Spatio-Temporal Mixed Pixel Analysis of Savanna Ecosystems: A Review
Abstract
:1. Introduction
- What types of savanna land cover dynamics have been estimated?
- In which geographic locations are the studies conducted?
- What is the geographic extend of the study sites?
- Which mixed pixel estimation methods have been applied?
- Are there any emerging trends pertaining to the estimation methods?
- What are the most preferred remote sensing systems, platforms and resolutions?
- What are the characteristics of the temporal data used as input for modeling the mixed pixel?
- What is the outlook on the validation and accuracy of the reviewed studies?
2. Review Methodology
- The journal article must be focused on mixed pixel analysis.
- The journal article study area is located in a savanna biome.
- The journal article is fully or in parts using EO as input data to derive single or multiple fractional land cover.
- A number of global VCF articles and very few articles with focus on semi-arid or dryland biomes, such as grasslands and savanna desert ecotones, were considered. Vegetation Continuous Fields methods are fundamental to the development of fractional and sub-pixel mapping, although not entirely focusing on the savanna most of the time.
3. Results
3.1. Geographic and Spatial Scale
3.2. Estimated Mixed-Pixel Parameters
3.3. Type of Earth Observation Data Used
3.4. Methods Used for Estimation of Mixed Pixel Parameters
Categorization of Savanna Mixed Pixel Estimation Methods
Reference | Method Name | Method Type | Estimated Biophysical Parameter |
---|---|---|---|
[75] | Regression Tree | (Non-parametric) | Tree Cover |
[126] | Spectral Mixture Analysis (Pixel Unmixing) | Parametric | Percent vegetation cover per pixel (% woody vegetation, % herbaceous vegetation, % bare ground), leaf type (% needleleaf and % broadleaf) and leaf duration (% evergreen and % deciduous) and % bare |
[39] | Object-Based Image Analysis Nearest neighbor Maximum Likelihood Random Forest Regression Tree Support Vector Machines | Parametric and Non-parametric (Both) | Multiple Cover: Trees, Shrubs, Bare Soils, Grass |
[105] | Random Forest | Non-parametric | Multiple Cover: Shrubland, Forest, Urban, Cropland, Seasonal water, Bare Soil, Permanent water |
3.5. Temporal Characteristics of the EO Input Data
3.6. Accuracy and Validation of the Reviewed Publications
4. Discussion
4.1. Geographic Patterns of Spatio-Temporal Mixed Pixel Analysis in the Savannas
4.2. The Use of EO Technology for Spatio-Temporal Mixed Pixel Analysis in Savannas
4.3. Future Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AVHRR | Advanced Very High-Resolution Radiometer |
EO | Earth Observation |
GEE | Google Earth Engine |
GIMMS | Global Inventory Modeling and Mapping Studies |
HR | High Resolution |
INPE | National Institute for Space Research |
1/k-NN | Nearest Neighbor |
LULC | Land Use Land Cover |
MD | Minimum Distance |
MAP | Mean Annual Precipitation |
MAT | Mean Annual Temperature |
ML | Machine Learning |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NDVI | Normalized Difference Vegetation Index |
RF | Random Forest |
RT | Regression Tree |
SAEON | South African Environmental Observation Network |
SAR | Synthetic Aperture Radar |
SDA | Step-wise Discriminant Analysis |
SMA | Spectral Mixture Analysis |
VCF | Vegetation Continuous Fields |
VHR | Very High Resolution |
VI | Vegetation Indices |
VIIRS | Visible Infrared Imaging Radiometer Suite |
References
- Scholes, R.J.; Archer, S.R. Tree-Grass Interactions in Savannas. Annu. Rev. Ecol. Syst. 1997, 28, 517–544. [Google Scholar] [CrossRef]
- Sankaran, M.; Hanan, N.P.; Scholes, R.J.; Ratnam, J.; Augustine, D.J.; Cade, B.S.; Gignoux, J.; Higgins, S.I.; le Roux, X.; Ludwig, F.; et al. Determinants of Woody Cover in African Savannas. Nature 2005, 438, 846–849. [Google Scholar] [CrossRef]
- Herrero, H.; Southworth, J.; Muir, C.; Khatami, R.; Bunting, E.; Child, B. An Evaluation of Vegetation Health in and around Southern African National Parks during the 21st Century (2000–2016). Appl. Sci. 2020, 10, 2366. [Google Scholar] [CrossRef] [Green Version]
- Herrero, H.V.; Southworth, J.; Bunting, E.; Kohlhaas, R.R.; Child, B. Integrating Surface-Based Temperature and Vegetation Abundance Estimates into Land Cover Classifications for Conservation Efforts in Savanna Landscapes. Sensors 2019, 19, 3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagelkirk, R.L.; Dahlin, K.M. Woody Cover Fractions in African Savannas from Landsat and High-Resolution Imagery. Remote Sens. 2020, 12, 813. [Google Scholar] [CrossRef] [Green Version]
- Angassa, A.; Oba, G. Effects of Grazing Pressure, Age of Enclosures and Seasonality on Bush Cover Dynamics and Vegetation Composition in Southern Ethiopia. J. Arid Environ. 2010, 74, 111–120. [Google Scholar] [CrossRef]
- Sankaran, M. Droughts and the Ecological Future of Tropical Savanna Vegetation. J. Ecol. 2019, 107, 1531–1549. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Huete, A.; Yu, Q.; Coupe, N.R.; Davies, K.; Broich, M.; Ratana, P.; Beringer, J.; Hutley, L.B.; Cleverly, J.; et al. Spatial Patterns and Temporal Dynamics in Savanna Vegetation Phenology across the North Australian Tropical Transect. Remote Sens. Environ. 2013, 139, 97–115. [Google Scholar] [CrossRef]
- Feldt, T.; Karg, H.; Kadaouré, I.; Bessert, L.; Schlecht, E. Growing Struggle over Rising Demand: How Land Use Change and Complex Farmer-Grazier Conflicts Impact Grazing Management in the Western Highlands of Cameroon. Land Use Policy 2020, 95, 104579. [Google Scholar] [CrossRef]
- Werneck, F.P. The Diversification of Eastern South American Open Vegetation Biomes: Historical Biogeography and Perspectives. Quat. Sci. Rev. 2011, 30, 1630–1648. [Google Scholar] [CrossRef]
- Hill, M.J.; Guerschman, J.P. The MODIS Global Vegetation Fractional Cover Product 2001–2018: Characteristics of Vegetation Fractional Cover in Grasslands and Savanna Woodlands. Remote Sens. 2020, 12, 406. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Liu, S.; Hill, M.J. A Novel Method for Separating Woody and Herbaceous and Time Series. Photogramm. Eng. Remote Sens. 2019, 85, 509–520. [Google Scholar] [CrossRef]
- Zhou, Q.; Hill, M.; Sun, Q.; Schaaf, C. Retrieving Understorey Dynamics in the Australian Tropical Savannah from Time Series Decomposition and Linear Unmixing of MODIS Data. Int. J. Remote Sens. 2016, 37, 1445–1475. [Google Scholar] [CrossRef]
- Tsalyuk, M.; Kelly, M.; Getz, W.M. Improving the Prediction of African Savanna Vegetation Variables Using Time Series of MODIS Products. ISPRS J. Photogramm. Remote Sens. 2017, 131, 77–91. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.J. Remote Sensing of Savannas and Woodlands: Editorial. Remote Sens. 2021, 13, 1490. [Google Scholar] [CrossRef]
- Archibald, S.; Scholes, R.J.; Roy, D.P.; Roberts, G.; Boschetti, L. Southern African Fire Regimes as Revealed by Remote Sensing. Int. J. Wildland Fire 2010, 19, 861–878. [Google Scholar] [CrossRef] [Green Version]
- Oliveras, I.; Malhi, Y. Many Shades of Green: The Dynamic Tropical Forest–Savannah Transition Zones. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150308. [Google Scholar] [CrossRef] [Green Version]
- Moncrieff, G.R.; Scheiter, S.; Bond, W.J.; Higgins, S.I. Increasing Atmospheric CO2 Overrides the Historical Legacy of Multiple Stable Biome States in Africa. New Phytol. 2014, 201, 908–915. [Google Scholar] [CrossRef]
- Buitenwerf, R.; Bond, W.J.; Stevens, N.; Trollope, W.S.W. Increased Tree Densities in South African Savannas: >50 Years of Data Suggests CO2 as a Driver. Glob. Chang. Biol. 2012, 18, 675–684. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, G.F. Carbon Dioxide and the Uneasy Interactions of Trees and Savannah Grasses. Philos. Trans. Soc. B Biol. Sci. 2012, 367, 601–612. [Google Scholar] [CrossRef] [Green Version]
- Archibald, S.; Scholes, R.J. Leaf Green-up in a Semi-Arid African Savanna-Separating Tree and Grass Responses to Environmental Cues. J. Veg. Sci. 2007, 18, 583–594. [Google Scholar] [CrossRef]
- Archibald, S.; Bond, W.J.; Hoffmann, W.; Lehmann, C.; Staver, C.; Stevens, N. Distribution and determinants of savannas. In Savanna Woody Plants and Large Herbivores; John Wiley & Sons, Ltd.: London, UK, 2019; pp. 1–24. ISBN 9781119081111. [Google Scholar]
- Higgins, S.I.; Bond, W.J.; Trollope, W.S.W. Fire, Resprouting and Variability: A Recipe for Grass–Tree Coexistence in Savanna. J. Ecol. 2000, 88, 213–229. [Google Scholar] [CrossRef]
- Staver, A.C.; Archibald, S.; Levin, S. Tree Cover in Sub-Saharan Africa: Rainfall and Fire Constrain Forest and Savanna as Alternative Stable States. Ecology 2011, 92, 1063–1072. [Google Scholar] [CrossRef]
- Stevens, N.; Lehmann, C.E.R.; Murphy, B.P.; Durigan, G. Savanna Woody Encroachment Is Widespread across Three Continents. Glob. Chang. Biol. 2017, 23, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Osborne, C.P.; Charles-Dominique, T.; Stevens, N.; Bond, W.J.; Midgley, G.; Lehmann, C.E.R. Human Impacts in African Savannas Are Mediated by Plant Functional Traits. New Phytol. 2018, 220, 10–24. [Google Scholar] [CrossRef]
- Laris, P.S. Spatiotemporal Problems with Detecting and Mapping Mosaic Fire Regimes with Coarse-Resolution Satellite Data in Savanna Environments. Remote Sens. Environ. 2005, 99, 412–424. [Google Scholar] [CrossRef]
- Gaughan, A.E.; Holdo, R.M.; Anderson, T.M. Using Short-Term MODIS Time-Series to Quantify Tree Cover in a Highly Heterogeneous African Savanna. Int. J. Remote Sens. 2013, 34, 6865–6882. [Google Scholar] [CrossRef]
- Daldegan, G.A.; Roberts, D.A.; de Figueiredo Ribeiro, F. Spectral Mixture Analysis in Google Earth Engine to Model and Delineate Fire Scars over a Large Extent and a Long Time-Series in a Rainforest-Savanna Transition Zone. Remote Sens. Environ. 2019, 232, 111340. [Google Scholar] [CrossRef]
- Munyati, C.; Sinthumule, N.I. Assessing Change in Woody Vegetation Cover in the Kruger National Park, South Africa, Using Spectral Mixture Analysis of a Landsat TM Image Time Series. Int. J. Environ. Stud. 2013, 70, 94–110. [Google Scholar] [CrossRef]
- Salih, A.A.M.; Ganawa, E.-T.; Elmahl, A.A. Spectral Mixture Analysis (SMA) and Change Vector Analysis (CVA) Methods for Monitoring and Mapping Land Degradation/Desertification in Arid and Semiarid Areas (Sudan), Using Landsat Imagery. Egypt. J. Remote Sens. Space Sci. 2017, 20, S21–S29. [Google Scholar] [CrossRef]
- Mayes, M.T.; Mustard, J.F.; Melillo, J.M. Forest Cover Change in Miombo Woodlands: Modeling Land Cover of African Dry Tropical Forests with Linear Spectral Mixture Analysis. Remote Sens. Environ. 2015, 165, 203–215. [Google Scholar] [CrossRef]
- Gill, T.K.; Phinn, S.R. Improvements to ASTER-Derived Fractional Estimates of Bare Ground in a Savanna Rangeland. IEEE Trans. Geosci. Remote Sens. 2009, 47, 662–670. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Johansen, K.; Armston, J.; Phinn, S. Integration of LiDAR and QuickBird Imagery for Mapping Riparian Biophysical Parameters and Land Cover Types in Australian Tropical Savannas. For. Ecol. Manag. 2010, 259, 598–606. [Google Scholar] [CrossRef]
- Johansen, K.; Arroyo, L.A.; Armston, J.; Phinn, S.; Witte, C. Mapping Riparian Condition Indicators in a Sub-Tropical Savanna Environment from Discrete Return LiDAR Data Using Object-Based Image Analysis. Ecol. Indic. 2010, 10, 796–807. [Google Scholar] [CrossRef]
- Okhimamhe, A.A. ERS SAR Interferometry for Land Cover Mapping in a Savanna Area in Africa. Int. J. Remote Sens. 2003, 24, 3583–3594. [Google Scholar] [CrossRef]
- Rian, S.; Xue, Y.; MacDonald, G.M.; Touré, M.B.; Yu, Y.; de Sales, F.; Levine, P.A.; Doumbia, S.; Taylor, C.E. Analysis of Climate and Vegetation Characteristics along the Savanna-Desert Ecotone in Mali Using MODIS Data. GISci. Remote Sens. 2009, 46, 424–450. [Google Scholar] [CrossRef] [Green Version]
- Marston, C.G.; Aplin, P.; Wilkinson, D.M.; Field, R.; O’Regan, H.J. Scrubbing Up: Multi-Scale Investigation of Woody Encroachment in a Southern African Savannah. Remote Sens. 2017, 9, 419. [Google Scholar] [CrossRef] [Green Version]
- Kaszta, Ż.; van de Kerchove, R.; Ramoelo, A.; Cho, M.A.; Madonsela, S.; Mathieu, R.; Wolff, E. Seasonal Separation of African Savanna Components Using Worldview-2 Imagery: A Comparison of Pixel- and Object-Based Approaches and Selected Classification Algorithms. Remote Sens. 2016, 8, 763. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M. Relating the Land-Cover Composition of Mixed Pixels to Artificial Neural Classification Output. Photogramm. Eng. Remote Sens. 1996, 62, 491–499. [Google Scholar]
- Whiteside, T.G.; Boggs, G.S.; Maier, S.W. Comparing Object-Based and Pixel-Based Classifications for Mapping Savannas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 884–893. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. The Use of Small Training Sets Containing Mixed Pixels for Accurate Hard Image Classification: Training on Mixed Spectral Responses for Classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- Yu, W.; Li, J.; Liu, Q.; Zeng, Y.; Zhao, J.; Xu, B.; Yin, G. Global Land Cover Heterogeneity Characteristics at Moderate Resolution for Mixed Pixel Modeling and Inversion. Remote Sens. 2018, 10, 856. [Google Scholar] [CrossRef] [Green Version]
- Asner, G.P.; Wessman, C.A.; Privette, J.L. Unmixing the Directional Reflectances of AVHRR Sub-Pixel Landcovers. IEEE Trans. Geosci. Remote Sens. 1997, 35, 868–878. [Google Scholar] [CrossRef]
- Liu, Y.; Hill, M.J.; Zhang, X.; Wang, Z.; Richardson, A.D.; Hufkens, K.; Filippa, G.; Baldocchi, D.D.; Ma, S.; Verfaillie, J.; et al. Using Data from Landsat, MODIS, VIIRS and PhenoCams to Monitor the Phenology of California Oak/Grass Savanna and Open Grassland across Spatial Scales. Agric. For. Meteorol. 2017, 237–238, 311–325. [Google Scholar] [CrossRef]
- Hüttich, C.; Herold, M.; Strohbach, B.J.; Dech, S. Integrating In-Situ, Landsat, and MODIS Data for Mapping in Southern African Savannas: Experiences of LCCS-Based Land-Cover Mapping in the Kalahari in Namibia. Environ. Monit. Assess. 2011, 176, 531–547. [Google Scholar] [CrossRef]
- Schwieder, M.; Leitão, P.J.; da Cunha Bustamante, M.M.; Ferreira, L.G.; Rabe, A.; Hostert, P. Mapping Brazilian Savanna Vegetation Gradients with Landsat Time Series. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 361–370. [Google Scholar] [CrossRef]
- Yang, X.; Crews, K.A. Fractional Woody Cover Mapping of Texas Savanna at Landsat Scale. Land 2019, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Chu, D. Fractional Vegetation Cover. In Remote Sensing of Land Use and Land Cover in Mountain Region, 2nd ed.; Liang, S., Wang, J., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 477–510. ISBN 978-0-12-815826-5. [Google Scholar]
- Liu, F.-J.; Huang, C.; Pang, Y.; Li, M.; Song, D.-X.; Song, X.-P.; Channan, S.; Sexton, J.O.; Jiang, D.; Zhang, P.; et al. Assessment of the Three Factors Affecting Myanmar’s Forest Cover Change Using Landsat and MODIS Vegetation Continuous Fields Data. Int. J. Digit. Earth 2016, 9, 562–585. [Google Scholar] [CrossRef]
- Gessner, U.; Machwitz, M.; Conrad, C.; Dech, S. Estimating the Fractional Cover of Growth Forms and Bare Surface in Savannas. A Multi-Resolution Approach Based on Regression Tree Ensembles. Remote Sens. Environ. 2013, 129, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.E.; Ferreira, L.G.; Sano, E.E.; Shimabukuro, Y.E. Spectral Linear Mixture Modelling Approaches for Land Cover Mapping of Tropical Savanna Areas in Brazil. Int. J. Remote Sens. 2007, 28, 413–429. [Google Scholar] [CrossRef]
- DeFries, R.S.; Townshend, J.R.G.; Hansen, M.C. Continuous Fields of Vegetation Characteristics at the Global Scale at 1-Km Resolution. J. Geophys. Res. Atmos. 1999, 104, 16911–16923. [Google Scholar] [CrossRef]
- Jeganathan, C.; Dadhwal, V.K.; Gupta, K.; Raju, P.L.N. Comparison of MODIS Vegetation Continuous Field—Based Forest Density Maps with IRS-LISS III Derived Maps. J. Indian Soc. Remote Sens. 2009, 37, 539–549. [Google Scholar] [CrossRef]
- Sarif, M.O.; Jeganathan, C.; Mondal, S. MODIS-VCF Based Forest Change Analysis in the State of Jharkhand. Proc. Natl. Acad. Sci. India Sec. A Phys. Sci. 2017, 87, 751–767. [Google Scholar] [CrossRef]
- Cartus, O.; Santoro, M.; Schmullius, C.; Li, Z. Large Area Forest Stem Volume Mapping in the Boreal Zone Using Synergy of ERS-1/2 Tandem Coherence and MODIS Vegetation Continuous Fields. Remote Sens. Environ. 2011, 115, 931–943. [Google Scholar] [CrossRef]
- Gao, Y.; Ghilardi, A.; Mas, J.-F.; Quevedo, A.; Paneque-Gálvez, J.; Skutsch, M. Assessing Forest Cover Change in Mexico from Annual MODIS VCF Data (2000–2010). Int. J. Remote Sens. 2018, 39, 7901–7918. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm. Earth Interact. 2009, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Sexton, J.O.; Song, X.-P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.-H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al. Global, 30-m Resolution Continuous Fields of Tree Cover: Landsat-Based Rescaling of MODIS Vegetation Continuous Fields with Lidar-Based Estimates of Error. Int. J. Digit. Earth 2013, 6, 427–448. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Townshend, J.R.G.; DeFries, R.S.; Carroll, M. Estimation of Tree Cover Using MODIS Data at Global, Continental and Regional/Local Scales. Int. J. Remote Sens. 2005, 26, 4359–4380. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Marufu, L.; Sohlberg, R. Development of a MODIS Tree Cover Validation Data Set for Western Province, Zambia. Remote Sens. Environ. 2002, 83, 320–335. [Google Scholar] [CrossRef]
- Hansen, M.C.; Roy, D.P.; Lindquist, E.; Adusei, B.; Justice, C.O.; Altstatt, A. A Method for Integrating MODIS and Landsat Data for Systematic Monitoring of Forest Cover and Change in the Congo Basin. Remote Sens. Environ. 2008, 112, 2495–2513. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Cutler, M.E.J.; Lewis, H. Mapping Sub-Pixel Proportional Land Cover with AVHRR Imagery. Int. J. Remote Sens. 1997, 18, 917–935. [Google Scholar] [CrossRef]
- Cherchali, S.; Amram, O.; Flouzat, G. Retrieval of Temporal Profiles of Reflectances from Simulated and Real NOAA-AVHRR Data over Heterogeneous Landscapes. Int. J. Remote Sens. 2000, 21, 753–775. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R.; Dimiceli, C.; Carroll, M. Towards an Operational MODIS Continuous Field of Percent Tree Cover Algorithm: Examples Using AVHRR and MODIS Data. Remote Sens. Environ. 2002, 83, 303–319. [Google Scholar] [CrossRef]
- Defries, R.S.; Hansen, M.C.; Townshend, J.R.G. Global Continuous Fields of Vegetation Characteristics: A Linear Mixture Model Applied to Multi-Year 8 Km AVHRR Data. Int. J. Remote Sens. 2000, 21, 1389–1414. [Google Scholar] [CrossRef]
- Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous Fields of Land Cover for the Conterminous United States Using Landsat Data: First Results from the Web-Enabled Landsat Data (WELD) Project. Remote Sens. Lett. 2011, 2, 279–288. [Google Scholar] [CrossRef]
- Potapov, P.; Tyukavina, A.; Turubanova, S.; Talero, Y.; Hernandez-Serna, A.; Hansen, M.C.; Saah, D.; Tenneson, K.; Poortinga, A.; Aekakkararungroj, A.; et al. Annual Continuous Fields of Woody Vegetation Structure in the Lower Mekong Region from 2000–2017 Landsat Time-Series. Remote Sens. Environ. 2019, 232, 111278. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850. [Google Scholar] [CrossRef] [Green Version]
- DiMiceli, C.; Townshend, J.R.; Sohlberg, R.A.; Kim, D.H.; Kelly, M. Vegetation Continuous Fields–Transitioning from MODIS to VIIRS. In Proceedings of the AGU Fall Meeting Abstracts; Volkamer Research Group: Boulder, CA, USA, December 2015; Volume 2015, p. A21C-0141. [Google Scholar]
- Amarnath, G.; Babar, S.; Murthy, M.S.R. Evaluating MODIS-Vegetation Continuous Field Products to Assess Tree Cover Change and Forest Fragmentation in India—A Multi-Scale Satellite Remote Sensing Approach. Egypt. J. Remote Sens. Space Sci. 2017, 20, 157–168. [Google Scholar] [CrossRef]
- Gao, Y.; Ghilardi, A.; Paneque-Galvez, J.; Skutsch, M.; Mas, J.F. Validation of MODIS Vegetation Continuous Fields for Monitoring Deforestation and Forest Degradation: Two Cases in Mexico. Geocarto Int. 2016, 31, 1019–1031. [Google Scholar] [CrossRef]
- Zhan, X.; DeFries, R.S.; Los, S.O.; Yang, Z.-L. Application of Vegetation Continuous Fields Data in Atmosphere-Biosphere Interaction Models. In Proceedings of the IGARSS IEEE 2000 International Geoscience and Remote Sensing Symposium; Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment; Proceedings (Cat. No.00CH37120); IEEE: Piscataway, NJ, USA, 2000; Volume 5, pp. 1948–1950. [Google Scholar]
- Feilhauer, H.; Schmidtlein, S. Mapping Continuous Fields of Forest Alpha and Beta Diversity. Appl. Veg. Sci. 2009, 12, 429–439. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Development of 500 Meter Vegetation Continuous Field Maps Using MODIS Data. In Proceedings of the IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium; Proceedings (IEEE Cat. No.03CH37477); IEEE: Piscataway, NJ, USA, 2003; Volume 1, pp. 264–266. [Google Scholar]
- Carroll, M.; Townshend, J.; Hansen, M.; DiMiceli, C.; Sohlberg, R.; Wurster, K. MODIS Vegetative Cover Conversion and Vegetation Continuous Fields. In Land Remote Sens.and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS; Ramachandran, B., Justice, C.O., Abrams, M.J., Eds.; Springer: New York, NY, USA, 2011; pp. 725–745. ISBN 978-1-4419-6749-7. [Google Scholar]
- Staver, A.C.; Hansen, M.C. Analysis of Stable States in Global Savannas: Is the CART Pulling the Horse?—A Comment. Glob. Ecol. Biogeogr. 2015, 24, 985–987. [Google Scholar] [CrossRef]
- Hanan, N.P.; Tredennick, A.T.; Prihodko, L.; Bucini, G.; Dohn, J. Analysis of Stable States in Global Savannas—A Response to Staver and Hansen. Glob. Ecol. Biogeogr. 2015, 24, 988–989. [Google Scholar] [CrossRef]
- Hanan, N.P.; Tredennick, A.T.; Prihodko, L.; Bucini, G.; Dohn, J. Analysis of Stable States in Global Savannas: Is the CART Pulling the Horse? Glob. Ecol. Biogeogr. 2014, 23, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, N.R.; Asner, G.P.; Smit, I.P.; Riddel, E.S. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds. PLoS ONE 2015, 10, 0145192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Brandt, M.; Wang, Q.; Prishchepov, A.V.; Tucker, C.J.; Li, Y.; Lyu, H.; Fensholt, R. From Woody Cover to Woody Canopies: How Sentinel-1 and Sentinel-2 Data Advance the Mapping of Woody Plants in Savannas. Remote Sens. Environ. 2019, 234, 111465. [Google Scholar] [CrossRef]
- Yang, X. Woody Plant Cover Estimation in Texas Savanna from MODIS Products. Earth Interact. 2019, 23, 1–14. [Google Scholar] [CrossRef]
- Naidoo, L.; Mathieu, R.; Main, R.; Wessels, K.; Asner, G.P. L-Band Synthetic Aperture Radar Imagery Performs Better than Optical Datasets at Retrieving Woody Fractional Cover in Deciduous, Dry Savannahs. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 54–64. [Google Scholar] [CrossRef]
- Wessels, K.; Mathieu, R.; Knox, N.; Main, R.; Naidoo, L.; Steenkamp, K. Mapping and Monitoring Fractional Woody Vegetation Cover in the Arid Savannas of Namibia Using LiDAR Training Data, Machine Learning, and ALOS PALSAR Data. Remote Sens. 2019, 11, 2633. [Google Scholar] [CrossRef] [Green Version]
- Urbazaev, M.; Thiel, C.; Mathieu, R.; Naidoo, L.; Levick, S.R.; Smit, I.P.J.; Asner, G.P.; Schmullius, C. Assessment of the Mapping of Fractional Woody Cover in Southern African Savannas Using Multi-Temporal and Polarimetric ALOS PALSAR L-Band Images. Remote Sens. Environ. 2015, 166, 138–153. [Google Scholar] [CrossRef] [Green Version]
- Anchang, J.Y.; Prihodko, L.; Kaptué, A.T.; Ross, C.W.; Ji, W.; Kumar, S.S.; Lind, B.; Sarr, M.A.; Diouf, A.A.; Hanan, N.P. Trends in Woody and Herbaceous Vegetation in the Savannas of West Africa. Remote Sens. 2019, 11, 576. [Google Scholar] [CrossRef] [Green Version]
- Sow, M.; Mbow, C.; Hély, C.; Fensholt, R.; Sambou, B. Estimation of Herbaceous Fuel Moisture Content Using Vegetation Indices and Land Surface Temperature from MODIS Data. Remote Sens. 2013, 5, 2617–2638. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote Sensing Algorithms for Estimation of Fractional Vegetation Cover Using Pure Vegetation Index Values: A Review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Q.; Meng, J.; Wu, B. Review of crop residue fractional cover monitoring with remote sensing. Spectrosc. Spectr. Anal. 2011, 31, 3200–3205. [Google Scholar]
- Somers, B.; Asner, G.P.; Tits, L.; Coppin, P. Endmember Variability in Spectral Mixture Analysis: A Review. Remote Sens. Environ. 2011, 115, 1603–1616. [Google Scholar] [CrossRef]
- Myers, N. Biodiversity Hotspots Revisited. BioScience 2003, 53, 916–917. [Google Scholar] [CrossRef] [Green Version]
- Leal, I.R.; Da Silva, J.M.C.; Tabarelli, M.; Lacher, T.E., Jr. Changing the Course of Biodiversity Conservation in the Caatinga of Northeastern Brazil. Conserv. Biol. 2005, 19, 701–706. [Google Scholar] [CrossRef]
- Espírito-Santo, M.M.; Sevilha, A.C.; Anaya, F.C.; Barbosa, R.; Fernandes, G.W.; Sanchez-Azofeifa, G.A.; Scariot, A.; de Noronha, S.E.; Sampaio, C.A. Sustainability of Tropical Dry Forests: Two Case Studies in Southeastern and Central Brazil. For. Ecol. Manag. 2009, 258, 922–930. [Google Scholar] [CrossRef]
- Hansen, M.; Dubayah, R.; Defries, R. Classification Trees: An Alternative to Traditional Land Cover Classifiers. Int. J. Remote Sens. 1996, 17, 1075–1081. [Google Scholar] [CrossRef]
- DeFries, R.; Hansen, M.; Steininger, M.; Dubayah, R.; Sohlberg, R.; Townshend, J. Subpixel Forest Cover in Central Africa from Multisensor, Multitemporal Data. Remote Sens. Environ. 1997, 60, 228–246. [Google Scholar] [CrossRef]
- Colditz, R.R.; Schmidt, M.; Conrad, C.; Hansen, M.C.; Dech, S. Land Cover Classification with Coarse Spatial Resolution Data to Derive Continuous and Discrete Maps for Complex Regions. Remote Sens. Environ. 2011, 115, 3264–3275. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep Learning for Land Use and Land Cover Classification Based on Hyperspectral and Multispectral Earth Observation Data: A Review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Koehler, J.; Kuenzer, C. Forecasting Spatio-Temporal Dynamics on the Land Surface Using Earth Observation Data—A Review. Remote Sens. 2020, 12, 3513. [Google Scholar] [CrossRef]
- Kobayashi, T.; Tsend-Ayush, J.; Tateishi, R. A New Global Tree-Cover Percentage Map Using MODIS Data. Int. J. Remote Sens. 2016, 37, 969–992. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Liu, S.; Li, Y.; Xiao, Z.; Yao, Y.; Jiang, B.; Zhao, X.; Wang, X.; Xu, S.; et al. Global Land Surface Fractional Vegetation Cover Estimation Using General Regression Neural Networks from MODIS Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4787–4796. [Google Scholar] [CrossRef]
- Brandt, M.; Hiernaux, P.; Rasmussen, K.; Mbow, C.; Kergoat, L.; Tagesson, T.; Ibrahim, Y.Z.; Wélé, A.; Tucker, C.J.; Fensholt, R. Assessing Woody Vegetation Trends in Sahelian Drylands Using MODIS Based Seasonal Metrics. Remote Sens. Environ. 2016, 183, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Jamali, S.; Seaquist, J.; Eklundh, L.; Ardö, J. Automated Mapping of Vegetation Trends with Polynomials Using NDVI Imagery over the Sahel. Remote Sens. Environ. 2014, 141, 79–89. [Google Scholar] [CrossRef]
- Bobée, C.; Ottlé, C.; Maignan, F.; de Noblet-Ducoudré, N.; Maugis, P.; Lézine, A.-M.; Ndiaye, M. Analysis of Vegetation Seasonality in Sahelian Environments Using MODIS LAI, in Association with Land Cover and Rainfall. J. Arid Environ. 2012, 84, 38–50. [Google Scholar] [CrossRef]
- Souverijns, N.; Buchhorn, M.; Horion, S.; Fensholt, R.; Verbeeck, H.; Verbesselt, J.; Herold, M.; Tsendbazar, N.-E.; Bernardino, P.N.; Somers, B.; et al. Thirty Years of Land Cover and Fraction Cover Changes over the Sudano-Sahel Using Landsat Time Series. Remote Sens. 2020, 12, 3817. [Google Scholar] [CrossRef]
- Guan, K.; Wood, E.F.; Caylor, K.K. Multi-Sensor Derivation of Regional Vegetation Fractional Cover in Africa. Remote Sens. Environ. 2012, 124, 653–665. [Google Scholar] [CrossRef]
- Theseira, M.A.; Thomas, G.; Sannier, C.A.D. An Evaluation of Spectral Mixture Modelling Applied to a Semi-Arid Environment. Int. J. Remote Sens. 2002, 23, 687–700. [Google Scholar] [CrossRef]
- Xian, G.; Homer, C.; Meyer, D.; Granneman, B. An Approach for Characterizing the Distribution of Shrubland Ecosystem Components as Continuous Fields as Part of NLCD. ISPRS J. Photogramm. Remote Sens. 2013, 86, 136–149. [Google Scholar] [CrossRef]
- Baumann, M.; Levers, C.; Macchi, L.; Bluhm, H.; Waske, B.; Gasparri, N.I.; Kuemmerle, T. Mapping Continuous Fields of Tree and Shrub Cover across the Gran Chaco Using Landsat 8 and Sentinel-1 Data. Remote Sens. Environ. 2018, 216, 201–211. [Google Scholar] [CrossRef]
- Spiekermann, R.; Brandt, M.; Samimi, C. Woody Vegetation and Land Cover Changes in the Sahel of Mali (1967–2011). Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 113–121. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E.; Meyer, H.; van der Linden, S. Mapping Fractional Woody Cover in Semi-Arid Savannahs Using Multi-Seasonal Composites from Landsat Data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Gessner, U.; Machwitz, M.; Esch, T.; Tillack, A.; Naeimi, V.; Kuenzer, C.; Dech, S. Multi-Sensor Mapping of West African Land Cover Using MODIS, ASAR and TanDEM-X/TerraSAR-X Data. Remote Sens. Environ. 2015, 164, 282–297. [Google Scholar] [CrossRef]
- Lopes, M.; Frison, P.-L.; Durant, S.M.; Schulte to Bühne, H.; Ipavec, A.; Lapeyre, V.; Pettorelli, N. Combining Optical and Radar Satellite Image Time Series to Map Natural Vegetation: Savannas as an Example. Remote Sens. Ecol. Conserv. 2020, 6, 316–326. [Google Scholar] [CrossRef]
- Sano, E.E.; Ferreira, L.G.; Huete, A.R. Synthetic Aperture Radar (L Band) and Optical Vegetation Indices for Discriminating the Brazilian Savanna Physiognomies: A Comparative Analysis. Earth Interact. 2005, 9, 1–15. [Google Scholar] [CrossRef]
- Boggs, G.S. Assessment of SPOT 5 and QuickBird Remotely Sensed Imagery for Mapping Tree Cover in Savannas. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 217–224. [Google Scholar] [CrossRef]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; del Bon Espírito-Santo, F.; Hansen, M.; Carroll, M. Rapid Assessment of Annual Deforestation in the Brazilian Amazon Using MODIS Data. Earth Interact. 2009, 9, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Shimabukuro, Y.E.; Arai, E.; Duarte, V.; Dutra, A.C.; Cassol, H.L.G.; Sano, E.E.; Hoffmann, T.B. Discriminating Land Use and Land Cover Classes in Brazil Based on the Annual PROBA-V 100 m Time Series. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3409–3420. [Google Scholar] [CrossRef]
- de Souza Mendes, F.; Baron, D.; Gerold, G.; Liesenberg, V.; Erasmi, S. Optical and SAR Remote Sensing Synergism for Mapping Vegetation Types in the Endangered Cerrado/Amazon Ecotone of Nova Mutum—Mato Grosso. Remote Sens. 2019, 11, 1161. [Google Scholar] [CrossRef] [Green Version]
- Brandt, M.; Verger, A.; Diouf, A.A.; Baret, F.; Samimi, C. Local Vegetation Trends in the Sahel of Mali and Senegal Using Long Time Series FAPAR Satellite Products and Field Measurement (1982–2010). Remote Sens. 2014, 6, 2408–2434. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Knauer, K.; Gessner, U.; Dech, S.; Kuenzer, C. Remote Sensing of Vegetation Dynamics in West Africa. Int. J. Remote Sens. 2014, 35, 6357–6396. [Google Scholar] [CrossRef]
- Kulkarni, S.C.; Rege, P.P. Pixel Level Fusion Techniques for SAR and Optical Images: A Review. Inf. Fusion 2020, 59, 13–29. [Google Scholar] [CrossRef]
- Borges, J.; Higginbottom, T.P.; Symeonakis, E.; Jones, M. Sentinel-1 and Sentinel-2 Data for Savannah Land Cover Mapping: Optimising the Combination of Sensors and Seasons. Remote Sens. 2020, 12, 3862. [Google Scholar] [CrossRef]
- Hubert-Moy, L.; Cotonnec, A.; le Du, L.; Chardin, A.; Perez, P. A Comparison of Parametric Classification Procedures of Remotely Sensed Data Applied on Different Landscape Units. Remote Sens. Environ. 2001, 75, 174–187. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, Y.; Chen, C.L.P. Region-Kernel-Based Support Vector Machines for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4810–4824. [Google Scholar] [CrossRef]
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global Land Cover Classification at 1 Km Spatial Resolution Using a Classification Tree Approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Hiernaux, P.; Herrmann, S.M.; Tian, F.; Prishchepov, A.V.; Fensholt, R. Revisiting the Coupling between NDVI Trends and Cropland Changes in the Sahel Drylands: A Case Study in Western Niger. Remote Sens. Environ. 2017, 191, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Scanlon, T.M.; Albertson, J.D.; Caylor, K.K.; Williams, C.A. Determining Land Surface Fractional Cover from NDVI and Rainfall Time Series for a Savanna Ecosystem. Remote Sens. Environ. 2002, 82, 376–388. [Google Scholar] [CrossRef]
- Mbatha, N.; Xulu, S. Time Series Analysis of MODIS-Derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of Recent Intense Drought. Climate 2018, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Cho, M.A.; Ramoelo, A. Optimal Dates for Assessing Long-Term Changes in Tree-Cover in the Semi-Arid Biomes of South Africa Using MODIS NDVI Time Series (2001–2018). Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 27–36. [Google Scholar] [CrossRef]
- Levick, S.R.; Rogers, K.H. Context-Dependent Vegetation Dynamics in an African Savanna. Landsc. Ecol. 2011, 26, 515–528. [Google Scholar] [CrossRef]
- Blentlinger, L.; Herrero, H.V. A Tale of Grass and Trees: Characterizing Vegetation Change in Payne’s Creek National Park, Belize from 1975 to 2019. Appl. Sci. 2020, 10, 4356. [Google Scholar] [CrossRef]
- Abade, N.A.; de Carvalho Júnior, O.A.; Fontes Guimaräes, R.; Nunes De Oliveira, S. Comparative Analysis of MODIS Time-Series Classification Using Support Vector Machines and Methods Based upon Distance and Similarity Measures in the Brazilian Cerrado-Caatinga Boundary. Remote Sens. 2015, 7, 12160–12191. [Google Scholar] [CrossRef] [Green Version]
- Bueno, I.T.; Acerbi Júnior, F.W.; Silveira, E.M.O.; Mello, J.M.; Carvalho, L.M.T.; Gomide, L.R.; Withey, K.; Scolforo, J.R.S. Object-Based Change Detection in the Cerrado Biome Using Landsat Time Series. Remote Sens. 2019, 11, 570. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.J.; Zhou, Q.; Sun, Q.; Schaaf, C.B.; Palace, M. Relationships between Vegetation Indices, Fractional Cover Retrievals and the Structure and Composition of Brazilian Cerrado Natural Vegetation. Int. J. Remote Sens. 2017, 38, 874–905. [Google Scholar] [CrossRef]
- Amaral, C.H.; Roberts, D.A.; Almeida, T.I.R.; Souza Filho, C.R. Mapping Invasive Species and Spectral Mixture Relationships with Neotropical Woody Formations in Southeastern Brazil. ISPRS J. Photogramm. Remote Sens. 2015, 108, 80–93. [Google Scholar] [CrossRef]
- de Carvalho, O.A.; Bloise, C.P.L.; de Carvalho, A.P.F.; Guimaraes, R.F.; de Souza Martins, E. Spectral Mixture Analysis of ASTER Image in Brazilian Savanna. In Proceedings of the IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium; Proceedings (IEEE Cat. No.03CH37477); IEEE: Piscataway, NJ, USA, 2003; Volume 5, pp. 3234–3236. [Google Scholar]
- Sano, E.E.; Ferreira, L.G.; Asner, G.P.; Steinke, E.T. Spatial and Temporal Probabilities of Obtaining Cloud-free Landsat Images over the Brazilian Tropical Savanna. Int. J. Remote Sens. 2007, 28, 2739–2752. [Google Scholar] [CrossRef]
- Müller, H.; Rufin, P.; Griffiths, P.; Barros Siqueira, A.J.; Hostert, P. Mining Dense Landsat Time Series for Separating Cropland and Pasture in a Heterogeneous Brazilian Savanna Landscape. Remote Sens. Environ. 2015, 156, 490–499. [Google Scholar] [CrossRef] [Green Version]
- Bendini, H.N.; Fonseca, L.M.G.; Schwieder, M.; Rufin, P.; Korting, T.S.; Koumrouyan, A.; Hostert, P. Combining Environmental and Landsat Analysis Ready Data for Vegetation Mapping: A Case Study in the Brazilian Savanna Biome. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2020, 953–960. [Google Scholar] [CrossRef]
- Pereira, A.A.; Pereira, J.M.C.; Libonati, R.; Oom, D.; Setzer, A.W.; Morelli, F.; Machado-Silva, F.; de Carvalho, L.M.T. Burned Area Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires. Remote Sens. 2017, 9, 1161. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.B.; Sabol, D.E.; Kapos, V.; Almeida Filho, R.; Roberts, D.A.; Smith, M.O.; Gillespie, A.R. Classification of Multispectral Images Based on Fractions of Endmembers: Application to Land-Cover Change in the Brazilian Amazon. Remote Sens. Environ. 1995, 52, 137–154. [Google Scholar] [CrossRef]
- Alencar, A.; Shimbo, Z.J.; Lenti, F.; Balzani Marques, C.; Zimbres, B.; Rosa, M.; Arruda, V.; Castro, I.; Fernandes Márcico Ribeiro, J.P.; Varela, V.; et al. Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform. Remote Sens. 2020, 12, 924. [Google Scholar] [CrossRef] [Green Version]
- Borini Alves, D.; Montorio Llovería, R.; Pérez-Cabello, F.; Vlassova, L. Fusing Landsat and MODIS Data to Retrieve Multispectral Information from Fire-Affected Areas over Tropical Savannah Environments in the Brazilian Amazon. Int. J. Remote Sens. 2018, 39, 7919–7941. [Google Scholar] [CrossRef]
- Parente, L.; Ferreira, L. Assessing the Spatial and Occupation Dynamics of the Brazilian Pasturelands Based on the Automated Classification of MODIS Images from 2000 to 2016. Remote Sens. 2018, 10, 606. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, L.G.; Fernandez, L.E.; Sano, E.E.; Field, C.; Sousa, S.B.; Arantes, A.E.; Araújo, F.M. Biophysical Properties of Cultivated Pastures in the Brazilian Savanna Biome: An Analysis in the Spatial-Temporal Domains Based on Ground and Satellite Data. Remote Sens. 2013, 5, 307–326. [Google Scholar] [CrossRef] [Green Version]
- Traore, S.S.; Landmann, T.; Forkuo, E.K.; Traore, P.S. Assessing Long-Term Trends in Vegetation Productivity Change Over the Bani River Basin in Mali (West Africa). J. Geogr. Earth Sci. 2014, 2, 21–34. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.J.; Zhou, Q.; Sun, Q.; Schaaf, C.B.; Southworth, J.; Mishra, N.B.; Gibbes, C.; Bunting, E.; Christiansen, T.B.; Crews, K.A. Dynamics of the Relationship between NDVI and SWIR32 Vegetation Indices in Southern Africa: Implications for Retrieval of Fractional Cover from MODIS Data. Int. J. Remote Sens. 2016, 37, 1476–1503. [Google Scholar] [CrossRef]
- Bunting, E.L.; Southworth, J.; Herrero, H.; Ryan, S.J.; Waylen, P. Understanding Long-Term Savanna Vegetation Persistence across Three Drainage Basins in Southern Africa. Remote Sens. 2018, 10, 1013. [Google Scholar] [CrossRef] [Green Version]
- Bucini, G.; Saatchi, S.; Hanan, N.; Boone, R.B.; Smit, I. Woody Cover and Heterogeneity in the Savannas of the Kruger National Park, South Africa. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa, 12–17 July 2009; Volume 4, pp. IV-334–IV–337. [Google Scholar]
- de Lemos, H.; Verstraete, M.M.; Scholes, M. Parametric Models to Characterize the Phenology of the Lowveld Savanna at Skukuza, South Africa. Remote Sens. 2020, 12, 3927. [Google Scholar] [CrossRef]
- Jin, C.; Xiao, X.; Merbold, L.; Arneth, A.; Veenendaal, E.; Kutsch, W.L. Phenology and Gross Primary Production of Two Dominant Savanna Woodland Ecosystems in Southern Africa. Remote Sens. Environ. 2013, 135, 189–201. [Google Scholar] [CrossRef]
- Higginbottom, T.P.; Symeonakis, E. Identifying Ecosystem Function Shifts in Africa Using Breakpoint Analysis of Long-Term NDVI and RUE Data. Remote Sens. 2020, 12, 1894. [Google Scholar] [CrossRef]
- Ludwig, M.; Morgenthal, T.; Detsch, F.; Higginbottom, T.P.; Lezama Valdes, M.; Nauß, T.; Meyer, H. Machine Learning and Multi-Sensor Based Modelling of Woody Vegetation in the Molopo Area, South Africa. Remote Sens. Environ. 2019, 222, 195–203. [Google Scholar] [CrossRef]
- Dubovyk, O.; Landmann, T.; Erasmus, B.F.N.; Tewes, A.; Schellberg, J. Monitoring Vegetation Dynamics with Medium Resolution MODIS-EVI Time Series at Sub-Regional Scale in Southern Africa. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 175–183. [Google Scholar] [CrossRef]
- Forkuor, G.; Conrad, C.; Thiel, M.; Zoungrana, B.J.-B.; Tondoh, J.E. Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa. Remote Sens. 2017, 9, 839. [Google Scholar] [CrossRef] [Green Version]
- Campo-Bescós, M.A.; Muñoz-Carpena, R.; Southworth, J.; Zhu, L.; Waylen, P.R.; Bunting, E. Combined Spatial and Temporal Effects of Environmental Controls on Long-Term Monthly NDVI in the Southern Africa Savanna. Remote Sens. 2013, 5, 6513–6538. [Google Scholar] [CrossRef] [Green Version]
- Wessels, K.J.; Prince, S.D.; Zambatis, N.; MacFadyen, S.; Frost, P.E.; van Zyl, D. Relationship between Herbaceous Biomass and 1-km2 Advanced Very High Resolution Radiometer (AVHRR) NDVI in Kruger National Park, South Africa. Int. J. Remote Sens. 2006, 27, 951–973. [Google Scholar] [CrossRef]
- Murungweni, F.M.; Mutanga, O.; Odiyo, J.O. Rainfall Trend and Its Relationship with Normalized Difference Vegetation Index in a Restored Semi-Arid Wetland of South Africa. Sustainability 2020, 12, 8919. [Google Scholar] [CrossRef]
- Vermeulen, L.M.; Munch, Z.; Palmer, A. Fractional Vegetation Cover Estimation in Southern African Rangelands Using Spectral Mixture Analysis and Google Earth Engine. Comput. Electron. Agric. 2021, 182, 105980. [Google Scholar] [CrossRef]
- Cho, M.A.; Mathieu, R.; Asner, G.P.; Naidoo, L.; van Aardt, J.; Ramoelo, A.; Debba, P.; Wessels, K.; Main, R.; Smit, I.P.J.; et al. Mapping Tree Species Composition in South African Savannas Using an Integrated Airborne Spectral and LiDAR System. Remote Sens. Environ. 2012, 125, 214–226. [Google Scholar] [CrossRef]
- Shekede, M.D.; Mupandira, I.; Gwitira, I. Spatio-Temporal Clustering of Active Wildfire Pixels over a 19-Year Period in a Southern African Savanna Ecosystem of Zimbabwe. South Afr. Geogr. J. 2020, 1–20. [Google Scholar] [CrossRef]
- Cho, M.A.; Ramoelo, A.; Dziba, L. Response of Land Surface Phenology to Variation in Tree Cover during Green-Up and Senescence Periods in the Semi-Arid Savanna of Southern Africa. Remote Sens. 2017, 9, 689. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, S.; Balzter, H.; Tansey, K.; Tsutsumida, N.; Mathieu, R. Estimating Fractional Cover of Plant Functional Types in African Savannah from Harmonic Analysis of MODIS Time-Series Data. Int. J. Remote Sens. 2018, 39, 2718–2745. [Google Scholar] [CrossRef]
- Awuah, K.T.; Aplin, P.; Marston, C.G.; Powell, I.; Smit, I.P.J. Probabilistic Mapping and Spatial Pattern Analysis of Grazing Lawns in Southern African Savannahs Using WorldView-3 Imagery and Machine Learning Techniques. Remote Sens. 2020, 12, 3357. [Google Scholar] [CrossRef]
- Mathieu, R.; Naidoo, L.; Cho, M.A.; Leblon, B.; Main, R.; Wessels, K.; Asner, G.P.; Buckley, J.; van Aardt, J.; Erasmus, B.F.N.; et al. Toward Structural Assessment of Semi-Arid African Savannahs and Woodlands: The Potential of Multitemporal Polarimetric RADARSAT-2 Fine Beam Images. Remote Sens. Environ. 2013, 138, 215–231. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef] [Green Version]
- Camargo, F.F.; Sano, E.E.; Almeida, C.M.; Mura, J.C.; Almeida, T. A Comparative Assessment of Machine-Learning Techniques for Land Use and Land Cover Classification of the Brazilian Tropical Savanna Using ALOS-2/PALSAR-2 Polarimetric Images. Remote Sens. 2019, 11, 1600. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.; Davidson, M. Overview of Copernicus SAR Space Component and Its Evolution. In Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5381–5384. [Google Scholar]
- Schmidt, M.; Udelhoven, T.; Röder, A.; Gill, T.K. Long Term Data Fusion for a Dense Time Series Analysis with MODIS and Landsat Imagery in an Australian Savanna. J. Appl. Remote Sens. 2012, 6, 1–19. [Google Scholar] [CrossRef]
- DiMiceli, C.; Townshend, J.; Carroll, M.; Sohlberg, R. Evolution of the Representation of Global Vegetation by Vegetation Continuous Fields. Remote Sens. Environ. 2021, 254, 112271. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nghiyalwa, H.S.; Urban, M.; Baade, J.; Smit, I.P.J.; Ramoelo, A.; Mogonong, B.; Schmullius, C. Spatio-Temporal Mixed Pixel Analysis of Savanna Ecosystems: A Review. Remote Sens. 2021, 13, 3870. https://doi.org/10.3390/rs13193870
Nghiyalwa HS, Urban M, Baade J, Smit IPJ, Ramoelo A, Mogonong B, Schmullius C. Spatio-Temporal Mixed Pixel Analysis of Savanna Ecosystems: A Review. Remote Sensing. 2021; 13(19):3870. https://doi.org/10.3390/rs13193870
Chicago/Turabian StyleNghiyalwa, Hilma S., Marcel Urban, Jussi Baade, Izak P. J. Smit, Abel Ramoelo, Buster Mogonong, and Christiane Schmullius. 2021. "Spatio-Temporal Mixed Pixel Analysis of Savanna Ecosystems: A Review" Remote Sensing 13, no. 19: 3870. https://doi.org/10.3390/rs13193870
APA StyleNghiyalwa, H. S., Urban, M., Baade, J., Smit, I. P. J., Ramoelo, A., Mogonong, B., & Schmullius, C. (2021). Spatio-Temporal Mixed Pixel Analysis of Savanna Ecosystems: A Review. Remote Sensing, 13(19), 3870. https://doi.org/10.3390/rs13193870