Estimation of Ground PM2.5 Concentrations in Pakistan Using Convolutional Neural Network and Multi-Pollutant Satellite Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Dataset
- We collected scene images for each city from the official website [34] from May-2019 to April-2020. Each day contains seven different pollutant images (AER AI, CH4, CO, HCHO, NO2, O3 and SO2). Table 1 describes the information about the air quality image collection point. One Image cannot cover the concentration of various gases; therefore, each sample is described by taking at least seven satellite images in our research work. The standard single-input CNN architecture is not suitable for our research. Thus, a novel P-CNN model was built to accept seven images as input.
- (1)
- Randomly Image Rotation between [0, 360] degrees.
- (2)
- Scale the image at random between [0.8, 1] coefficients.
- (3)
- Size of each auxiliary input pollutant image is adjusted to 300 × 300, and then normalized to [0, 1].
2.2. Convolutional Neural Network (CNN)
2.3. Architecture of P-CNN
2.4. Forward Propagation
2.5. Backward Propagation
2.6. Evaluation Metrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69. [Google Scholar] [PubMed]
- Lewis, T.C.; Robins, T.G.; Dvonch, J.T.; Keeler, G.J.; Yip, F.Y.; Mentz, G.B.; Lin, X.; Parker, E.A.; Israel, B.A.; Gonzalez, L. Air pollution–associated changes in lung function among asthmatic children in Detroit. Environ. Health Perspect. 2005, 113, 1068–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bos, I.; Jacobs, L.; Nawrot, T.S.; De Geus, B.; Torfs, R.; Panis, L.I.; Degraeuwe, B.; Meeusen, R. No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neurosci. Lett. 2011, 500, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.; Nawrot, T.S.; De Geus, B.; Meeusen, R.; Degraeuwe, B.; Bernard, A.; Sughis, M.; Nemery, B.; Panis, L.I. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: An intervention study. Environ. Health 2010, 9, 64. [Google Scholar] [CrossRef] [Green Version]
- Bhatnagar, A. Environmental cardiology: Studying mechanistic links between pollution and heart disease. Circ. Res. 2006, 99, 692–705. [Google Scholar] [CrossRef] [Green Version]
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health Part C 2008, 26, 339–362. [Google Scholar] [CrossRef]
- Kumar, S.; Mishra, S.; Singh, S.K. Deep Transfer Learning-based COVID-19 prediction using Chest X-rays. J. Health Manag. 2021, 23, 730–746. [Google Scholar] [CrossRef]
- Schwartz, J.; Dockery, D.W.; Neas, L.M. Is daily mortality associated specifically with fine particles? J. Air Waste Manage. Assoc. 1996, 46, 927–939. [Google Scholar] [CrossRef]
- Graff, D.W.; Schmitt, M.T.; Dailey, L.A.; Duvall, R.M.; Karoly, E.D.; Devlin, R.B. Assessing the role of particulate matter size and composition on gene expression in pulmonary cells. Inhal. Toxicol. 2007, 19, 23–28. [Google Scholar] [CrossRef]
- Schwartz, J. Lung function and chronic exposure to air pollution: A cross-sectional analysis of NHANES II. Environ. Res. 1989, 50, 309–321. [Google Scholar] [CrossRef]
- Chestnut, L.G.; Schwartz, J.; Savitz, D.A.; Burchfiel, C.M. Pulmonary function and ambient particulate matter: Epidemiological evidence from NHANES I. Arch. Environ. Health Int. J. 1991, 46, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhai, C.Z.; YU, J.Y. A Review of Domestic and Overseas Research on Air Quality Monitoring Networks Designing. Environ. Monit. China 2012, 4, 1–4. [Google Scholar]
- Mei, S.; Li, H.; Fan, J.; Zhu, X.; Dyer, C.R. Inferring air pollution by sniffing social media. In Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), Beijing, China, 17–20 August 2014; pp. 534–539. [Google Scholar]
- Murty, R.N.; Mainland, G.; Rose, I.; Chowdhury, A.R.; Gosain, A.; Bers, J.; Welsh, M. Citysense: An urban-scale wireless sensor network and testbed. In Proceedings of the 2008 IEEE Conference on Technologies for Homeland Security, Waltham, MA, USA, 12–13 May 2008; pp. 583–588. [Google Scholar]
- Yu, X.; Liu, Y.; Zhu, Y.; Feng, W.; Zhang, L.; Rashvand, H.F.; Li, V.O.K. Efficient sampling and compressive sensing for urban monitoring vehicular sensor networks. IET Wirel. Sens. Syst. 2012, 2, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zheng, Y.; Zhang, L. Demonstration abstract: PiMi air box—A cost-effective sensor for participatory indoor quality monitoring. In Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 15–17 April 2014; pp. 327–328. [Google Scholar]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.C.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Padayachi, Y.R. Satellite Remote Sensing of Particulate Matter and Air Quality Assessment in the Western Cape, South Africa. 2016. Available online: https://ukzn-dspace.ukzn.ac.za (accessed on 27 February 2022).
- Chung, Y.S. Air pollution detection by satellites: The transport and deposition of air pollutants over oceans. Atmos. Environ. 1986, 20, 617–630. [Google Scholar] [CrossRef]
- Muir, D.; Laxen, D.P.H. Black smoke as a surrogate for PM10 in health studies? Atmos. Environ. 1995, 29, 959–962. [Google Scholar] [CrossRef]
- Smith, J.D.; Atkinson, D.B. A portable pulsed cavity ring-down transmissometer for measurement of the optical extinction of the atmospheric aerosol. Analyst 2001, 126, 1216–1220. [Google Scholar] [CrossRef]
- Hodgeson, J.A.; McClenny, W.A.; Hanst, P.L. Air Pollution Monitoring by Advanced Spectroscopic Techniques: A variety of spectroscopic methods are being used to detect air pollutants in the gas phase. Science 1973, 182, 248–258. [Google Scholar] [CrossRef]
- Li, X.; Peng, L.; Hu, Y.; Shao, J.; Chi, T. Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 2016, 23, 22408–22417. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Zheng, G.; Pan, J.Z.; Wu, H.; Zhang, N. Big smog meets web science: Smog disaster analysis based on social media and device data on the web. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; pp. 505–510. [Google Scholar] [CrossRef]
- Liu, Y.H.; Yu, Z.; Huang, Y.L.; Cai, M.; Xu, W.J.; Li, L. Characteristic analysis on uneven distribution of air pollution in cities. Environ. Monit. China 2011, 27, 93–96. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Liu, H.; Li, F.; Xu, F.; Lu, H. The evaluation of air quality using image quality. Chin. J. Image Graph. 2011, 16, 1030–1037. [Google Scholar]
- Wang, H.; Yuan, X.; Wang, X.; Zhang, Y.; Dai, Q. Real-time air quality estimation based on color image processing. In Proceedings of the 2014 IEEE Visual Communications and Image Processing Conference, Valletta, Malta, 7–10 December 2014; pp. 326–329. [Google Scholar]
- Zhang, Z.; Ma, H.; Fu, H.; Wang, X. Outdoor air quality inference from single image. In Proceedings of the International Conference on Multimedia Modeling, Sydney, Australia, 5–7 January 2015; pp. 13–25. [Google Scholar]
- Zhang, C.; Yan, J.; Li, C.; Rui, X.; Liu, L.; Bie, R. On estimating air pollution from photos using convolutional neural network. In Proceedings of the 24th ACM international conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 297–301. [Google Scholar]
- Chakma, A.; Vizena, B.; Cao, T.; Lin, J.; Zhang, J. Image-based air quality analysis using deep convolutional neural network. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3949–3952. [Google Scholar]
- Xing, H.; Wang, G.; Liu, C.; Suo, M. PM2.5 concentration modeling and prediction by using temperature-based deep belief network. Neural Netw. 2021, 133, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-Z.; Yang, H.-L.; Peng, J.-H.; Song, Y.-R.; Sun, Q.; Li, Y. Estimating PM2.5 concentrations in Xi’an City using a generalized additive model with multi-source monitoring data. PLoS ONE 2015, 10, e0142149. [Google Scholar] [CrossRef] [Green Version]
- Sentinel Sentinel-Hub. Available online: https://apps.sentinel-hub.com/ (accessed on 13 February 2022).
- AirNow Air Quality Data. Available online: https://www.airnow.gov/ (accessed on 22 February 2022).
- LeCun, Y.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L. Handwritten digit recognition with a back-propagation network. Adv. Neural Inf. Process. Syst. 1989, 2, 1–4. [Google Scholar]
- Vaillant, R.; Monrocq, C.; Le Cun, Y. Original approach for the localisation of objects in images. IEE Proc.-Vis. Image Signal Process 1994, 141, 245–250. [Google Scholar] [CrossRef]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229. [Google Scholar]
- Nowlan, S.J.; Platt, J.C. A convolutional neural network hand tracker. Adv. Neural Inf. Process. Syst. 1995, 1, 901–908. [Google Scholar]
- Lawrence, S.; Giles, C.L.; Tsoi, A.C.; Back, A.D. Face recognition: A convolutional neural-network approach. IEEE Trans. Neural Netw. 1997, 8, 98–113. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, B.; Arbelaez, P.; Girshick, R.; Malik, J. Object instance segmentation and fine-grained localization using hypercolumns. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 627–639. [Google Scholar] [CrossRef]
- Garcia, C.; Delakis, M. Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 1408–1423. [Google Scholar] [CrossRef] [PubMed]
- Riesenhuber, M.; Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 1999, 2, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3642–3649. [Google Scholar]
- Yao, S.; Xu, Y.-P.; Ramezani, E. Optimal long-term prediction of Taiwan’s transport energy by convolutional neural network and wildebeest herd optimizer. Energy Rep. 2021, 7, 218–227. [Google Scholar] [CrossRef]
- Fahlgren, N.; Feldman, M.; Gehan, M.A.; Wilson, M.S.; Shyu, C.; Bryant, D.W.; Hill, S.T.; McEntee, C.J.; Warnasooriya, S.N.; Kumar, I. A versatile phenotyping system and analytics platform reveals diverse temporal responses to water availability in Setaria. Mol. Plant 2015, 8, 1520–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Huang, J.; Luo, J. Using user generated online photos to estimate and monitor air pollution in major cities. In Proceedings of the 7th International Conference on Internet Multimedia Computing and Service, Zhangjiajie, China, 19–21 August 2015; pp. 1–5. [Google Scholar]
- Zhang, Q.; Fu, F.; Tian, R. A deep learning and image-based model for air quality estimation. Sci. Total Environ. 2020, 724, 138178. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Hao, D.; Li, F.; Guan, X.; Chen, P. Development of a new framework to identify pathways from socioeconomic development to environmental pollution. J. Clean. Prod. 2020, 253, 119962. [Google Scholar] [CrossRef]
- Pakistan, U. Available online: https://www.pk.undp.org/content/pakistan/en/home/library/development_policy/dap-vol7-issue2-environmental-sustainability-in-pakistan.html (accessed on 11 January 2022).
- Rana, I.A.; Bhatti, S.S. Lahore, Pakistan–Urbanization challenges and opportunities. Cities 2018, 72, 348–355. [Google Scholar] [CrossRef]
- Raziq, A.; Xu, A.; Li, Y.; Zhao, Q. Monitoring of land use/land cover changes and urban sprawl in Peshawar City in Khyber Pakhtunkhwa: An application of geo-information techniques using of multi-temporal satellite data. J. Remote Sens. GIS 2016, 5, 174. [Google Scholar] [CrossRef]
- Mehmood, R.; Mehmood, S.A.; Butt, M.A.; Younas, I.; Adrees, M. Spatiotemporal analysis of urban sprawl and its contributions to climate and environment of Peshawar using remote sensing and GIS techniques. J. Geogr. Inf. Syst. 2016, 8, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Shupler, M.; Godwin, W.; Frostad, J.; Gustafson, P.; Arku, R.E.; Brauer, M. Global estimation of exposure to fine particulate matter (PM2.5) from household air pollution. Environ. Int. 2018, 120, 354–363. [Google Scholar] [CrossRef]
- IQAir Air Quality in Lahore. Available online: https://www.iqair.com/pakistan/punjab/lahore (accessed on 15 January 2022).
- IQair IQAIR. Available online: https://www.iqair.com/world-air-quality-ranking (accessed on 3 January 2022).
- Pudasaini, B.; Kanaparthi, M.; Scrimgeour, J.; Banerjee, N.; Mondal, S.; Skufca, J.; Dhaniyala, S. Estimating PM2.5 from photographs. Atmos. Environ. X 2020, 5, 100063. [Google Scholar] [CrossRef]
Numbering | Collection Point | Photo Pixels (Px) | Capturing Time Period | Collection Interval |
---|---|---|---|---|
A | Islamabad | 3310 × 1573 | 8:00–9:00 UTC | One per day |
B | Peshawar | 3310 × 1573 | 8:00–9:00 UTC | One per day |
C | Karachi | 3310 × 1573 | 8:00–9:00 UTC | One per day |
D | Lahore | 3310 × 1573 | 8:00–9:00 UTC | One per day |
City | AlexNet | ResNet50 | VGG16 | P-CNN |
---|---|---|---|---|
Karachi | 32.343 | 28.187 | 19.554 | 17.123 |
Lahore | 29.843 | 30.214 | 21.240 | 14.205 |
Peshawar | 37.449 | 27.345 | 22.145 | 18.280 |
Islamabad | 38.221 | 31.657 | 23.572 | 11.003 |
Average | 34.464 | 29.350 | 21.627 | 15.152 |
City | AlexNet | ResNet50 | VGG16 | P-CNN |
---|---|---|---|---|
Karachi | 56.322 | 37.299 | 29.368 | 22.084 |
Lahore | 47.917 | 39.239 | 24.431 | 20.835 |
Peshawar | 50.329 | 32.302 | 31.502 | 18.743 |
Islamabad | 43.215 | 40.611 | 27.834 | 16.566 |
Average | 49.445 | 37.362 | 28.283 | 19.557 |
City | AlexNet | ResNet50 | VGG16 | P-CNN |
---|---|---|---|---|
Karachi | 45.954 | 40.223 | 22.838 | 14.419 |
Lahore | 42.390 | 37.901 | 25.949 | 12.394 |
Peshawar | 47.987 | 35.025 | 21.494 | 17.200 |
Islamabad | 39.399 | 33.092 | 28.001 | 16.657 |
Average | 43.932 | 36.560 | 24.570 | 15.167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.; Xiao, Z.; Shen, Y. Estimation of Ground PM2.5 Concentrations in Pakistan Using Convolutional Neural Network and Multi-Pollutant Satellite Images. Remote Sens. 2022, 14, 1735. https://doi.org/10.3390/rs14071735
Ahmed M, Xiao Z, Shen Y. Estimation of Ground PM2.5 Concentrations in Pakistan Using Convolutional Neural Network and Multi-Pollutant Satellite Images. Remote Sensing. 2022; 14(7):1735. https://doi.org/10.3390/rs14071735
Chicago/Turabian StyleAhmed, Maqsood, Zemin Xiao, and Yonglin Shen. 2022. "Estimation of Ground PM2.5 Concentrations in Pakistan Using Convolutional Neural Network and Multi-Pollutant Satellite Images" Remote Sensing 14, no. 7: 1735. https://doi.org/10.3390/rs14071735
APA StyleAhmed, M., Xiao, Z., & Shen, Y. (2022). Estimation of Ground PM2.5 Concentrations in Pakistan Using Convolutional Neural Network and Multi-Pollutant Satellite Images. Remote Sensing, 14(7), 1735. https://doi.org/10.3390/rs14071735