Grassland Conservation Effectiveness of National Nature Reserves in Northern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remotely Sensed Datasets
2.3. Trend Analysis
2.4. Coefficient of Variation
2.5. Effectiveness Score Calculation
3. Results
3.1. Spatiotemporal Analysis of Temperate Grassland Trends from 2000 to 2020
3.2. The NDVI Variation in the Temperate Grasslands during 2000–2020
3.3. NDVI Mean Comparison within and Outside NNRs Using t Test and Buffer-Analysis
3.4. NDVI Time Series Sketch of 30 NNRs with the Pettitt Test from 2000 to 2020
3.5. The Effectiveness Score of NNRs in the IMAR
4. Discussion
4.1. Effects of National Nature Reserves on Grasslands
4.2. Necessity Regarding the IMAR NNR Effectiveness Assessment
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NNR | Pettitt’s K | Year of Change Point | Pettitt’s p |
---|---|---|---|
Heiliriver | 12 | 2011 | 0.01194 |
Liaoning Dahei Mountain | 11 | 2010 | 0.001125 |
Inner Mongolia Daqing Mountain | 12 | 2011 | 0.01854 |
Inner Mongolia Helan Mountain | 16 | 2015 | 0.0382 |
Baiyinoboo | 11 | 2010 | 0.01066 |
Daqinggou | 6 | 2005 | 0.03127 |
Inner Mongolia Qingshan | 12 | 2011 | 0.03127 |
Hanshan | 13 | 2012 | 0.03127 |
Ejina | 12 | 2011 | 0.00192 |
Hatengtaohai | 7 | 2006 | 0.007535 |
Erdos | 12 | 2011 | 0.00192 |
Korchin | 11 | 2010 | 0.02823 |
Tumuji | 11 | 2010 | 0.01335 |
References
- White, S.R.; Carlyle, C.N.; Fraser, L.H.; Cahill, J.F., Jr. Climate change experiments in temperate grasslands: Synthesis and future directions. Biol. Lett. 2012, 8, 484–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbutt, C.; Henwood, W.D.; Gilfedder, L.A. Global plight of native temperate grasslands: Going, going, gone? Biodivers. Conserv. 2017, 26, 2911–2932. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands-more important for ecosystem services than you might think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Huang, L.; Chen, C.; Lin, X.; Hu, Z.; Li, J. Grassland degradation remote sensing monitoring and driving factors quantitative assessment in China from 1982 to 2010. Ecol. Indic. 2017, 83, 303–313. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J.; Wang, P. Quantitative measurements of the interaction between net primary productivity and livestock production in Qinghai Province based on data fusion technique. J. Clean. Prod. 2017, 142, 758–766. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Chen, Y.; Cheng, F.; Liu, G.; He, Z. Remote-Sensing Monitoring of Grassland Degradation Based on the GDI in Shangri-La, China. Remote Sens. 2019, 11, 3030. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wang, Z.; Zheng, K.; Han, C.; Li, L.; Sheng, H.; Ma, Z. Changes in soil carbon and nitrogen stocks following degradation of alpine grasslands on the Qinghai-Tibetan Plateau: A meta-analysis. Land Degrad. Dev. 2021, 32, 1262–1273. [Google Scholar] [CrossRef]
- Deak, B.; Valko, O.; Nagy, D.D.; Torok, P.; Torma, A.; Lorinczi, G.; Kelemen, A.; Nagy, A.; Bede, A.; Mizser, S.; et al. Habitat islands outside nature reserves-Threatened biodiversity hotspots of grassland specialist plant and arthropod species. Biol. Conserv. 2020, 241, 108254. [Google Scholar] [CrossRef]
- Prinsloo, H.; Reilly, B.; Myburgh, W. Identifying potential protected areas in the Grassland Biome of South Africa. South Afr. J. Sci. 2021, 117, 43–48. [Google Scholar] [CrossRef]
- Bardgett, R.D.; Bullock, J.M.; Lavorel, S.; Manning, P.; Schaffner, U.; Ostle, N.; Chomel, M.; Durigan, G.; Fry, E.L.; Johnson, D.; et al. Combatting global grassland degradation. Nat. Rev. Earth Environ. 2021, 2, 720–735. [Google Scholar] [CrossRef]
- Tai, X.; Epstein, H.E.; Li, B. Effects of grazing exclusion on spring and autumn pastures in arid regions of China: Insights from field surveys and landsat images. Agric. Ecosyst. Environ. 2021, 310, 107302. [Google Scholar] [CrossRef]
- Davidson, A.D.; Detling, J.K.; Brown, J.H. Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world’s grasslands. Front. Ecol. Environ. 2012, 10, 477–486. [Google Scholar] [CrossRef] [Green Version]
- Yao, M.; Rui, J.; Niu, H.; Hedenec, P.; Li, J.; He, Z.; Wang, J.; Cao, W.; Li, X. The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. Catena 2017, 152, 47–56. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, Q.; Buyantuev, A.; Liu, Q.; Niu, J. Plant functional beta diversity is an important mediator of effects of aridity on soil multifunctionality. Sci. Total. Environ. 2020, 726, 138529. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Wu, B.; Zeng, Y.; Luo, L.; Zhang, B. Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites. Land Degrad. Dev. 2018, 29, 3841–3851. [Google Scholar] [CrossRef]
- Zhang, P.C.; Shao, G.F.; Zhao, G.; Le Master, D.C.; Parker, G.R.; Dunning, J.B.; Li, Q.L. Ecology-China’s forest policy for the 21st century. Science 2000, 288, 2135–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Yin, R.; Li, Z.; Liu, C. China’s ecological rehabilitation: Unprecedented efforts, dramatic impacts, and requisite policies. Ecol. Econ. 2006, 57, 595–607. [Google Scholar] [CrossRef]
- Delang, C.O.; Yuan, Z. China’s Grain for Green Program; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Xue, Z.; Kappas, M.; Wyss, D. Spatio-Temporal Grassland Development in Inner Mongolia after Implementation of the First Comprehensive Nation-Wide Grassland Conservation Program. Land 2021, 10, 38. [Google Scholar] [CrossRef]
- Dudley, N. Guidelines for Applying Protected Area Management Categories; Iucn: Gland, Switzerland, 2008. [Google Scholar]
- Lü, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent ecological transitions in China: Greening, browning, and influential factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef]
- Mashizi, A.K.; Sharafatmandrad, M. Assessing ecological success and social acceptance of protected areas in semiarid ecosystems: A socio-ecological case study of Khabr National Park, Iran. J. Nat. Conserv. 2020, 57, 125898. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.L.; Stolton, S.; Visconti, P.; Woodley, S.; Kingston, N.; Lewis, E.; et al. Area-based conservation in the twenty-first century. Nature 2020, 586, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Luo, Z.; Mallon, D.; Li, C.; Jiang, Z. Biodiversity conservation status in China’s growing protected areas. Biol. Conserv. 2017, 210, 89–100. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, Y.; Melville, D.S.; Fan, J.; Liu, J.; Dong, J.; Tan, K.; Cheng, X.; Fuller, R.A.; Xiao, X.; et al. Changes in area and number of nature reserves in China. Conserv. Biol. 2019, 33, 1066–1075. [Google Scholar] [CrossRef]
- Zhang, H.; Fan, J.; Wang, J.; Cao, W.; Harris, W. Spatial and temporal variability of grassland yield and its response to climate change and anthropogenic activities on the Tibetan Plateau from 1988 to 2013. Ecol. Indic. 2018, 95, 141–151. [Google Scholar] [CrossRef]
- Zheng, K.; Wei, J.Z.; Pei, J.Y.; Cheng, H.; Zhang, X.L.; Huang, F.Q.; Li, F.M.; Ye, J.S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total. Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Hausner, M.B.; Huntington, J.L.; Nash, C.; Morton, C.; McEvoy, D.J.; Pilliod, D.S.; Hegewisch, K.C.; Daudert, B.; Abatzoglou, J.T.; Grant, G. Assessing the effectiveness of riparian restoration projects using Landsat and precipitation data from the cloud-computing application ClimateEngine.org. Ecol. Eng. 2018, 120, 432–440. [Google Scholar] [CrossRef]
- Eckert, S.; Huesler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid. Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, J.; He, B.; Liu, J.; Wang, Q.; Zhang, H.; Liu, Y. Drought Offset Ecological Restoration Program-Induced Increase in Vegetation Activity in the Beijing-Tianjin Sand Source Region, China. Environ. Sci. Technol. 2014, 48, 12108–12117. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Pettorelli, N.; Chauvenet, A.L.M.; Duffy, J.P.; Cornforth, W.A.; Meillere, A.; Baillie, J.E.M. Tracking the effect of climate change on ecosystem functioning using protected areas: Africa as a case study. Ecol. Indic. 2012, 20, 269–276. [Google Scholar] [CrossRef]
- Tang, Z.; Fang, J.; Sun, J.; Gaston, K.J. Effectiveness of Protected Areas in Maintaining Plant Production. PLoS ONE 2011, 6, e19116. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, T.W.; Madson, A.; Cusack, C.F.; Xue, Y. Changes in NDVI and human population in protected areas on the Tibetan Plateau. Arct. Antarct. Alp. Res. 2019, 51, 428–439. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, T.W.; Ostermann-Kelm, S.; Dong, C.; Willis, K.S.; Okin, G.S.; MacDonald, G.M. Monitoring changes of NDVI in protected areas of southern California. Ecol. Indic. 2018, 88, 485–494. [Google Scholar] [CrossRef]
- Ma, W.; Feng, G.; Zhang, Q. Status of Nature Reserves in Inner Mongolia, China. Sustainability 2016, 8, 889. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lu, Y.; Jiang, W.; Zhao, M. Mapping critical natural capital at a regional scale: Spatiotemporal variations and the effectiveness of priority conservation. Environ. Res. Lett. 2020, 15, 124025. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Li, A.; Liang, C. Historical landscape dynamics of Inner Mongolia: Patterns, drivers, and impacts. Landsc. Ecol. 2015, 30, 1579–1598. [Google Scholar] [CrossRef]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.; Hostert, P. Land use and land cover change in Inner Mongolia-understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Jones, M.O.; Moreno, A.; Kimball, J.S.; Naugle, D.E.; Erickson, T.A.; Richardson, A.D. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sens. 2017, 9, 863. [Google Scholar] [CrossRef] [Green Version]
- Mao, L.J.; Li, M.S.; Shen, W.J. Remote Sensing Applications for Monitoring Terrestrial Protected Areas: Progress in the Last Decade. Sustainability 2020, 12, 5016. [Google Scholar] [CrossRef]
- Fang, A.; Dong, J.; Cao, Z.; Zhang, F.; Li, Y. Tempo-Spatial Variation of Vegetation Coverage and Influencing Factors of Large-Scale Mining Areas in Eastern Inner Mongolia, China. Int. J. Environ. Res. Public Health 2020, 17, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Zuo, L.; Gao, J.; Jiang, Y.; Zhang, Y.; Ma, S.; Zou, Y.; Wu, S. Revealing the Fingerprint of Climate Change in Interannual NDVI Variability among Biomes in Inner Mongolia, China. Remote Sens. 2020, 12, 1332. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, X.; Shang, Y.; Kattel, G.; Miao, L. Continuously Vegetation Greening over Inner Mongolia for the Past Three Decades. Remote Sens. 2021, 13, 2446. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. Indag. Math. 1950, 12, 173. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Milich, L.; Weiss, E. GAC NDVI interannual coefficient of variation (CoV) images: Ground truth sampling of the Sahel along north-south transects. Int. J. Remote Sens. 2000, 21, 235–260. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Zhang, Z.Y.; Tong, L.J.; Wang, Q.; Zhou, W.; Wang, Z.Q.; Li, J.L. Spatiotemporal dynamics of China’s grassland NPP and its driving factors. Chin. J. Ecol. 2020, 39, 349. [Google Scholar]
- Tong, X.; Wang, K.; Brandt, M.; Yue, Y.; Liao, C.; Fensholt, R. Assessing future vegetation trends and restoration prospects in the karst regions of southwest China. Remote Sens. 2016, 8, 357. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Tucker, C.; Newcomb, W.; Los, S.; Prince, S. Mean and inter-year variation of growing-season normalized difference vegetation index for the Sahel 1981-1989. Int. J. Remote Sens. 1991, 12, 1133–1135. [Google Scholar] [CrossRef]
- Knorn, J.; Kuemmerle, T.; Radeloff, V.C.; Szabo, A.; Mindrescu, M.; Keeton, W.S.; Abrudan, I.; Griffiths, P.; Gancz, V.; Hostert, P. Forest restitution and protected area effectiveness in post-socialist Romania. Biol. Conserv. 2012, 146, 204–212. [Google Scholar] [CrossRef]
- Kleemann, J.; Zamora, C.; Villacis-Chiluisa, A.B.; Cuenca, P.; Koo, H.; Noh, J.K.; Fürst, C.; Thiel, M. Deforestation in Continental Ecuador with a Focus on Protected Areas. Land 2022, 11, 268. [Google Scholar] [CrossRef]
- Han, Y.; Ke, Y.; Zhu, L.; Feng, H.; Zhang, Q.; Sun, Z.; Zhu, L. Tracking vegetation degradation and recovery in multiple mining areas in Beijing, China, based on time-series Landsat imagery. GIScience Remote Sens. 2021, 58, 1477–1496. [Google Scholar] [CrossRef]
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.M.; Yang, J. Assessment of Urban Ecological Quality and Spatial Heterogeneity Based on Remote Sensing: A Case Study of the Rapid Urbanization of Wuhan City. Remote Sens. 2021, 13, 4440. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, H.; Ma, G.; Li, J.; Chen, L. Tracking area loss of China’s Nature Reserves from 2003 to 2015. Glob. Ecol. Conserv. 2020, 24, e01224. [Google Scholar] [CrossRef]
- Inner Mongolia Autonomous Region Government Press Office Holds Press Conference on Biodiversity Conservation in Inner Mongolia Autonomous Region. Available online: https://www.nmg.gov.cn/zwgk/xwfb/fbh/bmxwfbh/sthjt_5971/202105/t20210527_1597378.html (accessed on 23 November 2021).
- Hobbie, S.E. Plant species effects on nutrient cycling: Revisiting litter feedbacks. Trends Ecol. Evol. 2015, 30, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberan, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, L.; Chong, J.; Xue, B.; Liu, Q.; He, B.; Nath, R.; Cui, X. Vegetation dynamics and factor analysis in arid and semi-arid Inner Mongolia. Environ. Earth Sci. 2015, 73, 2343–2352. [Google Scholar] [CrossRef]
- Qiu, C.; Hu, J.; Yang, F. Analysis of conservation effectiveness of nature reserves based on NDVI in Yunnan Province. Acta Ecol. Sin. 2020, 40, 7312–7322. [Google Scholar]
- Mcnaughton, S.J. Diversity and Stability of Ecological Communities: A Comment on the Role of Empiricism in Ecology. Am. Nat. 1977, 111, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.L.; Downing, A.L.; Leibold, M.A. Compensatory dynamics stabilize aggregate community properties in response to multiple types of perturbations. Ecology 2016, 97, 2021–2033. [Google Scholar] [CrossRef]
- Miller-Rushing, A.J.; Primack, R.B.; Ma, K.P.; Zhou, Z.Q. A Chinese approach to protected areas: A case study comparison with the United States. Biol. Conserv. 2017, 210, 101–112. [Google Scholar] [CrossRef]
- Guo, Z.; Cui, G. Establishment of Nature Reserves in Administrative Regions of Mainland China. PLoS ONE 2015, 10, e0119650. [Google Scholar] [CrossRef]
- Huang, Z.H.; Peng, Y.J.; Wang, R.F.; Cui, G.F.; Zhang, B.; Lu, N.C. Exploring the Rapid Assessment Method for Nature Reserve Landscape Protection Effectiveness-A Case Study of Liancheng National Nature Reserve, Gansu, China. Sustainability 2021, 13, 3904. [Google Scholar] [CrossRef]
- Wang, W.; Xin, L.; Du, J.; Chen, B.; Liu, F.; Zhang, L.; Li, J. Evaluating conservation effectiveness of protected areas: Advances and new perspectives. Biodivers. Sci. 2016, 24, 1177–1188. [Google Scholar] [CrossRef] [Green Version]
- Pressey, R.L.; Cabeza, M.; Watts, M.E.; Cowling, R.M.; Wilson, K.A. Conservation planning in a changing world. Trends Ecol. Evol. 2007, 22, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Li, X.; Liang, C.; Li, P.; Guo, Y.; Liang, F.; Bai, J.; Cui, B.; Bilal, H. Rapid landscape assessment for conservation effectiveness of wetland national nature reserves across the Chinese mainland. Glob. Ecol. Conserv. 2021, 31, e01842. [Google Scholar] [CrossRef]
- Erdos Nature Reserve Continues to Rectify and Achieve Positive Results. Available online: https://www.nmg.gov.cn/ztzl/zyhjbhdcfkyjzglszt/qktb/201708/t20170821_254224.html (accessed on 23 November 2021).
- Su, Z.; Richardson, B.A.; Zhuo, L.; Jiang, X. Divergent population genetic structure of the endangered Helianthemum (Cistaceae) and its implication to conservation in Northwestern China. Front. Plant Sci. 2017, 7, 2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flora of China Vol. 13: 70 in eFloras.org, Missouri Botanical Garden. Available online: https://eol.org/pages/2889857/maps (accessed on 23 November 2021).
- Bai, L.; Wang, Z.H.; Lu, Y.T.; Tian, J.L.; Peng, Y. Monthly rather than annual climate variation determines plant diversity change in four temperate grassland nature reserves. Environ. Sci. Pollut. Res. 2022, 29, 10357–10365. [Google Scholar] [CrossRef] [PubMed]
- Ghoddousi, A.; Loos, J.; Kuemmerle, T. An Outcome-Oriented, Social-Ecological Framework for Assessing Protected Area Effectiveness. Bioscience 2022, 72, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rodriguez, D.; Martinez-Vega, J. Protected area effectiveness against land development in Spain. J. Environ. Manag. 2018, 215, 345–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Yu, L. Analyzing land use intensity changes within and outside protected areas using ESA CCI-LC datasets. Glob. Ecol. Conserv. 2019, 20, e00789. [Google Scholar] [CrossRef]
- Hellwig, N.; Walz, A.; Markovic, D. Climatic and socioeconomic effects on land cover changes across Europe: Does protected area designation matter? PLoS ONE 2019, 14, e0219374. [Google Scholar] [CrossRef] [Green Version]
- Burivalova, Z.; Hart, S.J.; Radeloff, V.C.; Srinivasan, U. Early warning sign of forest loss in protected areas. Curr. Biol. 2021, 31, 4620–4626. [Google Scholar] [CrossRef]
- Almeida, D.; Andre, M.; Scariot, E.C.; Fushita, A.T.; dos Santos, J.E.; Bogaert, J. Temporal change of Distance to Nature index for anthropogenic influence monitoring in a protected area and its buffer zone. Ecol. Indic. 2018, 91, 189–194. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Wang, Y.; Ren, Z.; Zhang, H.; Guo, X. Assessment of Night-Time Lighting for Global Terrestrial Protected and Wilderness Areas. Remote Sens. 2019, 11, 2699. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Wang, Y.; Fensholt, R.; Wang, K.; Zhang, L.; Huang, Y. Mapping and Evaluation of NDVI Trends from Synthetic Time Series Obtained by Blending Landsat and MODIS Data around a Coalfield on the Loess Plateau. Remote Sens. 2013, 5, 4255–4279. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Yang, W.; Zhu, X.; Chen, J.; Chen, X.; Yang, L.; Helmer, E.H. An Improved Flexible Spatiotemporal DAta Fusion (IFSDAF) method for producing high spatiotemporal resolution normalized difference vegetation index time series. Remote Sens. Environ. 2019, 227, 74–89. [Google Scholar] [CrossRef]
- Schleicher, J.; Eklund, J.; Barnes, M.D.; Geldmann, J.; Oldekop, J.A.; Jones, J.P.G. Statistical matching for conservation science. Conserv. Biol. 2020, 34, 538–549. [Google Scholar] [CrossRef] [PubMed]
Conservation Type | NNR Name | Count |
---|---|---|
Inland Wetland Protection | (3) Nanwengriver: 1999, (4) Dobuquer: 2002, (5) Birariver: 2004, (7) Huiheriver: 1997, (8) Hulunlake: 1992 | 5 |
Paleontological Remains Protection | (26) Dinosaur Remains in Etok: 1998 | 1 |
Forestry Ecology Protection | (1) Erguna: 1998, (2) Hanma: 1995, (6) Honghuaerji: 1998, (10) Inner Mongolia Qingshan: 1997, (12) Hanshan: 1996, (13) Gaogesitaihanwula: 1997, (14) Wulanba: 1997, (15) Gurigesitai: 1998, (16) Saihanwula: 1997, (18) Daqinggou: 1980, (19) Liaoning Dahei Mountain: 2000, (20) Heiliriver: 1996, (22) Bayin Oboo: 1979, (24) Inner Mongolia Daqing Mountain: 1996, (29) Inner Mongolia Helan Mountain: 1992 | 15 |
Grassland Meadow Protection | (17) Arhorchin: 1999, (21) Xilingol: 1985 | 2 |
Desert Ecology Protection | (9) Tumuji:1996 (11) Khorchin:1985 | 2 |
Wildlife Animal Protection | (23) Dalinuoer: 1987, (25) Erdos: 1998, (27) Hatengtaohai: 1995, (30) Ejina Poplar Forest:1992 | 4 |
Wildlife Vegetation Protection | (28) West Ordos: 1986 | 1 |
Region of Interest | Theil–Sen | Z | Hurst | NDVI Change Type | Ratio |
---|---|---|---|---|---|
IMAR | >0.003 | Z > 1.96 | 1 > H > 0.5 | Sg 1 | 47.67% |
−0.0025~0.0002 | Z < −1.96 | 1 > H > 0.5 | Sb 1 | 0.69% | |
0.0002~0.003 | |Z| ≤ 1.96 | 1 > H > 0.5 | Ss 1 | 49.37% | |
>0.003 | Z > 1.96 | 0 < H < 0.5 | Ag 1 | 0.87% | |
−0.0025~0.0002 | Z < −1.96 | 0 < H < 0.5 | Ab 1 | 0.02% | |
0.0002~0.003 | |Z| ≤ 1.96 | 0 < H < 0.5 | UD 1 | 1.38% | |
NNRs | >0.003 | Z > 1.96 | 1 > H > 0.5 | Sg | 37.85% |
−0.0025~0.0002 | Z < −1.96 | 1 > H > 0.5 | Sb | 0.62% | |
0.0002~0.003 | |Z| ≤ 1.96 | 1 > H > 0.5 | Ss | 58.88% | |
>0.003 | Z > 1.96 | 0 < H < 0.5 | Ag | 1.15% | |
−0.0025~0.0002 | Z < −1.96 | 0 < H < 0.5 | Ab | 0.02% | |
0.0002~0.003 | |Z| ≤ 1.96 | 0 < H < 0.5 | UD | 1.49% | |
Unprotected | >0.003 | Z > 1.96 | 1 > H > 0.5 | Sg | 48.22% |
−0.0025~0.0002 | Z < −1.96 | 1 > H > 0.5 | Sb | 0.70% | |
0.0002~0.003 | |Z| ≤ 1.96 | 1 > H > 0.5 | Ss | 48.84% | |
>0.003 | Z > 1.96 | 0 < H < 0.5 | Ag | 0.85% | |
−0.0025~0.0002 | Z < −1.96 | 0 < H < 0.5 | Ab | 0.02% | |
0.0002~0.003 | |Z| ≤ 1.96 | 0 < H < 0.5 | UD | 1.38% |
Region of Interest | CVNDVI | Fluctuation Type | Ratio |
---|---|---|---|
IMAR | ≥0.20 | Highly fluctuation | 9.90% |
0.20 > CVNDVI ≥ 0.15 | Relatively high fluctuation | 27.20% | |
0.15 > CVNDVI ≥ 0.10 | Medium fluctuation | 47.56% | |
0.10 > CVNDVI ≥ 0.05 | Relatively low fluctuation | 15.13% | |
<0.05 | Low fluctuation | 0.21% | |
NNRs | ≥0.20 | Highly fluctuation | 18.24% |
0.20 > CVNDVI ≥0.15 | Relatively high fluctuation | 18.85% | |
0.15 > CVNDVI ≥ 0.10 | Medium fluctuation | 21.31% | |
0.10 > CVNDVI ≥ 0.05 | Relatively low fluctuation | 22.61% | |
<0.05 | Low fluctuation | 18.99% | |
Unprotected | ≥0.20 | Highly fluctuation | 10.02% |
0.20 > CVNDVI ≥0.15 | Relatively high fluctuation | 27.15% | |
0.15 > CVNDVI ≥ 0.10 | Medium fluctuation | 47.57% | |
0.10 > CVNDVI ≥ 0.05 | Relatively low fluctuation | 15.05% | |
<0.05 | Low fluctuation | 0.21% |
Mean Difference | Not Significant | Significantly Higher | Significantly Lower |
---|---|---|---|
NNR subtracted by 1–5 km buffer | 18 | 11 | 1 |
NNR subtracted by 6–10 km buffer | 18 | 12 | 0 |
NNR subtracted by 11–15 km buffer | 14 | 14 | 2 |
NNR subtracted by 16–20 km buffer | 12 | 16 | 2 |
Type 1 | IWP | PRP | FEP | GMP | DEP | WAP | WVP | |
---|---|---|---|---|---|---|---|---|
Region | ||||||||
Inside NNR | 0.0022 | 0.0023 | 0.0038 | 0.0023 | 0.0050 | 0.0023 | 0.0016 | |
1–5 km buffer | 0.0023 | 0.0027 | 0.0031 | 0.0026 | 0.0057 | 0.0025 | 0.0021 | |
6–10 km buffer | 0.0023 | 0.0034 | 0.0028 | 0.0029 | 0.0057 | 0.0026 | 0.0026 | |
11–15 km buffer * | 0.0023 | 0.0037 | 0.0028 | 0.0025 | 0.0055 | 0.0026 | 0.0026 | |
16–20 km buffer | 0.0023 | 0.0035 | 0.0027 | 0.0027 | 0.0054 | 0.0026 | 0.0031 |
Type 1 | IWP | PRP | FEP | GMP | DEP | WAP | WVP | |
---|---|---|---|---|---|---|---|---|
Region | ||||||||
Inside NNR ** | 0.1453 | 0.2129 | 0.0955 | 0.1429 | 0.1661 | 0.1354 | 0.1631 | |
1–5 km buffer ** | 0.1318 | 0.2129 | 0.0967 | 0.1483 | 0.1536 | 0.1167 | 0.1811 | |
6–10 km buffer * | 0.1306 | 0.2265 | 0.1229 | 0.1518 | 0.1555 | 0.0986 | 0.2099 | |
11–15 km buffer ** | 0.1272 | 0.2181 | 0.1005 | 0.1510 | 0.1534 | 0.1261 | 0.2044 | |
16–20 km buffer | 0.1014 | 0.2160 | 0.1226 | 0.1484 | 0.1548 | 0.1273 | 0.2035 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Zhao, X.; Zhao, J.; Liu, N.; Sun, M.; Mu, B.; Sun, N.; Guo, Y. Grassland Conservation Effectiveness of National Nature Reserves in Northern China. Remote Sens. 2022, 14, 1760. https://doi.org/10.3390/rs14071760
Zhao S, Zhao X, Zhao J, Liu N, Sun M, Mu B, Sun N, Guo Y. Grassland Conservation Effectiveness of National Nature Reserves in Northern China. Remote Sensing. 2022; 14(7):1760. https://doi.org/10.3390/rs14071760
Chicago/Turabian StyleZhao, Siqing, Xiang Zhao, Jiacheng Zhao, Naijing Liu, Mengmeng Sun, Baohui Mu, Na Sun, and Yinkun Guo. 2022. "Grassland Conservation Effectiveness of National Nature Reserves in Northern China" Remote Sensing 14, no. 7: 1760. https://doi.org/10.3390/rs14071760
APA StyleZhao, S., Zhao, X., Zhao, J., Liu, N., Sun, M., Mu, B., Sun, N., & Guo, Y. (2022). Grassland Conservation Effectiveness of National Nature Reserves in Northern China. Remote Sensing, 14(7), 1760. https://doi.org/10.3390/rs14071760