Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (660)

Search Parameters:
Keywords = land use hotspots

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10144 KiB  
Article
Decoding the Spatial–Temporal Coupling Dynamics of Land Use Intensity and Balance in China’s Chengdu–Chongqing Economic Circle: A 1 km Grid-Based Analysis
by Zijia Yan, Chenxi Zhou, Ziyi Tang, Hanfei Wang and Hao Li
Land 2025, 14(8), 1597; https://doi.org/10.3390/land14081597 - 5 Aug 2025
Abstract
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and [...] Read more.
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and integrating emerging spatiotemporal hotspot analysis, BFAST, and geographic detectors, we systematically analyzed spatiotemporal patterns and drivers of LUI, BDLUS, and their Coupling Coordination Degree (CCD) from 2000 to 2022. Key findings: (1) LUI strongly correlated with economic growth, with core areas reaching high-intensity development (average > 2.96) versus ecologically constrained marginal zones (<2.42), marked by abrupt changes during 2011–2014; (2) BDLUS improvements covered 82.22% of the study area, driven by the Yangtze River Economic Belt strategy (21.96% hotspot concentration), yet structural imbalance persisted in transitional zones (18.81% cold spots); (3) CCD exhibited center-edge dichotomy, contrasting high-value cores (CCD > 0.68) with ecologically sensitive edges (9.80% cold spots), peaking in regulatory shifts around 2010; (4) terrain constraints and intensified human activities (the interaction effect between nighttime lighting and population density increased by 219.49% after 2020) jointly governed coupling mechanisms, with urbanization and industrial transition becoming dominant drivers. This research advances an “intensity–structure–coordination” framework and elucidates “dual-core resonance” dynamics, offering theoretical foundations for spatial optimization and ecological civilization. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

23 pages, 30771 KiB  
Article
Spatiotemporal Characteristics of Ground Subsidence in Xiong’an New Area Revealed by a Combined Observation Framework Based on InSAR and GNSS Techniques
by Shaomin Liu and Mingzhou Bai
Remote Sens. 2025, 17(15), 2654; https://doi.org/10.3390/rs17152654 - 31 Jul 2025
Viewed by 350
Abstract
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns [...] Read more.
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns from 2017/05 to 2025/03. The key results show: (1) Three subsidence hotspots, namely northern Xiongxian (max. cumulative subsidence: 591 mm; 70 mm/yr), Luzhuang, and Liulizhuang, strongly correlate with geothermal wells and F4/F5 fault zones; (2) GNSS baseline analysis (e.g., XA01-XA02) reveals fissure-induced differential deformation (max. horizontal/vertical rates: 40.04 mm/yr and 19.8 mm/yr); and (3) InSAR–GNSS cross-validation confirms the high consistency of the results (Pearson’s correlation coefficient = 0.86). Subsidence in Xiongxian is driven by geothermal/industrial groundwater use, without any seasonal variations, while Anxin exhibits agricultural pumping-linked seasonal fluctuations. The use of rooftop GNSS stations reduces multipath effects and improves urban monitoring accuracy. The spatiotemporal heterogeneity stems from coupled resource exploitation and tectonic activity. We propose prioritizing rooftop GNSS deployments to enhance east–west deformation monitoring. This framework balances regional and local-scale precision, offering a replicable solution for geological risk assessments in emerging cities. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

26 pages, 3356 KiB  
Article
Integrating Urban Factors as Predictors of Last-Mile Demand Patterns: A Spatial Analysis in Thessaloniki
by Dimos Touloumidis, Michael Madas, Panagiotis Kanellopoulos and Georgia Ayfantopoulou
Urban Sci. 2025, 9(8), 293; https://doi.org/10.3390/urbansci9080293 - 29 Jul 2025
Viewed by 227
Abstract
While the explosive growth in e-commerce stresses urban logistics systems, city planners lack of fine-grained data in order to anticipate and manage the resulting freight flows. Using a three-stage analytical approach combining descriptive zonal statistics, hotspot analysis and different regression modeling from univariate [...] Read more.
While the explosive growth in e-commerce stresses urban logistics systems, city planners lack of fine-grained data in order to anticipate and manage the resulting freight flows. Using a three-stage analytical approach combining descriptive zonal statistics, hotspot analysis and different regression modeling from univariate to geographically weighted regression, this study integrates one year of parcel deliveries from a leading courier with open spatial layers of land-use zoning, census population, mobile-signal activity and household income to model last-mile demand across different land use types. A baseline linear regression shows that residential population alone accounts for roughly 30% of the variance in annual parcel volumes (2.5–3.0 deliveries per resident) while adding daytime workforce and income increases the prediction accuracy to 39%. In a similar approach where coefficients vary geographically with Geographically Weighted Regression to capture the local heterogeneity achieves a significant raise of the overall R2 to 0.54 and surpassing 0.70 in residential and institutional districts. Hot-spot analysis reveals a highly fragmented pattern where fewer than 5% of blocks generate more than 8.5% of all deliveries with no apparent correlation to the broaden land-use classes. Commercial and administrative areas exhibit the greatest intensity (1149 deliveries per ha) yet remain the hardest to explain (global R2 = 0.21) underscoring the importance of additional variables such as retail mix, street-network design and tourism flows. Through this approach, the calibrated models can be used to predict city-wide last-mile demand using only public inputs and offers a transferable, privacy-preserving template for evidence-based freight planning. By pinpointing the location and the land uses where demand concentrates, it supports targeted interventions such as micro-depots, locker allocation and dynamic curb-space management towards more sustainable and resilient urban-logistics networks. Full article
Show Figures

Figure 1

21 pages, 2976 KiB  
Article
Assessing Woodland Change in Tanzania’s Eastern Arc Mountains Using Landsat Thematic Mapper Mixed Approaches
by Filemon Eliamini, Richard Mbatu and M. Duane Nellis
Land 2025, 14(8), 1546; https://doi.org/10.3390/land14081546 - 28 Jul 2025
Viewed by 288
Abstract
Tanzania’s Eastern Arc Mountains, a hotspot for biodiversity, are seriously threatened by deforestation and the loss of woodland cover. The loss of woodland cover has been associated with decreased access and availability of woodfuel for nearby communities, which may have detrimental effects on [...] Read more.
Tanzania’s Eastern Arc Mountains, a hotspot for biodiversity, are seriously threatened by deforestation and the loss of woodland cover. The loss of woodland cover has been associated with decreased access and availability of woodfuel for nearby communities, which may have detrimental effects on household energy security and livelihoods. This study, which employs geospatial techniques, looks at woodland change in the Eastern Arc Mountains region between 2001 and 2020 to prioritize areas that need more sustainable land use practices. We employed a “mixed methods” remote sensing approach linked to Landsat thematic mapper data to assess woodland change. The results showed that the Same District experienced a considerable loss of woodland, making up 37.4% of the total area lost between 2001 and 2020. These results suggest that access to woodfuel may become more difficult for the residents of Same District. Full article
Show Figures

Figure 1

22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Viewed by 989
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

20 pages, 6273 KiB  
Review
A Comprehensive Review of Urban Expansion and Its Driving Factors
by Ming Li, Yongwang Cao, Jin Dai, Jianxin Song and Mengyin Liang
Land 2025, 14(8), 1534; https://doi.org/10.3390/land14081534 - 26 Jul 2025
Viewed by 239
Abstract
Urban expansion has a profound impact on both society and the environment. In this study, VOSviewer 1.6.16 and CiteSpace 6.3.R1 were used to conduct a bibliometric analysis of 2987 articles published during the period of 1992–2022 from the Web of Science database in [...] Read more.
Urban expansion has a profound impact on both society and the environment. In this study, VOSviewer 1.6.16 and CiteSpace 6.3.R1 were used to conduct a bibliometric analysis of 2987 articles published during the period of 1992–2022 from the Web of Science database in order to identify the research hotspots and trends of urban expansion and its driving factors. The number of articles significantly increased during the period of 1992–2022. The spatiotemporal characteristics and driving forces of urban expansion, urban growth models and simulations, and the impacts of urban expansion were the main research topics. The rate of urban expansion showed regional differences. Socioeconomic factors, political and institutional factors, natural factors, path effects, and proximity effects were the main driving factors. Urban expansion promoted economic growth, occupied cultivated land, and affected ecological environments. Big data and deep learning techniques were recently applied due to advancements in information techniques. With the increasing awareness of environmental protection, the number of studies on environmental impacts and spatial planning regulations has increased. Some political and institutional factors, such as subsidies, taxation, spatial planning, new development strategies, regulation policies, and economic industries, had controversial or unknown impacts. Further research on these factors and their mechanisms is needed. A limitation of this study is that articles which were not indexed, were not included in bibliometric analysis. Further studies can review these articles and conduct comparative research to capture the diversity. Full article
Show Figures

Figure 1

18 pages, 2839 KiB  
Article
Alien Flora on Weizhou Island, Northern South China Sea: Inventory and Invasion Risk Assessment
by Hong Wei, Xuan Wu and Linyu Bai
Diversity 2025, 17(8), 508; https://doi.org/10.3390/d17080508 - 24 Jul 2025
Viewed by 288
Abstract
Islands subjected to anthropogenic disturbance are highly susceptible to alien plant invasions. However, the alien floral diversity of China’s islands has been insufficiently studied, hindering its control. Weizhou Island (northern South China Sea) has experienced long-term human exploitation. We inventorized its alien, naturalized, [...] Read more.
Islands subjected to anthropogenic disturbance are highly susceptible to alien plant invasions. However, the alien floral diversity of China’s islands has been insufficiently studied, hindering its control. Weizhou Island (northern South China Sea) has experienced long-term human exploitation. We inventorized its alien, naturalized, and invasive vascular plants (based on herbarium specimen data for 2018–2024 and surveys of 112 plots); analyzed species composition, origins, life forms, and habitats; and conducted an invasive species risk assessment. This identified 203 aliens, including infraspecific and hybrid taxa, 129 (63.5%) naturalized and 71 (55.0% of the naturalized species) invasive. The aliens were dominated by the Fabaceae, Asteraceae, and Euphorbiaceae, particularly genera such as Euphorbia, Senna, and Portulaca, originating primarily in North America, Oceania, and Africa. Perennial herbs were the most common lifeform, followed by annual herbs and shrubs. Invasion hotspots were primarily abandoned farmland, roadsides, and agricultural lands. Using the Analytic Hierarchy Process, we classified the 71 invasive species as representing high-risk, moderate-risk, and low-risk (20, 16, and 35 species, respectively). Bidens pilosa, Ageratum conyzoides, Opuntia dillenii, and Leucaena leucocephala pose severe threats to the island ecosystem. This first complete inventory of the alien flora on Weizhou Island offers critical insight into the management of invasive alien plants in island ecosystems. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

21 pages, 1024 KiB  
Article
When the Map Does Not Tell the Whole Story: Integrating Community Voices into GIS Gentrification Analysis
by Ivis García
Land 2025, 14(8), 1510; https://doi.org/10.3390/land14081510 - 22 Jul 2025
Viewed by 494
Abstract
This exploratory case study examines the alignment between GIS-based displacement models and lived experiences of residents in Salt Lake City, addressing the benefits and limitations of spatial tools in capturing urban displacement complexities. By comparing the Urban Displacement Project’s Estimated Displacement Risk (EDR) [...] Read more.
This exploratory case study examines the alignment between GIS-based displacement models and lived experiences of residents in Salt Lake City, addressing the benefits and limitations of spatial tools in capturing urban displacement complexities. By comparing the Urban Displacement Project’s Estimated Displacement Risk (EDR) model with qualitative interviews from diverse neighborhoods, the research highlights discrepancies between predictive outputs and community narratives. The findings reveal that while GIS models effectively identify displacement hotspots, they often underestimate risks in areas with high homeownership or recent development. Conversely, resident interviews provide valuable insights into emerging displacement pressures that GIS may overlook. This study underscores the importance of integrating spatial analysis with community engagement to produce more equitable land-use planning strategies. The study contributes to urban governance and sustainable development by advocating for policies that prioritize the voices of vulnerable populations, fostering more resilient and inclusive cities. Full article
(This article belongs to the Special Issue Smart Land Use Planning II)
Show Figures

Figure 1

20 pages, 3982 KiB  
Article
Enhanced Rapid Mangrove Habitat Mapping Approach to Setting Protected Areas Using Satellite Indices and Deep Learning: A Case Study of the Solomon Islands
by Hyeon Kwon Ahn, Soohyun Kwon, Cholho Song and Chul-Hee Lim
Remote Sens. 2025, 17(14), 2512; https://doi.org/10.3390/rs17142512 - 18 Jul 2025
Viewed by 292
Abstract
Mangroves, as a key component of the blue-carbon ecosystem, have exceptional carbon sequestration capacity and are mainly distributed in tropical coastal regions. In the Solomon Islands, ongoing degradation of mangrove forests, primarily due to land conversion and timber exploitation, highlights an urgent need [...] Read more.
Mangroves, as a key component of the blue-carbon ecosystem, have exceptional carbon sequestration capacity and are mainly distributed in tropical coastal regions. In the Solomon Islands, ongoing degradation of mangrove forests, primarily due to land conversion and timber exploitation, highlights an urgent need for high-resolution spatial data to inform effective conservation strategies. The present study introduces an efficient and accurate methodology for mapping mangrove habitats and prioritizing protection areas utilizing open-source satellite imagery and datasets available through the Google Earth Engine platform in conjunction with a U-Net deep learning algorithm. The model demonstrates high performance, achieving an F1-score of 0.834 and an overall accuracy of 0.96, in identifying mangrove distributions. The total mangrove area in the Solomon Islands is estimated to be approximately 71,348.27 hectares, accounting for about 2.47% of the national territory. Furthermore, based on the mapped mangrove habitats, an optimized hotspot analysis is performed to identify regions characterized by high-density mangrove distribution. By incorporating spatial variables such as distance from roads and urban centers, along with mangrove area, this study proposes priority mangrove protection areas. These results underscore the potential for using openly accessible satellite data to enhance the precision of mangrove conservation strategies in data-limited settings. This approach can effectively support coastal resource management and contribute to broader climate change mitigation strategies. Full article
Show Figures

Figure 1

27 pages, 3973 KiB  
Article
Modeling the Distribution and Richness of Mammalian Species in the Nyerere National Park, Tanzania
by Goodluck Massawe, Enrique Casas, Wilfred Marealle, Richard Lyamuya, Tiwonge I. Mzumara, Willard Mbewe and Manuel Arbelo
Remote Sens. 2025, 17(14), 2504; https://doi.org/10.3390/rs17142504 - 18 Jul 2025
Viewed by 1052
Abstract
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large [...] Read more.
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large and understudied protected area in Southern Tanzania. We applied species distribution models (SDMs) using presence data collected through ground surveys between 2022 and 2024, combined with environmental variables derived from remote sensing, including land surface temperature, vegetation indices, soil moisture, elevation, and proximity to water sources and human infrastructure. Models were constructed using the Maximum Entropy (MaxEnt) algorithm, and performance was evaluated using the Area Under the Curve (AUC) metric, yielding high accuracy ranging from 0.81 to 0.97. Temperature (32.3%) and vegetation indices (23.4%) emerged as the most influential predictors of species distributions, followed by elevation (21.7%) and proximity to water (14.5%). Species richness, estimated using a stacked SDM approach, was highest in the northern and riparian zones of the park, identifying potential biodiversity hotspots. This study presents the first fine-scale SDMs for mammal species in Nyerere National Park, offering a valuable ecological baseline to support conservation planning and promote sustainable ecotourism development in Tanzania’s southern protected areas. Full article
Show Figures

Graphical abstract

19 pages, 1760 KiB  
Article
A Multilevel Spatial Framework for E-Scooter Collision Risk Assessment in Urban Texas
by Nassim Sohaee, Arian Azadjoo Tabari and Rod Sardari
Safety 2025, 11(3), 67; https://doi.org/10.3390/safety11030067 - 17 Jul 2025
Viewed by 298
Abstract
As shared micromobility grows quickly in metropolitan settings, e-scooter safety issues have become more urgent. This paper uses a Bayesian hierarchical model applied to census block groups in several Texas metropolitan areas to construct a spatial risk assessment methodology for e-scooter crashes. Based [...] Read more.
As shared micromobility grows quickly in metropolitan settings, e-scooter safety issues have become more urgent. This paper uses a Bayesian hierarchical model applied to census block groups in several Texas metropolitan areas to construct a spatial risk assessment methodology for e-scooter crashes. Based on crash statistics from 2018 to 2024, we develop a severity-weighted crash risk index and combine it with variables related to land use, transportation, demographics, economics, and other factors. The model comprises a geographically structured random effect based on a Conditional Autoregressive (CAR) model, which accounts for residual spatial clustering after capture. It also includes fixed effects for covariates such as car ownership and nightlife density, as well as regional random intercepts to account for city-level heterogeneity. Markov Chain Monte Carlo is used for model fitting; evaluation reveals robust spatial calibration and predictive ability. The following key predictors are statistically significant: a higher share of working-age residents shows a positive association with crash frequency (incidence rate ratio (IRR): ≈1.55 per +10% population aged 18–64), as does a greater proportion of car-free households (IRR ≈ 1.20). In the built environment, entertainment-related employment density is strongly linked to elevated risk (IRR ≈ 1.37), and high intersection density similarly increases crash risk (IRR ≈ 1.32). In contrast, higher residential housing density has a protective effect (IRR ≈ 0.78), correlating with fewer crashes. Additionally, a sensitivity study reveals that the risk index is responsive to policy scenarios, including reducing car ownership or increasing employment density, and is sensitive to varying crash intensity weights. Results show notable collision hotspots near entertainment venues and central areas, as well as increased baseline risk in car-oriented urban environments. The results provide practical information for targeted initiatives to lower e-scooter collision risk and safety planning. Full article
(This article belongs to the Special Issue Road Traffic Risk Assessment: Control and Prevention of Collisions)
Show Figures

Figure 1

15 pages, 3200 KiB  
Review
Research Hotspots and Trends in Soil Infiltration at the Watershed Scale Using the SWAT Model: A Bibliometric Analysis
by Yuxin Ouyang, S. M. Asik Ullah and Chika Takatori
Water 2025, 17(14), 2119; https://doi.org/10.3390/w17142119 - 16 Jul 2025
Viewed by 319
Abstract
Understanding soil infiltration at the watershed level is crucial to hydrological studies, as it significantly influences surface runoff, groundwater replenishment, and ecosystem sustainability. Research in this area—particularly employing the Soil and Water Assessment Tool (SWAT)—has seen sustained scholarly interest, with an upward trend [...] Read more.
Understanding soil infiltration at the watershed level is crucial to hydrological studies, as it significantly influences surface runoff, groundwater replenishment, and ecosystem sustainability. Research in this area—particularly employing the Soil and Water Assessment Tool (SWAT)—has seen sustained scholarly interest, with an upward trend in related publications. This study analyzed 141 peer-reviewed articles from the Web of Science (WOS) Core Collection. By applying bibliometric techniques through CiteSpace visualization software, it explored the key themes and emerging directions in the use of the SWAT model for soil infiltration studies across watersheds. Findings revealed that this field integrates multiple disciplines. Notably, the Journal of Hydrology and Hydrological Processes emerged as two of the most impactful publication venues. Researchers and institutions from the United States, China, and Ethiopia were the core contributors to this area. “Land use” and “climate change” are currently the hotspots of interest in this field. There are three development trends: (1) The scale of research is continuously expanding. (2) The research subjects are diversified, ranging from initially focusing on agricultural watersheds to surrounding areas such as hillsides, grasslands, and forests. (3) The research content becomes more systematic, emphasizing regional coordination and ecological sustainability. Overall, the research on soil infiltration at the watershed scale using the SWAT model presents a promising and thriving field. This study provides researchers with a framework that objectively presents the research hotspots and trends in this area, serving as a valuable resource for advancing academic inquiry in this domain. Full article
Show Figures

Figure 1

15 pages, 4146 KiB  
Article
Monitoring Forest Cover Trends in Nepal: Insights from 2000–2020
by Aditya Eaturu
Sustainability 2025, 17(14), 6511; https://doi.org/10.3390/su17146511 - 16 Jul 2025
Viewed by 534
Abstract
This study investigates the spatial relationship between population distribution and tree cover loss in Nepal from 2000 to 2020, using satellite-based forest cover and population data along with statistical and geospatial analysis. Two statistical methods—linear regression (LR) and Geographically Weighted Regression (GWR)—were used [...] Read more.
This study investigates the spatial relationship between population distribution and tree cover loss in Nepal from 2000 to 2020, using satellite-based forest cover and population data along with statistical and geospatial analysis. Two statistical methods—linear regression (LR) and Geographically Weighted Regression (GWR)—were used to assess the influence of population on forest cover change. The correlation between total population and forest loss at the national level suggested little to no direct impact of population growth on forest loss. However, sub-national analysis revealed localized forest degradation, highlighting the importance of spatial and regional assessments to uncover land cover changes masked by national trends. While LR showed a weak national-level correlation, GWR revealed substantial spatial variation, with the coefficient of determination values increasing from 0.21 in 2000 to 0.59 in 2020. In some regions, local R2 exceeded 0.75 during 2015 and 2020, highlighting emerging hotspot clusters where population pressure is strongly linked to deforestation, especially along major infrastructure corridors. Using very high-resolution spatial data enabled pixel-level analysis, capturing fine-scale deforestation patterns, and confirming hotspot accuracy. Overall, the findings emphasize the value of spatially explicit models like GWR for understanding human–environment interactions guiding targeted land use planning to balance development with environmental sustainability in Nepal. Full article
Show Figures

Figure 1

26 pages, 5550 KiB  
Review
Research Advances and Emerging Trends in the Impact of Urban Expansion on Food Security: A Global Overview
by Shuangqing Sheng, Ping Zhang, Jinchuan Huang and Lei Ning
Agriculture 2025, 15(14), 1509; https://doi.org/10.3390/agriculture15141509 - 13 Jul 2025
Viewed by 401
Abstract
Food security constitutes a fundamental pillar of future sustainable development. A systematic evaluation of the impact of urban expansion on food security is critical to advancing the United Nations Sustainable Development Goals (SDGs), particularly “Zero Hunger” (SDG 2). Drawing on bibliographic data from [...] Read more.
Food security constitutes a fundamental pillar of future sustainable development. A systematic evaluation of the impact of urban expansion on food security is critical to advancing the United Nations Sustainable Development Goals (SDGs), particularly “Zero Hunger” (SDG 2). Drawing on bibliographic data from the Web of Science Core Collection, this study employs the bibliometrix package in R to conduct a comprehensive bibliometric analysis of the literature on the “urban expansion–food security” nexus spanning from 1982 to 2024. The analysis focuses on knowledge production, collaborative structures, and thematic research trends. The results indicate the following: (1) The publication trajectory in this field exhibits a generally increasing trend with three distinct phases: an incubation period (1982–2000), a development phase (2001–2014), and a phase of rapid growth (2015–2024). Land Use Policy stands out as the most influential journal in the domain, with an average citation rate of 43.5 per article. (2) China and the United States are the leading contributors in terms of publication output, with 3491 and 1359 articles, respectively. However, their international collaboration rates remain relatively modest (0.19 and 0.35) and considerably lower than those observed for the United Kingdom (0.84) and Germany (0.76), suggesting significant potential for enhanced global research cooperation. (3) The major research hotspots cluster around four core areas: urban expansion and land use dynamics, agricultural systems and food security, environmental and climate change, and socio-economic and policy drivers. These focal areas reflect a high degree of interdisciplinary integration, particularly involving land system science, agroecology, and socio-economic studies. Collectively, the field has established a relatively robust academic network and coherent knowledge framework. Nonetheless, it still confronts several limitations, including geographical imbalances, fragmented research scales, and methodological heterogeneity. Future efforts should emphasize cross-regional, interdisciplinary, and multi-scalar integration to strengthen the systematic understanding of urban expansion–food security interactions, thereby informing global strategies for sustainable development. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

23 pages, 4329 KiB  
Article
Sediment Fingerprinting Enables the Determination of Soil Erosion Sources and Sediment Transport Processes in a Topographically Complex Nile Headwater Basin
by Amartya K. Saha, Christopher L. Dutton, Marc Manyifika, Sarah C. Jantzi and Sylvere N. Sirikare
Soil Syst. 2025, 9(3), 70; https://doi.org/10.3390/soilsystems9030070 - 4 Jul 2025
Viewed by 315
Abstract
Sediment fingerprinting was utilized to identify potential hotspots of soil erosion and sediment transport pathways in the Nile Nyabarongo Upper Catchment (NNYU) in Rwanda, where rivers and reservoirs are suffering from alarmingly high levels of sedimentation. Sediment fingerprinting is a practical approach used [...] Read more.
Sediment fingerprinting was utilized to identify potential hotspots of soil erosion and sediment transport pathways in the Nile Nyabarongo Upper Catchment (NNYU) in Rwanda, where rivers and reservoirs are suffering from alarmingly high levels of sedimentation. Sediment fingerprinting is a practical approach used to identify erosional hotspots and sediment transport processes in highly mountainous regions undergoing swift land use transformation. This technique involves a statistical comparison of the elemental composition of suspended sediments in river water with the elemental composition of soils belonging to different geological formations present in the catchment, thereby determining the sources of the suspended sediment. Suspended sediments were sampled five times over dry and wet seasons in all major headwater tributaries, as well as the main river channel, and compared with soils from respective delineated watersheds. Elemental composition was obtained using laser ablation inductively coupled plasma mass spectrometry, and elements were chosen that could reliably distinguish between the various geological types. The final results indicate different levels of sediment contribution from different geological types. A three-level intervention priority system was devised, with Level 1 indicating the areas with the most serious erosion. Potential sources were located on an administrative map, with the highest likely erosion over the study period (Level 1) occurring in Kabuga cell in the Mwogo sub-catchment, Nganzo and Nyamirama cells in the Nyagako sub-catchment and Kanyana cell in the NNYU downstream sub-catchment. This map enables the pinpointing of site visits in an extensive and rugged terrain to verify the areas and causes of erosion and the pathways of sediment transport. Sediment concentrations (mg L−1) were the highest in the Secoko and Satinsyi tributaries. The composition of suspended sediment was seen to be temporally and spatially dynamic at each sampling point, suggesting the need for an adequate number of sampling locations to identify erosion hotspots in a large mountainous watershed. Apart from prioritizing rehabilitation locations, the detailed understanding of critical zone soil–land cover–climate processes is an important input for developing region-specific watershed management and policy guidelines. Full article
Show Figures

Figure 1

Back to TopTop