there is any possibility to transfer our NSSR model to other satellite sensors with insufficient
channels. The geographic parameters (LAT, SZA, and VZA) are basically offered by most sensors, so
the considered variables in these cases are a combination of geographic information and some TOA
channel reflectance. The importance score in Figure 11 for TOA channel reflectance was applied to set
the addition order of spectral information, i.e., CASE 10 considers the relatively highest variable (R3),
and CASE 11 considers two relatively highest variables (R3 and R4). The error statistic of these cases
contributes to the conclusion that a combination of geographic information and the R3 variable (blue
band TOA reflectance) already has pretty good accuracy in NSSR retrieval. The information about
more channels can also help to reduce the error of NSSR retrieval. In short, if some sensors only have
observations of the blue band and basic geographic information, there is also a possibility to apply
these sensors to retrieve NSSR with machine learning methodologies.
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Table 5. The description and error statistics of the proposed cases for NSSR estimation.

Case Description Bias RMSE R2

CASE 1 LAT, SZA, VZA, R1, R2, R3, R4, R5, R6, R7, w, SR1, SR2, SR3, SR4, SR5, SR6,
SR7, CM1, CM2, CM3, CM4 −0.19 52.39 0.96

CASE 2 R1, R2, R3, R4, R5, R6, R7 5.70 88.82 0.89
CASE 3 LAT, SZA, VZA, R1, R2, R3, R4, R5, R6, R7 −0.52 55.50 0.96
CASE 4 R1, R2, R3, R4, R5, R6, R7, w 5.82 89.82 0.89
CASE 5 R1, R2, R3, R4, R5, R6, R7, SR1, SR2, SR3, SR4, SR5, SR6, SR7 4.78 78.05 0.92
CASE 6 LAT, SZA, VZA, R1, R2, R3, R4, R5, R6, R7, w −0.22 54.67 0.96
CASE 7 LAT, SZA, VZA, R1, R2, R3, R4, R5, R6, R7, SR1, SR2, SR3, SR4, SR5, SR6, SR7 −0.38 54.22 0.96
CASE 8 R1, R2, R3, R4, R5, R6, R7, w, SR1, SR2, SR3, SR4, SR5, SR6, SR7 4.70 78.07 0.92
CASE 9 LAT, SZA, VZA, R1, R2, R3, R4, R5, R6, R7, w, SR1, SR2, SR3, SR4, SR5, SR6, SR7 −0.17 53.30 0.96

CASE 10 LAT, SZA, VZA, R3 −0.04 58.15 0.96
CASE 11 LAT, SZA, VZA, R3, R4 −0.14 58.13 0.96
CASE 12 LAT, SZA, VZA, R3, R4, R1 −0.12 58.06 0.96
CASE 13 LAT, SZA, VZA, R3, R4, R1, R5 −0.39 56.59 0.96
CASE 14 LAT, SZA, VZA, R3, R4, R1, R5, R2 −0.61 56.12 0.96
CASE 15 LAT, SZA, VZA, R3, R4, R1, R5, R2, R6 −0.60 55.71 0.96

4. Conclusions

In this study, three machine learning algorithms, including Random Forest, Artificial Neural
Network, and Support Vector Regression, were applied to retrieve instantaneous NSSR with MODIS
data. The global FLUXNET in-situ measurements throughout 2014 were used to build and evaluate the
proposed NSSR model, and observations of various surface types helped to guarantee the generalization
and robustness of the proposed models. The accuracy performance of machine learning-based NSSR
models on different land covers was analyzed, and the optimal combination of independent variables
was also provided.

In total, 22 independent variables from MODIS products were applied to retrieve instantaneous
NSSR, including TOA channel reflectance, geographic parameters, surface information, and atmosphere
conditions. After preprocessing several data, such as spatial and temporal matching of remote sensing
data with corresponding in-situ measurements, outlier exclusion, quality control, and normalization,
the size of the whole effect dataset was 38,980, which consisted of a train dataset (80%, size = 31,184)
and test dataset (20%, size = 7796). The 3-fold cross-validation method was used in the train dataset to
build the NSSR model and tune the hyperparameters of machine learning methodologies, and the test
dataset was applied to evaluate the performance and generalization of the fitted NSSR model with
optimal hyperparameter combinations. The bias, RMSE, and R2 for comparison of the estimated NSSR
and conference NSSR with the RF method in the test dataset were −0.19 W/m2, 52.39 W/m2, and 0.96,
respectively, and the optimal combination of hyperparameters in our study for the RF method was a
combination of MAX-FEATURES 9 and N-ESTIMATORS 1650. Similarly, the bias, RMSE, and R2 for
the ANN method were 0.21 W/m2, 54.04 W/m2, and 0.96, respectively, with the optimal number of
hidden layer nodes 53. The comparison of estimated instantaneous NSSR and in-situ reference NSSR in
the SVR method with the test dataset had an overall rias of −0.73 W/m2, an RMSE of 51.73 W/m2, and
an R2 of 0.96, in the condition of hyperparameter C 3750 and hyperparameter gamma 0.05. No matter
which proposed machine learning method we used, it had better accuracy than previous studies with
traditional methods, and it was not necessary to distinguish the sky conditions (clear and cloudy). In a
word, machine learning methods (RF, ANN, and SVR) are feasible and concise methods to estimate
instantaneous NSSR from various MODIS remote sensing data.

It can also be found that approximately 50% of the absolute difference of comparisons of estimated
NSSR and reference NSSR in the test dataset were below 25 W/m2, and 75% samples were below
50 W/m2 for all machine learning algorithms. Though these machine learning algorithms had a
comparative error statistic in general, there were also some differences in different IGBP surface types.
Here, OSH scatters had the best results (around 40 W/m2 RMSE) in all machine learning methods, while
the scatters of the forest surface (ENF, EBF, DNF, DBF, and MF) tended to have a poor performance
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(around 60 W/m2 RMSE). In addition, the performance of the three machine learning methods in some
surface types was also different. For example, the RMSE of scatters in the condition of DNF, WSA, and
CRO with the RF method was much smaller than that with the ANN method and the SVR method, but
the phenomenon was the opposite in the condition of MF land cover.

What is more, the importance analysis of independent variables in the NSSR model was also
carried out by setting numerous combinations of independent variables, referring to the importance
score in the RF method. There were several conclusions in the variable importance analysis: (1) The
SZA variable contributes the most to NSSR estimation, followed by the SR3 and SR4 variables. (2)
The introduction of geographic information can effectively reduce the error of NSSR retrieval. (3)
Surface information and atmosphere information are not necessary. (4) A combination of geographic
information and the R3 variable (blue band TOA reflectance) already has pretty good accuracy in NSSR
retrieval. Finally, (5) there is also a possibility to transfer our NSSR model to other satellite sensors
with insufficient channels.

Future studies will focus on the evaluation of the proposed NSSR models using other sites,
especially those in Asia and Africa, to assess the representability and generalization of models. In
addition, the Future studies will also focus on estimating instantaneous NSSR with a representative
algorithm convolutional neural network (CNN) in deep learning. The CNN method can consider the
surrounding information of selected tower sites, which may further help to improve the accuracy of
NSSR retrieval with MODIS remote sensing data. In addition, the spatial and temporal features of
daily NSSR will also be analyzed in future research.
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