Land Use Hotspots of the Two Largest Landlocked Countries: Kazakhstan and Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Classification Procedures
2.3. Land Cover Composition and Changes
2.4. Spatial Variations of Land Cover Change Intensity (iLCC)
3. Results
3.1. Land Cover Classification and Accuracy
3.2. Land Cover Composition
3.3. Decadal Land Cover Changes
3.4. Gross and Net Change of Land Cover
3.5. Spatial Variations of iLCC
4. Discussion
4.1. Uncertainty in Land Cover Classification
4.2. Land Use Hotspots and Policy Influences
4.3. Ecosystem and Climate Impacts
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | Country | Province | City/County | Population |
---|---|---|---|---|
1 | Kazakhstan | Akmola | Shchuchinsk | 45,253 |
2 | Atbasar | 32,288 | ||
3 | Kokshetau | 146,104 | ||
4 | Makinsk | 18,540 | ||
5 | Ereymentau | 15,087 | ||
6 | Astana | 649,139 | ||
7 | Esil | 13,096 | ||
8 | Aktobe | Aktobe | 500,757 | |
9 | Zhem/Embi | 12,345 | ||
10 | Kndyagash | 25,553 | ||
11 | Alga | 15,372 | ||
12 | Shalkar | 26,329 | ||
13 | Khromatau | 24,089 | ||
14 | Almaty | Almaty | 1,854,656 | |
15 | Esik | 31,254 | ||
16 | Karabulak | 14,873 | ||
17 | Kaskelen | 37,221 | ||
18 | Saryozek | 14,000 | ||
19 | Taldykorgan | 143,407 | ||
20 | Talgar | 43,353 | ||
21 | Tekeli | 31,958 | ||
22 | Usharal | 15,379 | ||
23 | Otegen Batyr | 17,301 | ||
24 | Sary-Ozek | 14,000 | ||
25 | Balpyk Bi | 12,145 | ||
26 | Uzynagash | 23,887 | ||
27 | Zharkent | 42,617 | ||
28 | Kargali | 20,114 | ||
29 | Koksu | 40,105 | ||
30 | Kapchagay | 33,428 | ||
31 | Zhansugirov | 8288 | ||
32 | Sarqan | 14,305 | ||
33 | Shelek | 26,688 | ||
34 | Saryozek | 14,000 | ||
35 | Ushtobe | 22,472 | ||
36 | Mongolia | Arkhangai | Tsetserleg | 17,770 |
37 | Dornod | Choibalsan city | 40,439 | |
38 | Tov | Ulaanbaatar | 1067,472 | |
39 | Zuunmod | 14,568 |
References
- Groisman, P.; Bulygina, O.; Henebry, G.; Speranskaya, N.; Shiklomanov, A.; Chen, Y.; Tchebakova, N.; Parfenova, E.; Tilinina, N.; Zolina, O.; et al. Dryland belt of Northern Eurasia: Contemporary environmental changes and their consequences. Environ. Res. Lett. 2018, 13, 115008. [Google Scholar] [CrossRef]
- Chen, J.; John, R.; Shao, C.; Fan, Y.; Zhang, Y.; Amarjargal, A.; Brown, D.G.; Qi, J.; Han, J.; Lafortezza, R.; et al. Policy shifts influence the functional changes of the CNH systems on the Mongolian plateau. Environ. Res. Lett. 2015, 10, 085003. [Google Scholar] [CrossRef]
- Chen, J.; John, R.; Yuan, J.; Mack, E.A.; Groisman, P.; Allington, G.; Wu, J.; Fan, P.; de Beurs, K.M.; Karnieli, A.; et al. Sustainability challenges for the social-environmental systems across the Asian Drylands Belt. Environ. Res. Lett. 2022, 17, 23001. [Google Scholar] [CrossRef]
- Chen, J.; Wan, S.; Henebry, G.M.; Qi, J.; Gutman, G.; Sun, G.; Kappas, M. Dryland East Asia: Land Dynamics Amid Social and Climate Change; De Gruyter: Berlin, Germany, 2014; ISBN 9783110287912. [Google Scholar]
- Qi, J.; Xin, X.; John, R.; Groisman, P.; Chen, J. Understanding livestock production and sustainability of grassland ecosystems in the Asian Dryland Belt. Ecol. Process. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Gutman, G.; Chen, J.; Henebry, G.M.; Kappas, M. Landscape Dynamics of Drylands across Greater Central Asia: People, Societies and Ecosystems; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; ISBN 978-3-030-30741-7. [Google Scholar]
- Das, M.; Parthasarathy, S. Anomaly Detection and Spatio-Temporal Analysis of Global Climate System. In Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data, Paris, France, 28 June 2009. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Chen, J.; Dong, G.; Chen, J.; Jiang, S.; Qu, L.; Legesse, T.G.; Zhao, F.; Tong, Q.; Shao, C.; Han, X. Energy balance and partitioning over grasslands on the Mongolian Plateau. Ecol. Indic. 2022, 135, 108560. [Google Scholar] [CrossRef]
- Chen, J.; John, R.; Sun, G.; Fan, P.; Henebry, G.M.; Fernández-Giménez, M.E.; Zhang, Y.; Park, H.; Tian, L.; Groisman, P.; et al. Prospects for the sustainability of social-ecological systems (SES) on the Mongolian plateau: Five critical issues. Environ. Res. Lett. 2018, 13, 123004. [Google Scholar] [CrossRef]
- Fernández-Giménez, M.E.; Venable, N.H.; Angerer, J.; Fassnacht, S.R.; Reid, R.S.; Khishigbayar, J. Exploring linked ecological and cultural tipping points in Mongolia. Anthropocene 2017, 17, 46–69. [Google Scholar] [CrossRef]
- De Beurs, K.M.; Wright, C.K.; Henebry, G.M. Dual scale trend analysis for evaluating climatic and anthropogenic effects on the vegetated land surface in Russia and Kazakhstan. Environ. Res. Lett. 2009, 4, 045012. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and environmental change in arid Central Asia: Impacts, vulnerability, and adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- de Beurs, K.; Ioffe, G.; Nefedova, T.; Henebry, G. Land change in European Russia: 1982–2011. In Land-Cover and Land-Use Changes in Eastern Europe after the Collapse of the Soviet Union in 1991; Springer International Publishing: Berlin/Heidelberg, Germany, 2016; pp. 223–241. ISBN 9783319426389. [Google Scholar]
- Kaser, M. Economic transition in six Central Asian economies. Cent. Asian Surv. 1997, 16, 5–26. [Google Scholar] [CrossRef]
- McCauley, M. Khrushchev and the Development of Soviet Agriculture. Khrushchev Dev. Sov. Agric. 1976. [Google Scholar] [CrossRef]
- Pomfret, R. The Economies of Central Asia. Econ. Cent. Asia 2014. [Google Scholar] [CrossRef]
- Pederson, N.; Leland, C.; Nachin, B.; Hessl, A.E.; Bell, A.R.; Martin-Benito, D.; Saladyga, T.; Suran, B.; Brown, P.M.; Davi, N.K. Three centuries of shifting hydroclimatic regimes across the Mongolian Breadbasket. Agric. For. Meteorol. 2013, 178, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Amartuvshin, A.; Chen, J.; John, R.; Zhang, Y. Land Use Policy How does mining policy affect rural migration of Mongolia? Land Use Policy 2021, 107, 105474. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H.; Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; et al. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.; Lin, M.; Chen, J.; Fan, P.; Qian, S.S.; Park, H. Improving estimates of built-up area from night time light across globally distributed cities through hierarchical modeling. Sci. Total Environ. 2019, 647, 1266–1280. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Exavier, R.; Zeilhofer, P. OpenLand: Software for Quantitative Analysis and Visualization of Land Use and Cover Change. R J 2020, 12, 372–387. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Baston, D. Exactextractr: Fast Extraction from Raster Datasets Using Polygons; R Package Version 0.5.0. 2020. Available online: https://CRAN.R-project.org/package=exactextractr (accessed on 20 February 2022).
- Bivand, R. classInt: Choose Univariate Class Intervals; R Package Classint Version 0.4-2. 2019. Available online: https://CRAN.R-project.org/package=classInt (accessed on 20 February 2022).
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Fan, P.; John, R.; Ouyang, Z.; Chen, J. Spatiotemporal changes of informal settlements: Ger districts in Ulaanbaatar, Mongolia. Landsc. Urban Plan. 2019, 191, 103630. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.; Reed, B. A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets. Remote Sens. Environ. 2005, 94, 123–132. [Google Scholar] [CrossRef]
- Sankey, T.T.; Massey, R.; Yadav, K.; Congalton, R.G.; Tilton, J.C. Post-socialist cropland changes and abandonment in Mongolia. L. Degrad. Dev. 2018, 29, 2808–2821. [Google Scholar] [CrossRef]
- Beurs, K.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [Google Scholar] [CrossRef]
- USDA Kazakhstan Agricultural Overview. 2010. Available online: https://ipad.fas.usda.gov/highlights/2010/01/kaz_19jan2010/ (accessed on 12 October 2021).
- Pomfret, R. Modernizing Agriculture in Central Asia. Glob. J. Emerg. Mark. Econ. 2016, 8, 104–125. [Google Scholar] [CrossRef]
- Kraemer, R.; Prishchepov, A.V.; Müller, D.; Kuemmerle, T.; Radeloff, V.C.; Dara, A.; Terekhov, A.; Frühauf, M. Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environ. Res. Lett. 2015, 10, 054012. [Google Scholar] [CrossRef]
- OECD Review of Agricultural Polices; OECD: Almaty, Kazakhstan, 2013.
- Bao, G.; Jin, H.; Tong, S.; Chen, J.; Huang, X.; Bao, Y.; Shao, C.; Mandakh, U.; Chopping, M.; Du, L. Autumn Phenology and Its Covariation with Climate, Spring Phenology and Annual Peak Growth on the Mongolian Plateau. Agric. For. Meteorol. 2021, 298, 108312. [Google Scholar] [CrossRef]
- Li, Z.; Wu, W.; Liu, X.; Fath, B.D.; Sun, H.; Liu, X.; Xiao, X.; Cao, J. Land use/cover change and regional climate change in an arid grassland ecosystem of Inner Mongolia, China. Ecol. Model. 2017, 353, 86–94. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Frolking, S.; Liu, S.; Zhang, L.; Cui, Y.; Zhou, G. Croplands intensify regional and global warming according to satellite observations. Remote Sens. Environ. 2021, 264, 112585. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B 2003, 55, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Evans, J.P.; McCabe, M.F.; de Jeu, R.A.M.; van Dijk, A.I.; Dolman, A.J.; Saizen, I. Changing Climate and Overgrazing Are Decimating Mongolian Steppes. PLoS ONE 2013, 8, 4–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schierhorn, F.; Müller, D.; Beringer, T.; Prishchepov, A.V.; Kuemmerle, T.; Balmann, A. Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob. Biogeochem. Cycles 2013, 27, 1175–1185. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM + image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Dara, A.; Baumann, M.; Kuemmerle, T.; Pflugmacher, D.; Rabe, A.; Griffiths, P.; Hölzel, N.; Kamp, J.; Freitag, M.; Hostert, P. Mapping the timing of cropland abandonment and recultivation in northern Kazakhstan using annual Landsat time series. Remote Sens. Environ. 2018, 213, 49–60. [Google Scholar] [CrossRef]
LCC Type | Consumer Accuracy | Producer Accuracy | Overall Accuracy |
---|---|---|---|
Forest | 0.9995 | 0.9995 | 0.9963 |
Grassland | 0.9953 | 0.9972 | |
Cropland | 0.9962 | 0.9936 | |
Barren | 0.9986 | 0.9971 | |
Water | 1.0000 | 1.0000 |
Country | Province | Year | Forest | Grassland | Cropland | Barren | Water |
---|---|---|---|---|---|---|---|
Kazakhstan | Aktobe | 1990 | 6198.3 (2.1) | 218,428.6 (72.4) | 50,955.1 (16.9) | 23,521.8 (7.8) | 2518.5 (0.8) |
2000 | 4617.3 (1.5) | 231,513.2 (76.8) | 40,193.4 (13.3) | 23,059.6 (7.6) | 2238.8 (0.7) | ||
2010 | 2945.5 (1.0) | 227,007 (75.3) | 43,587.4 (14.5) | 26,533.9 (8.8) | 1561 (0.5) | ||
2020 | 4111.1 (1.4) | 224,929.2 (74.6) | 49,379.2 (16.4) | 21,759.7 (7.2) | 1455.6 (0.5) | ||
Average | 4468.05 (1.5) | 225,469.5 (74.8) | 46,028.8 (15.3) | 23,718.8 (7.9) | 1943.5 (0.6) | ||
Akmola | 1990 | 4445.4 (3) | 70,996.8 (48.4) | 65,779.8 (44.8) | 1414.1 (1) | 4073.1 (2.8) | |
2000 | 2727.9 (1.9) | 84,357.4 (57.5) | 54,297 (37) | 2494.4 (1.7) | 2832.5 (1.9) | ||
2010 | 4918.9 (3.4) | 66,730.8 (45.5) | 69,212.6 (47.2) | 2366.8 (1.6) | 3479.2 (2.4) | ||
2020 | 3022.2 (2.1) | 64,927.5 (44.3) | 71,980.9 (49.1) | 2091.8 (1.4) | 4685.9 (3.2) | ||
Average | 3778.6 (2.6) | 71,753.1 (48.9) | 65,317.6 (44.5) | 2091.8 (1.4) | 3767.7 (2.6) | ||
Almaty | 1990 | 28,533.1 (13) | 137,584.2 (62.7) | 39,128.8 (17.8) | 1066.1 (0.5) | 13,224.4 (6) | |
2000 | 28,027.6 (12.8) | 144,742.6 (66) | 30,000.2 (13.7) | 2984.1 (1.4) | 13,405.7 (6.1) | ||
2010 | 36,055.5 (16.5) | 138,967.1 (63.4) | 23,182.6 (10.6) | 1405 (0.6) | 19,527.2 (8.9) | ||
2020 | 29,828.6 (13.6) | 145,006.4 (66.2) | 20,712 (9.5) | 907.5 (0.4) | 22,683 (10.4) | ||
Average | 30,611.2 (14.0) | 141,575.1 (64.6) | 28,255.9 (12.9) | 1590.7 (0.7) | 17,210.1 (7.8) | ||
Mongolia | Arkhangai | Year | Forest | Grassland | Cropland | Barren | Water |
1990 | 15,472.7 (28) | 35,336.9 (63.8) | 3338.5 (6) | 388.6 (0.7) | 810.7 (1.5) | ||
2000 | 12,863.2 (23.2) | 36,720.1 (66.3) | 4869.8 (8.8) | 248.5 (0.4) | 645.4 (1.2) | ||
2010 | 13,669.5 (24.7) | 34,455.2 (62.3) | 5940.6 (10.7) | 531 (1) | 751.3 (1.4) | ||
2020 | 12,583.1 (22.7) | 35,452.2 (64.1) | 6414.6 (11.6) | 307.9 (0.6) | 589.9 (1.1) | ||
Average | 13,647.1 (24.7) | 35,491.1 (64.1) | 5140.9 (9.3) | 369 (0.7) | 699.3 (1.3) | ||
Tov | 1990 | 16,832.6 (22.7) | 48,158.5 (65) | 7117.1 (9.6) | 804.2 (1.1) | 1161.7 (1.6) | |
2000 | 18,037 (24.4) | 45,353.7 (61.2) | 9332 (12.6) | 753.3 (1) | 597.4 (0.8) | ||
2010 | 17,847.2 (24.1) | 50,882.5 (68.7) | 4642.8 (6.3) | 578.3 (0.8) | 121.1 (0.2) | ||
2020 | 17,168.9 (23.2) | 52,542.4 (70.9) | 2544.4 (3.4) | 764.5 (1) | 1051.6 (1.4) | ||
Average | 13,647.1 (23.6) | 35,491.1 (66.5) | 5140.9 (7.9) | 369 (1.0) | 699.3 (1.0) | ||
Dornod | 1990 | 7225.9 (5.8) | 110,355.1 (89.3) | 1757.5 (1.4) | 818.7 (0.7) | 3449.7 (2.8) | |
2000 | 5410.7 (4.4) | 113,494.6 (91.8) | 2237.8 (1.8) | 914.6 (0.7) | 1549.2 (1.3) | ||
2010 | 3913.4 (3.2) | 114,892.3 (93) | 1889.2 (1.5) | 1494.9 (1.2) | 1415.9 (1.1) | ||
2020 | 4386.4 (3.5) | 113,774.7 (92) | 2921.8 (2.4) | 973.7 (0.8) | 1549 (1.3) | ||
Average | 5234.1 (4.2) | 113,129.2 (91.5) | 2201.6 (1.85) | 1050.5 (0.9) | 1990.9 (1.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Chen, J.; Sciusco, P.; Kolluru, V.; Saraf, S.; John, R.; Ochirbat, B. Land Use Hotspots of the Two Largest Landlocked Countries: Kazakhstan and Mongolia. Remote Sens. 2022, 14, 1805. https://doi.org/10.3390/rs14081805
Yuan J, Chen J, Sciusco P, Kolluru V, Saraf S, John R, Ochirbat B. Land Use Hotspots of the Two Largest Landlocked Countries: Kazakhstan and Mongolia. Remote Sensing. 2022; 14(8):1805. https://doi.org/10.3390/rs14081805
Chicago/Turabian StyleYuan, Jing, Jiquan Chen, Pietro Sciusco, Venkatesh Kolluru, Sakshi Saraf, Ranjeet John, and Batkhishig Ochirbat. 2022. "Land Use Hotspots of the Two Largest Landlocked Countries: Kazakhstan and Mongolia" Remote Sensing 14, no. 8: 1805. https://doi.org/10.3390/rs14081805
APA StyleYuan, J., Chen, J., Sciusco, P., Kolluru, V., Saraf, S., John, R., & Ochirbat, B. (2022). Land Use Hotspots of the Two Largest Landlocked Countries: Kazakhstan and Mongolia. Remote Sensing, 14(8), 1805. https://doi.org/10.3390/rs14081805