Simulating River/Lake–Groundwater Exchanges in Arid River Basins: An Improvement Constrained by Lake Surface Area Dynamics and Evapotranspiration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Model Setup and Calibration
2.2.1. Simulation Domain and Boundary Conditions
2.2.2. Numerical Simulations
2.2.3. Model Parameterization
2.2.4. Model Calibration
2.2.5. Model Validation with Indirect Data
3. Results
3.1. Surface Water and Groundwater Balance
3.2. Surface Water–Groundwater Interactions
3.3. Results of the Predictive Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tchakerian, V. Hydrology, Floods And Droughts: Deserts and Desertification. In Encyclopedia of Atmospheric Sciences; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 185–192. [Google Scholar]
- Zhang, P.; Jeong, J.-H.; Yoon, J.-H.; Kim, H.; Wang, S.-Y.S.; Linderholm, H.W.; Fang, K.; Wu, X.; Chen, D. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 2020, 370, 1095–1099. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Huang, X.; Liu, J.; Zheng, C.; He, X.; Liu, C. Spatiotemporal variation of river temperature as a predictor of groundwater/surface-water interactions in an arid watershed in China. Appl. Hydrogeol. 2015, 23, 999–1007. [Google Scholar] [CrossRef]
- Song, J.; Jiang, W.; Xu, S.; Zhang, G.; Wang, L.; Wen, M.; Zhang, B.; Wang, Y.; Long, Y. Heterogeneity of hydraulic conductivity and Darcian flux in the submerged streambed and adjacent exposed stream bank of the Beiluo River, northwest China. Appl. Hydrogeol. 2016, 24, 2049–2062. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, W.; Song, J.; Dou, X.; Guo, H.; Xu, S.; Zhang, G.; Wen, M.; Long, Y.; Li, Q. Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data. Appl. Hydrogeol. 2017, 25, 1283–1299. [Google Scholar] [CrossRef]
- Min, L.; Yu, J.; Liu, C.; Zhu, J.; Wang, P. The spatial variability of streambed vertical hydraulic conductivity in an intermittent river, northwestern China. Environ. Earth Sci. 2013, 69, 873–883. [Google Scholar] [CrossRef]
- Wang, P.; Pozdniakov, S.; Vasilevskiy, P.Y. Estimating groundwater-ephemeral stream exchange in hyper-arid environments: Field experiments and numerical simulations. J. Hydrol. 2017, 555, 68–79. [Google Scholar] [CrossRef]
- Kennedy, C.D.; Genereux, D.; Corbett, D.R.; Mitasova, H. Design of a light-oil piezomanometer for measurement of hydraulic head differences and collection of groundwater samples. Water Resour. Res. 2007, 43, wr005904. [Google Scholar] [CrossRef]
- Vasilevskiy, P.Y.; Wang, P.; Pozdniakov, S.P.; Davis, P. Revisiting the modified Hvorslev formula to account for the dynamic process of streambed clogging: Field validation. J. Hydrol. 2019, 568, 862–866. [Google Scholar] [CrossRef]
- Wang, P.; Yu, J.; Zhang, Y.; Liu, C. Groundwater recharge and hydrogeochemical evolution in the Ejina Basin, northwest China. J. Hydrol. 2013, 476, 72–86. [Google Scholar] [CrossRef]
- Wu, X.M.; Chen, C.X.; Shi, S.S. Three-dimensional numerical simulation of groundwater system in Ejina Basin, Heihe River, Northwestern China. J. China Univ. Geosci. 2003, 28, 527–532. [Google Scholar]
- Xi, H.; Feng, Q.; Liu, W.; Si, J.; Chang, Z.; Su, Y. The research of groundwater flow model in Ejina Basin, Northwestern China. Environ. Earth Sci. 2009, 60, 953–963. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, J.; Zhang, Y.; Wang, P.; Wang, D. Groundwater dynamic numerical simulation in the Ejina Oasis in an ecological water conveyance period. Hydrogeol. Eng. Geol. 2014, 41, 11–18. [Google Scholar]
- Yao, Y.; Zheng, C.; Liu, J.; Cao, G.; Xiao, H.; Li, H.; Li, W. Conceptual and numerical models for groundwater flow in an arid inland river basin. Hydrol. Process. 2015, 29, 1480–1492. [Google Scholar] [CrossRef]
- Harbaugh, A.W. MODFLOW-2005: The U.S. Geological Survey modular ground-water model—The ground-water flow process. In Techniques and Methods; US Geological Survey: Reston, VI, USA, 2005. [Google Scholar]
- Brunner, P.; Franssen, H.-J.H.; Kgotlhang, L.; Bauer-Gottwein, P.; Kinzelbach, W. How can remote sensing contribute in groundwater modeling? Appl. Hydrogeol. 2007, 15, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Brunner, P.; Kinzelbach, W.; Li, W.; Dong, X. Calibration of a groundwater model using pattern information from remote sensing data. J. Hydrol. 2009, 377, 120–130. [Google Scholar] [CrossRef]
- Doble, R.C.; Crosbie, R. Review: Current and emerging methods for catchment-scale modelling of recharge and evapotranspiration from shallow groundwater. Hydrogeol. J. 2016, 25, 3–23. [Google Scholar] [CrossRef]
- Colombani, N.; Gaiolini, M.; Busico, G.; Postacchini, M. Quantifying the Impact of Evapotranspiration at the Aquifer Scale via Groundwater Modelling and MODIS Data. Water 2021, 13, 950. [Google Scholar] [CrossRef]
- Wang, P.; Yu, J.; Pozdniakov, S.P.; Grinevsky, S.O.; Liu, C. Shallow groundwater dynamics and its driving forces in extremely arid areas: A case study of the lower Heihe River in northwestern China. Hydrol. Process. 2014, 28, 1539–1553. [Google Scholar] [CrossRef]
- Liu, X.; Yu, J.; Wang, P.; Zhang, Y.; Du, C. Lake Evaporation in a Hyper-Arid Environment, Northwest of China—Measurement and Estimation. Water 2016, 8, 527. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yu, J.; Zhang, Y.; Fu, G.; Min, L.; Ao, F. Impacts of environmental flow controls on the water table and groundwater chemistry in the Ejina Delta, northwestern China. Environ. Earth Sci. 2011, 64, 15–24. [Google Scholar] [CrossRef]
- Wen, X.; Wu, Y.; Su, J.; Zhang, Y.; Liu, F. Hydrochemical characteristics and salinity of groundwater in the Ejina Basin, Northwestern China. Environ. Earth Sci. 2005, 48, 665–675. [Google Scholar] [CrossRef]
- Qin, D.; Zhao, Z.; Han, L.; Qian, Y.; Ou, L.; Wu, Z.; Wang, M. Determination of groundwater recharge regime and flowpath in the Lower Heihe River basin in an arid area of Northwest China by using environmental tracers: Implications for vegetation degradation in the Ejina Oasis. Appl. Geochem. 2012, 27, 1133–1145. [Google Scholar] [CrossRef]
- Wang, P.; Grinevsky, S.O.; Pozdniakov, S.; Yu, J.; Dautova, D.S.; Min, L.; Du, C.; Zhang, Y. Application of the water table fluctuation method for estimating evapotranspiration at two phreatophyte-dominated sites under hyper-arid environments. J. Hydrol. 2014, 519, 2289–2300. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.-C.; Wang, P.; Du, C.-Y.; Yu, J.-J. Estimating Dynamics of Terminal Lakes in the Second Largest Endorheic River Basin of Northwestern China from 2000 to 2017 with Landsat Imagery. Remote Sens. 2019, 11, 1164. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zheng, Y.; Han, F.; Xiong, R.; Feng, L. Recovery of an endorheic lake after a decade of conservation efforts: Mediating the water conflict between agriculture and ecosystems. Agric. Water Manag. 2021, 256, 107107. [Google Scholar] [CrossRef]
- Xie, Q. Regional Hydrogeological Survey Report of the People’s Republic of China (1:200,000): Ejina K-47-[24] [R]; Chinese People’s Liberation Army: Jiuquan, China, 1980. [Google Scholar]
- Gates, J.B.; Edmunds, W.M.; Ma, J.; Scanlon, B.R. Estimating groundwater recharge in a cold desert environment in northern China using chloride. Appl. Hydrogeol. 2008, 16, 893–910. [Google Scholar] [CrossRef]
- Sun, P.; Ma, J.; Qi, S.; Zhao, W.; Zhu, G. The effects of a dry sand layer on groundwater recharge in extremely arid areas: Field study in the western Hexi Corridor of northwestern China. Appl. Hydrogeol. 2016, 24, 1515–1529. [Google Scholar] [CrossRef]
- Chiang, E. User Guide for Processing Modflow Version 10—A graphical user interface for MODFLOW, MODPATH, MT3D, PEST, SEAWAT, and ZoneBudget. Simcore Software. 3 January 2020, p. 270. Available online: https://www.simcore.com/files/pm/v10/pm10.pdf (accessed on 31 January 2022).
- Niswonger, R.G.; Prudic, D.E. Documentation of the Streamflow-Routing (SFR2) Package to Include Unsaturated Flow Beneath Streams. A Modification to SFR1. U.S. Geological Survey Techniques and Methods 6-A13; 2005; p. 50. Available online: https://pubs.usgs.gov/tm/2006/tm6A13/pdf/tm6a13.pdf (accessed on 31 January 2022).
- Merritt, M.L.; Konikow, L.F. Documentation of a Computer Program to Simulate Lake-Aquifer Interaction Using the MODFLOW Ground-Water Flow Model and the MOC3D Solute-Transport Model. U.S. Geological Survey Water-Resources Investigations Report 00-4167; 2000; p. 146. Available online: https://pubs.er.usgs.gov/publication/wri004167 (accessed on 31 January 2022).
- Banta, E.R. MODFLOW-2000, the U.S. Geological Survey Modular Ground—Water Model; Documentation of Packages for Simulating Evapotranspiration with a SEGMENTED Function (ETS1) and Drains with Return Flow (DRT1); US Geological Survey, Open-File Report 2000-466; 2000; p. 127. Available online: https://pubs.er.usgs.gov/publication/ofr00466 (accessed on 31 January 2022).
- Du, C.; Yu, J.; Wang, P.; Zhang, Y. Analysing the mechanisms of soil water and vapour transport in the desert vadose zone of the extremely arid region of northern China. J. Hydrol. 2018, 558, 592–606. [Google Scholar] [CrossRef]
- Guo, X.; Feng, Q.; Si, J.; Xi, H.; Zhao, Y.; Deo, R. Partitioning groundwater recharge sources in multiple aquifers system within a desert oasis environment: Implications for water resources management in endorheic basins. J. Hydrol. 2019, 579, 124212. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Y.; Yu, J.; Fu, G.; Ao, F. Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, northwestern China. J. Plant Ecol. 2011, 4, 77–90. [Google Scholar] [CrossRef]
- Liu, X. The Quantification of Ecological Water Consumption of Ejina Delta in the Lower Reaches of Heihe River and Water Use Efficiency of the Heihe Ecological Water Conveyance Project. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2018. [Google Scholar]
- Monteith, J.L. The State and Movement of Water in Living Organism. Symposium of the Society of Experimental Biology; Cambridge University Press: Cambridge, UK, 1965; pp. 205–234. [Google Scholar]
- LeGates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Los, S.; Pollack, N.H.; Parris, M.T.; Collatz, G.J.; Tucker, C.J.; Sellers, P.J.; Malmström, C.M.; DeFries, R.S.; Bounoua, L.; Dazlich, D.A. A Global 9-yr Biophysical Land Surface Dataset from NOAA AVHRR Data. J. Hydrometeorol. 2000, 1, 183–199. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Yang, K.; Zhou, J. Assessing the impacts of an ecological water diversion project on water consumption through high-resolution estimations of actual evapotranspiration in the downstream regions of the Heihe River Basin, China. Agric. For. Meteorol. 2018, 249, 210–227. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3). Algorithm Theoretical Basis Document. Collection 5. 2013. Available online: https://modis-land.gsfc.nasa.gov/pdf/MOD16ATBD.pdf (accessed on 31 January 2022).
- MOD16. Available online: http://files.ntsg.umt.edu/data/NTSG_Products/MOD16/ (accessed on 18 February 2022).
- Lurtz, M.R.; Morrison, R.R.; Gates, T.K.; Senay, G.B.; Bhaskar, A.S.; Ketchum, D.G. Relationships between riparian evapotranspiration and groundwater depth along a semiarid irrigated river valley. Hydrol. Process. 2020, 34, 1714–1727. [Google Scholar] [CrossRef]
- Milzow, C.; Kgotlhang, L.; Kinzelbach, W.; Meier, P.; Bauer-Gottwein, P. The role of remote sensing in hydrological modelling of the Okavango Delta, Botswana. J. Environ. Manag. 2009, 90, 2252–2260. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.; Ahmed, S. Appraisal of the groundwater balance components from multi-remote sensing datasets in a semi-arid region. Environ. Monit. Assess. 2018, 190, 681. [Google Scholar] [CrossRef]
- Yang, X.; Smith, P.L.; Yu, T.; Gao, H. Estimating evapotranspiration from terrestrial groundwater-dependent ecosystems using Landsat images. Int. J. Digit. Earth 2011, 4, 154–170. [Google Scholar] [CrossRef]
- Shu, Y.; Li, H.; Lei, Y. Modelling Groundwater Flow with MIKE SHE Using Conventional Climate Data and Satellite Data as Model Forcing in Haihe Plain, China. Water 2018, 10, 1295. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.D.O.F.; Manzione, R.L.; Filho, J.L.A. Combining remotely sensed actual evapotranspiration and GIS analysis for groundwater level modeling. Environ. Earth Sci. 2019, 78, 1–15. [Google Scholar] [CrossRef]
- Rojas, R.; Kahunde, S.; Peeters, L.; Batelaan, O.; Feyen, L.; Dassargues, A. Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modelling. J. Hydrol. 2010, 394, 416–435. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Pohlmann, K.F.; Chapman, J.B.; Pohll, G.M.; Reeves, D.M. A Model-Averaging Method for Assessing Groundwater Conceptual Model Uncertainty. Ground Water 2010, 48, 716–728. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zeng, X. Review of the uncertainty analysis of groundwater numerical simulation. Chin. Sci. Bull. 2013, 58, 3044–3052. [Google Scholar] [CrossRef] [Green Version]
- Gaofeng, Z.; Yonghong, S.; Chunlin, H.; Qi, F.; Zhiguang, L. Hydrogeochemical processes in the groundwater environment of Heihe River Basin, northwest China. Environ. Earth Sci. 2010, 60, 139–153. [Google Scholar] [CrossRef]
Segment № | Segment Length, m | Segment Width, m | k0/m0, day−1 | |
---|---|---|---|---|
Initial | Calibrated | |||
1 | 158,500 | 11–200 | 0.41–0.89 | 0.0024–0.0052 |
2 | 7000 | 8–90 | 0.41 | 0.0024 |
3 | 54,000 | 8–90 | 0.002–0.55 | 0.00001–0.0032 |
4 | 46,000 | 5–60 | 0.002–0.55 | 0.00001–0.0032 |
5 | 1500 | 5–60 | 0.41 | 0.0024 |
6 | 57,500 | 5–60 | 0.002–0.55 | 0.00001–0.0032 |
7 | 65,000 | 5–60 | 0.002–0.55 | 0.00001–0.0032 |
8 | 240,500 | 4–46 | 0.51–0.79 | 0.003–0.0046 |
9 | 4500 | 8–90 | 0.002 | 0.00001 |
Zone № | Model Layer № | Initial Value | Calibrated Value | ||||
---|---|---|---|---|---|---|---|
K, m/Day | Kz, m/Day | Sy, - | K, m/Day | Kz, m/Day | Sy, - | ||
1 | 1 | 43 | 14 | 0.15 | 39 | 10 | 0.20 |
2 | 44 | 14 | 0.15 | 39 | 10 | 0.20 | |
3 | 44 | 1 | 0.15 | 39 | 10 | 0.20 | |
2 | 1 | 25 | 9 | 0.15 | 34 | 8 | 0.19 |
2 | 5 | 2 | 0.15 | 5 | 1 | 0.15 | |
3 | 5 | 1 | 0.15 | 18 | 5 | 0.15 | |
3 | 1 | 18 | 6 | 0.15 | 24 | 6 | 0.18 |
2 | 4 | 1 | 0.15 | 4 | 1 | 0.14 | |
3 | 4 | 0.6 | 0.15 | 23 | 6 | 0.14 | |
4 | 1 | 15 | 5 | 0.15 | 16 | 4 | 0.17 |
2 | 6 | 2 | 0.15 | 5 | 1 | 0.15 | |
3 | 6 | 0.5 | 0.15 | 16 | 4 | 0.15 | |
5 | 1 | 5 | 2 | 0.15 | 4 | 0.9 | 0.15 |
2 | 5 | 2 | 0.15 | 4 | 0.9 | 0.15 | |
3 | 5 | 0.2 | 0.15 | 4 | 0.9 | 0.15 | |
6 | 1 | 4 | 1 | 0.15 | 5 | 1 | 0.14 |
2 | 4 | 1 | 0.15 | 5 | 1 | 0.15 | |
3 | 6 | 0.1 | 0.15 | 5 | 1 | 0.15 |
Observation Period | Simulated ET+ Precipitation, mm | Calculated MOD16 ET, mm | Relative Error, % |
---|---|---|---|
Average annual value for 2001–2017 | 109 | 145 | 25 |
Annual value in 2017 | 147 | 150 | 2 |
Monthly value in July 2017 | 21 | 16 | 31 |
№ | Balance Component | Recharge | Discharge | ||
---|---|---|---|---|---|
Volume, m3 | Proportion of Total, % | Volume, m3 | Proportion of Total, % | ||
1 | Water exchange with river | 6.48 × 109 | 75 | 1.64 × 108 | 1 |
2 | Water exchange with lake | 2.86 × 108 | 3 | 1.68 × 108 | 1 |
3 | Evapotranspiration | - | - | 7.92 × 109 | 62 |
4 | Groundwater exploitation | - | 6.30 × 108 | 5 | |
5 | Lateral flow | 1.92 × 109 | 22 | 3.88 × 109 | 30 |
6 | Total | 8.68 × 109 | 100 | 1.28 × 1010 | 100 |
Lake | Water Volume, m3 | Recharge | Discharge | ||||
---|---|---|---|---|---|---|---|
2000 | 2018 | Volume of Surface Runoff, m3 (Proportion of Total Recharge, %) | Volume of Groundwater Runoff, m3 (Proportion of Total Recharge, %) | Precipitation, m3 (Part from Total Recharge, %) | Evaporation, m3 (Proportion of Total Discharge, %) | Leakage, m3 (Proportion of Total Discharge, %) | |
West Juyan | 0 | 3.09 × 107 | 1.04 × 109 (91) | 6.65 × 107 (6) | 2.95 × 107 (3) | 9.62 × 108 (87) | 1.5 × 108 (13) |
East Juyan | 0 | 1.91 × 108 | 1.44 × 109 (96) | 2.24 × 107 (2) | 3.1 × 107 (2) | 1.23 × 109 (94) | 7.47 × 107 (6) |
Swan | 0 | 1.23 × 108 | 9.07 × 108 (91) | 7.25 × 107 (7) | 2.15 × 107 (2) | 8.20 × 108 (93) | 6.03 × 107 (7) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilevskiy, P.; Wang, P.; Pozdniakov, S.; Wang, T.; Zhang, Y.; Zhang, X.; Yu, J. Simulating River/Lake–Groundwater Exchanges in Arid River Basins: An Improvement Constrained by Lake Surface Area Dynamics and Evapotranspiration. Remote Sens. 2022, 14, 1657. https://doi.org/10.3390/rs14071657
Vasilevskiy P, Wang P, Pozdniakov S, Wang T, Zhang Y, Zhang X, Yu J. Simulating River/Lake–Groundwater Exchanges in Arid River Basins: An Improvement Constrained by Lake Surface Area Dynamics and Evapotranspiration. Remote Sensing. 2022; 14(7):1657. https://doi.org/10.3390/rs14071657
Chicago/Turabian StyleVasilevskiy, Peter, Ping Wang, Sergey Pozdniakov, Tianye Wang, Yichi Zhang, Xuejing Zhang, and Jingjie Yu. 2022. "Simulating River/Lake–Groundwater Exchanges in Arid River Basins: An Improvement Constrained by Lake Surface Area Dynamics and Evapotranspiration" Remote Sensing 14, no. 7: 1657. https://doi.org/10.3390/rs14071657
APA StyleVasilevskiy, P., Wang, P., Pozdniakov, S., Wang, T., Zhang, Y., Zhang, X., & Yu, J. (2022). Simulating River/Lake–Groundwater Exchanges in Arid River Basins: An Improvement Constrained by Lake Surface Area Dynamics and Evapotranspiration. Remote Sensing, 14(7), 1657. https://doi.org/10.3390/rs14071657