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Abstract: Quantifying terminal-lake dynamics is crucial for understanding water-ecosystem-economy
relationship across endorheic river basins in arid environments. In this study, the spatio-temporal
variations in terminal lakes of the lower Heihe River Basin were investigated for the first time
since the Ecological Water Diversion Project commenced in 2000. The lake area and corresponding
water consumption were determined with 248 Landsat images. Vital recovery of lakes occurred
two years after the implementation of the project, and the total lake area increased by 382.6%,
from 30.7 to 148.2 km2, during 2002–2017. East Juyan Lake (EJL) was first restored as a project target
and subsequently reached a maximum area of 70.1 km2. Water dispersion was initiated in 2003,
with the East river prioritized for restoration. Swan Lake in the East river enlarged to 67.7 km2

by 2017, while the other four lakes temporarily existed or maintained an area < 7 km2, such as
West Juyan Lake. Water consumed by lakes increased synchronously with lake area. The average
water consumption of the six lakes was 1.03 × 108 m3/year, with 63% from EJL. The increasing terminal
lakes; however, highlight the seasonal competition for water use between riparian vegetation and
lake ecosystems in water-limited areas.

Keywords: desert terminal-lake dynamic; water consumption; water management; remote sensing;
Heihe River Basin

1. Introduction

Endorheic basins, which retain water and allow no outflow to other external water bodies, occupy
approximately 21% of Earth’s land [1]. Northwestern China and Central Asia contain the most
endorheic river basins in the world [2]. The ecosystems in the downstream areas of theses river basins
are supported mainly by runoff generated from upper mountain regions because the precipitation
in the downstream areas is very low [3]. The middle and lower reaches is a typical arid region with
competing water requirements for human activities and natural ecosystems. Over the past decades,
streamflow has been extensively reallocated for agricultural irrigation, population expansion and
economic development in the upper and middle reaches of endorheic systems [4,5]. As a result, terminal
lakes in mostly endorheic basins have receded or even vanished, such as the Aral Sea [6–8]. Terminal
lakes play a vital role in desertification reduction, service provision, and diversity preservation [9,10].
The vast decline in both area and ecological condition of terminal lakes has led to efforts across the
world to promote their protection or restoration [11]. River regulation by controlled water allocation
has been carried out widely to restore the degraded lake ecosystems. To quantify the ecological
restoration efforts, it is important to estimate the spatio-temporal dynamics of terminal lakes on the
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basin scale. Furthermore, a better understanding of water use of lakes is needed for better water
allocation and conservation promotion in the water-deficient endorheic river basins [2,11].

Lake area (level) and lake fluctuations are commonly believed to have a great influence on the
ecosystem functions of lakes [11]. Thus, lake area is often recognized as an intuitive and important
indicator of lake recovery. Additionally, quantifying the changes in lake area is necessary to determine
the water volume consumed by lakes. For the water-limited areas, evaporation is the predominant
component of active water consumption and represents the largest component of the water balance
of a lake [12,13]. Knowledge of the temporal variability in lake evaporation could facilitate the
quantification of the water consumption and water demands and, thus, improve the allocation of
water resources in these regions [2]. Therefore, determining lake area and lake evaporation (i.e., water
consumption) is vitally important for the evaluation and improvement of water resources management
in arid endorheic river basins [14–16].

The Heihe River is the second largest endorheic river in arid Northwestern China. It originates from
the Qilian Mountains, flows through the middle irrigated farmland, and then enters the lower riparian
ecosystems and Gobi Desert area [3]. Because of the large increase in water consumption in the midstream
area, the discharge from this region decreased sharply between the 1950s and 1990s, which significantly
reduced the water flow into the lower Heihe River Basin (HRB). Consequently, terminal lakes underwent
catastrophic desiccation and triggered numerous environmental problems in the area [17]. For example,
East Juyan Lake (EJL) and West Juyan Lake (WJL), the two most important terminal lakes of the HRB
and renowned desert lakes with a long history in China, dried up in 1961 and 1992, respectively [18].
To rehabilitate the deteriorated ecosystem in the lower HRB, the Chinese government has conducted the
Ecological Water Diversion Project (EWDP) in the HRB since 2000. The aim of the EWDP is to guarantee
the delivery of a certain volume of river flow to the lower HRB from the middle reaches, and EJL is
regarded as an important target of the project [19]. Therefore, many studies have been conducted on the
restoration process or water consumption of EJL [19–21]. However, water resources management based
on research on EJL may underestimate the actual water consumption by lakes, resulting in lower water use
for natural vegetation in the lower HRB [22]. According to field investigations by the local water bureau,
other lakes appeared as a result of the project. Despite the ecosystem services they provide, the unplanned
water recovery may cause concerns in terms of superfluous water consumption in such water-limited
environments [2,19]. The identification of those lakes has special implications for the management of
precious water resources. For sustainable water management and ecosystem restoration, knowledge of
both spatio-temporal variations in lake area and changes of water consumption of lakes in the lower HRB
is needed urgently but has not yet been studied.

In most previously published studies, observations, and modeling of the evaporation rates of the lake
in the lower HRB represented the key focuses of research on lake water consumption [23–25]. However,
the harsh conditions in the lower HRB make it difficult to obtain long-series observation data or qualified
estimated values from physical-process-based models. In this case, empirical modelling is often considered
as the most suitable method to obtain reliable evaporation rate data. For example, Liu (2016) [25] measured
daily lake evaporation rates using a floating E601 pan on a lake, and developed a practical evaporation
model to quantify the open water evaporation rate in the lower HRB. The semi-empirical evaporation
model has proved to be in accordance with other related studies in the study area [23,24]. Moreover, satellite
remote sensing offers the only feasible approach for long-term systematic lake mapping and inventory in
the data-gap areas such as the lower HRB [26]. Fine-resolution satellite imagery of a continuous time series
(e.g., Landsat dataset) is needed for regional-scale lake mapping, which is characterized by abundant
small-size lakes and small-amplitude shore changes [27]. Several methods, such as spectral indices
exploiting the differences in reflectance of the spectrum and visual supervised classifier, were developed
generally to enable rapid interpretation with high accuracy [28].

To fill the knowledge gap, the purpose of our study was to provide insights into appropriate water
management strategies to promote ecosystem restoration in the arid endorheic basin. The specific
objectives of this study were to (1) determine the spatio-temporal variations in lake area of the lower
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HRB during 2000–2017 using long-series Landsat images, (2) quantify the changes in lake water
consumption (i.e., lake evaporation), and (3) discuss the effects of the EWDP on lake dynamics in the
arid endorheic river system.

2. Materials and Methods

2.1. Study Area

The study area is located in the lower reaches of the HRB, Northwestern China, and is normally
referred to as the Ejina Oasis (Figure 1). This region is characterized by a continental climate that is
extremely hot in the summer and very cold in the winter. According to data from the Ejina weather
station (1959–2017), the mean annual temperature was 9.1 ◦C, with the highest temperature of 43.7 ◦C
in July and the lowest temperature of –35.3◦C in January. The mean annual precipitation and potential
evaporation were 35.2 mm (1959–2017) and 1500 mm [23,25], respectively. The Heihe River entering
the lower HRB is the only runoff that flows through the Ejina Oasis and is divided into the East river
and West river at the Langxinshan hydrological station. These rivers ultimately flow into EJL and
WJL, respectively. The river flows from the Heihe River and groundwater is the main water sources
used to sustain local residents and the surrounding ecosystems [29]. The natural vegetation in the
lower HRB, which is predominated by phreatophytes (e.g., Populus euphratica, Tamarix ramosissima),
is mainly distributed along the rivers and relies on shallow groundwater for survival [30]. The EWDP
in the HRB was launched by the Chinese government in 2000. Currently, the runoff of the lower HRB
and its spatial distribution in the area are determined by the project [31]. According to the project
plan, the East river takes priority in terms of water diversion to maintain the core riparian oases and
the terminal EJL located in its downstream area, while the West river takes second place. On the
basis of remote sensing and field investigations by the local water bureau, in addition to EJL and
WJL, Swan Lake (SL), Monong Lake (ML), Xiala Lake (XL) and Bage Lake (BL) appeared with the
implementation of the EWDP.
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Figure 1. The location of the study area and distribution of lakes (i.e., East Juyan Lake (EJL), Swan
Lake (SL), Monong Lake (ML), Xiala Lake (XL), West Juyan Lake (WJL) and Bage Lake (BL)) in the
lower reaches of the Heihe River Basin (HRB), China. Note that LXS means Langxinshan.
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2.2. Lake Area Determination

In this study, we used the core dataset of Landsat-5, Landsat-7, and Landsat-8 (30 m resolution) for
the period of 2000–2017 to extract the lake area in the lower HRB. Monthly cloud-free composite scenes
of the study area were generated using ArcGIS10.4.1 software on images taken during the ice-free
period between April 1 and October 31. For months November–March, when surface water changes
subtly during this frozen period, cloud-free scenes of the area were selected from the January Landsat
collections on the measure of open water. For months with no single cloud-free images of the area,
portions of multiple images were mosaicked to yield as cloud-free a view of the area as possible [32].

Lake mapping was performed using the ArcGIS10.4.1 software and Landsat collections (supplementary
data Figure S1). Because the surface features of lake regions are distinguished in spectrum curves, a band
ratio between blue and near-infrared bands was proposed by Li et al. (2017) [20] to incorporate the very
different reflectance characteristics of water surface and other surface features in the area. Thresholding
of each water index image was performed on the crosscheck with high-resolution (resolution of 0.5–1 m)
satellite data [20]. In this way, thresholds of Landsat images were determined as constant values, and the
error between Landsat and high-resolution images was less than 3% [20].

For each month, a water index was first calculated for the Landsat images. Then, the extracted
lake boundaries were refined by visual interpretation to test the stable variation in thresholding.
Ratio formulas and corresponding empirical thresholds for lake interpretation are shown in Table 1.
Misclassification of pixels rarely occurred and was due mainly to contamination from clouds, cloud
shadows, or transmission striping of Landsat-7. False water detection at these pixels can then be edited
manually based on the water cover of time-adjacent images. Contamination within lakes was identified
visually and reassigned as water cover to maintain the continuity of the time-series. Water extent with
contamination crossing the boundaries of a lake was corrected by spatial interpolation of time-adjacent
images. Based on linear interpolation, the median value was used as the lake area for a given month.
Annual lake area refers to the maximum area of the year.

Table 1. Description of data types (i.e., Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic
Mapper (ETM) and Landsat-8 Operational Land Imager (OLI)), band ratios, and corresponding
thresholds for lake interpretation.

Data types Band ratio Threshold

Landsat-5/TM TM1/TM4 3.0
Landsat-7/ETM ETM1/ETM4 3.0
Landsat-8/OLI OLI2/OLI5 1.1

2.3. Water Consumption Calculation

Monthly water consumption was defined as the monthly lake area multiplied by corresponding
lake evaporation rate, in which the monthly lake area was estimated from Section 2.2, and the
calculations of monthly lake evaporation rate are given as follows. The annual water consumption
was determined by the accumulation of monthly water consumption.

The lakes in the lower HRB are all shallow; thus, their evaporation rate is controlled mainly by
atmospheric forcing [33]. Therefore, we used meteorological data obtained by the local weather station
and semi-empirical evaporation model derived by Liu et al. (2016) [25] to calculate the monthly lake
evaporation rate. For April to September and October to March, the lake evaporation rate was derived
by Equation (1) and Equation (2), respectively:

Ei =
k∑

j=1

(
a + b·

(
c·ui j−d

)0.5
)(

e− f ·
(
g·RHi j−h

)1.5
)(

m + n·Tai j
)

(1)

Ei= θ·Epi (2)
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where subscripts i and j represent month i of a year and day j of a month, respectively; k is the actual
number of days in month i; E is the monthly lake evaporation rate (mm/month); a, b, c, d, e, f, g, h,
m, and n are parameters with values of 0.0345, 0.002, 0.943, 0.877, 42.6824, 0.0122, 1.065, 7.817, 2.73,
and 0.078, respectively; u is wind speed (m/day); RH is relative humidity (%); Ta is air temperature at 2 m
(◦C); Ep is observed pan evaporation rate (mm/month); and θ is an empirical coefficient used to deduce
the actual lake evaporation rate from the observed pan evaporation data. The values for Φ20 pan
evaporation data (i.e., November to March) and E601 pan evaporation data (i.e., October) are 0.48 and
0.76, respectively, which are referred to the study in a similar arid environment by Hu et al. (2005) [34].
The detailed calculations of the parameters in Equation (1) can be seen in Liu et al. (2016) [25].

2.4. Data Sources

The data used in this study are listed in Table 2 and included meteorological data, remote-sensing
images, and hydrological observations from 2000 to 2017.

Meteorological data were used to estimate the lake evaporation rate, which included daily mean
air temperature, wind speed, and humidity data from April 1 to September 30 and the monthly
observed pan evaporation rate from October to March. Meteorological data were obtained from the
Ejina weather station (101.07◦N, 41.95◦N), which is the only national base weather station in the
Ejina Oasis.

We determined lake area based on remote sensing images, and the sites of 6 lakes were covered
by 2 freely available Landsat images. Clear sky subsets of 248 Landsat images with a resolution of
30 m along path 134, row 31, and row 30 were collected from the United States Geological Survey
(https://glovis.usgs.gov/). The subsets consisted of 110 Landsat-5/TM images, 54 Landsat-7/ETM
images, and 84 Landsat-8/OLI images. The Landsat images used in this study are shown in Figure S1.

Annual river discharge measured at the Langxinshan (LXS) hydrological station (Figure 1) was
used to analyze the response of lake dynamics to the EWDP. The hydrological observations were
obtained from the Wuhai water bureau.

Table 2. Summary of data used. Available periods and data sources are given.

Data types Detailed description Periods Data sources

Meteorological data

Daily mean air
temperature, wind

speed, humidity

April 1 to September 30,
2000–2017 Ejina weather station

Monthly observed pan
evaporation rate

October to March,
2000–2017

Remote sensing data
Landsat-5/TM

Landsat-7/ETM
Landsat-8/OLI

2000–2017 United States Geological Survey
(https://glovis.usgs.gov/)

Hydrological
observation

Runoff at the LXS
hydrological station 2000–2017 Wuhai water bureau

3. Results

3.1. Changes in Lake Evaporation Rate

According to the variability in annual lake evaporation rate (Figure 2a), for 2000–2017, the estimated
mean, maximum, and minimum evaporation rates of the lake were 1577.9, 1638.8, and 1496.5 mm/year,
respectively. Generally, a slight decreasing trend in annual lake evaporation rate of 1.8 mm/year was
observed, but this rate is not statistically significant at the level of 0.05 (p = 0.22).

The monthly lake evaporation rate showed an obvious seasonal pattern of variation (Figure 2b).
The highest lake evaporation rate was observed in July or August, and the minimum lake evaporation
rate emerged in January or December.

https://glovis.usgs.gov/
https://glovis.usgs.gov/
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3.2. Lake Area Variation

3.2.1. Temporal Dynamics in Lake Area

Figure 3a illustrates the temporal variations in the area of six lakes in the lower HRB from 2000
to 2017. Water from the EWDP first arrived in EJL on July 17, 2002 (Table 3). After 16 years of
continuous water diversion transfer from the middle HRB, the surface area of EJL reached a maximum
of 70.1 km2 in 2017, representing a 128.3% augmentation from 30.7 km2 in 2002 (Figure 3b and Table S1).
An increasing trend in the area of EJL took place during the period. The expanding rate of EJL was
an average of 4.1 km2/year from 2002 to 2009, and then decreased by 71% to an average of 1.2 km2/year.

More than one year later than the recovery of EJL, other lakes in the study area started to receive
water from the Heihe River in September or October 2003. SL started to expand at an average rate
of 2.5 km2/year in September 2003. After exceeding 28 km2 in 2008, the annual variation in the area
of SL tended to remain stable at an average of 33 km2. Up to 2015, SL expanded dramatically again
with an average rate of 13.2 km2/year and reached a maximum area greater than 67 km2 in 2017.
Overall, the expansion rate of SL (3.7 km2/year) was greater than that of EJL (2.0 km2/year) during the
recovery period.

An increasing trend also occurred in the variations in the area of ML, XL, and BL during 2003–2017.
With average changes in area per year of 0.12, 0.31, and 0.13 km2, the area of ML, XL, and BL increased
to a maximum of 4.5, 6.8, and 3.9 km2, respectively. WJL showed no obvious trend and remained dried
up most of the time. Despite the short time of water storage, the area of WJL exceeded 80 km2 and
reached a maximum of approximately 131 km2 in 2007 and 2008.

In general, lakes within the study area gradually expanded with the implementation of the EWDP
(Table 4). The total lake area increased variably by 382.6%, from 30.7 to 148.2 km2, during the period of
2002–2017. The increasing trend exhibited a multiyear average lake area of 118.6 km2 and multiyear
average lake area change of 7.8 km2/year over the past 16 years. The maximum total lake area was
243.2 km2 in 2016.

3.2.2. Spatial Patterns of Lake Changes

The spatial distribution of lakes in the study area is presented in Figure 1c. Lakes are located in
the northern part of the Ejina Oasis and are distributed mainly at the ends of the East and West rivers.
EJL, the terminal lake of the East river, is situated in the northeast of Ejina Oasis and was the first lake
to receive water in 2002, while the EWDP was initiated in 2000. EJL developed to permanent water in
September 2003 and retained this status for 182 months of the study period, with an average area of
55.8 km2 (Table 3 and Figure 3b). SL, a residual lake of the ancient Juyan Lake, is located at the end of
a branch of the East river and in the farthest east portion of the area. As the second largest lake in the
region after EJL, SL has maintained an average level of 40.7 km2 since water was perennially stored
after July 2008, representing 140 months of the study period.

ML and XL are the other lakes located along the East river. ML is nearly adjacent to the southeast
of EJL and is a small seasonal lake. The maximum area of ML was 4.5 km2, and its time with water
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storage was 41 months (Table 3). XL is the only artificial reservoir in the area and started to store water
in September 2003 for the core oases (storage time of 143 months). XL remined at an extent of 5.0 km2

throughout the last seven years. WJL and BL were both situated in the end of the West river. WJL
extended to as large as 131.4 km2 but held water only for an extremely limited time. During 2000–2017,
the total storage time of WJL was only 15 months (< four months per storage period), which occurred
in 2003, 2006–2008, and 2016. BL is an associated lake located in the southeast of WJL, and the lake
area is less than 4 km2. However, for the total storage time of 85 months, BL was considered the main
water body in the west of the region, and it maintained a multiyear average extent of 3.6 km2 after
October 2015.

Over the past 18 years, the Ejina Oasis showed an increase in permanent water, and much of the
increase was from the East river (Figure 4). Between 2008 and 2015, permanent surface water increased
from eastern EJL to eastern SL and XL and western BL. Although the lake recovery in the East river
was spatially superior to that in the West river, the spatial pattern of the changes in permanent lakes
indicated the gradual development of lakes from the east to the west in the area.
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Table 3. Summary of the largest area, recovery time, perennial period (defined as ≥12 months) and
storage time of all the lakes in the study area during 2000–2017. Note that storage time is the total months
with lake area > 0 km2 since the commencement of the Ecological Water Diversion Project (EWDP).

River Lake Largest area
(km2) Recovery time Perennial periods Storage time

(months)

East river

EJL 70.1 7/2002 9/2003–12/2017 182
SL 67.7 9/2003 7/2008–12/2017 140
ML 4.5 9/2003 \ 41

XL 6.8 10/2003 12/2007–4/2011,
9/2011–12/2017 143

West river
WJL 131.4 10/2003 \ 15

BL 3.9 10/2003 10/2012–5/2014,
10/2015–12/2017 85Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 17 
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3.3. Variation in Lake Water Consumption

3.3.1. Seasonal Patterns of Water Consumption

Figure 5a shows the monthly distribution of water consumption over six lakes in the area.
The seasonal allocation of water consumption of different lakes was acquired for 2000–2017. The seasonal
variation in water consumption of EJL, SL, and XL followed a unimodal curve with the peaks in
May to August, May to August, and April to June, respectively. The water consumption of BL and
ML showed a seasonal variation in multimodal pattern, and the peaks occurred in April to May and
October and in April, June and September, respectively.

It was obvious that the majority of water volume was consumed by lakes during the growing
season (i.e., April to October), which accounted for 83.6% of the water consumed in a year on average
in the study area. The water consumption of SL in the growing season accounted for 85.8% of its total
water consumption in a year, followed by that of EJL at 85.1%; XL at 81.8% and ML at 75.0%; and BL
and WJL at 79.6% and 61.2%, respectively.
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3.3.2. Inter-Annual Changes in Water Consumption

Table 4 indicates the total water consumption of all lakes, and the inter-annual changes in water
consumption of different lakes during the period of 2000–2017 are shown in Figure 5b and Table S2. The total
water consumption of the six lakes from 2002 to 2017 was 16.52 × 108 m3 with a multiyear average value of
1.03 × 108 m3. The total water consumption and lake area in the study area exhibited a regular synchronous
increasing trend for most of the past years but has been interrupted since 2008. After 2008, the total water
consumption tended to remain stable with an average value of 1.21 × 108 m3 per year. After 2016, with the
total lake area expanding by more than 80% on average, the total water consumption of the site increased to
a maximum of 1.95 × 108 m3 in 2017. With the implementation of the EWDP, the total water consumption
of lakes increased by 143.4% when compared to the level at the beginning of lake recovery.

The water consumption of different lakes was determined to explore the distribution. As the targeted
object of the EWDP, EJL consumed 0.58× 108 m3 of water volume per year on average since the project was
initiated, which accounted for 63.0% of the total water consumption. SL was another major component
of water consumption in the area. The average water consumption of SL was 0.24 × 108 m3 per year,
representing 26.5% of the total. The proportion of the water consumption for EJL and SL reached
a multiyear average of 89.5% of the total water consumption in the lower HRB, and other lakes accounted
for only a small amount of the water consumption. BL, ML, and XL consumed 0.04 × 108 m3 of water
volume per year on average during 2000–2017, which accounted for 4.2% of the total value. The water
consumption of WJL varied distinctly from year to year, and the maximum annual water consumption
and proportion were 0.36 × 108 m3 in 2016 and 37.1% in 2003. Among the changes, the proportion of
water consumption of EJL showed a declining trend, while that in other lakes (except WJL) showed
an increasing trend.
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Table 4. Summary of total annual lake area and water consumption during 2000–2017 in the study area.

Year Total lake area
(km2)

Total water consumption
(108 m3)

2000 0 0
2001 0 0
2002 30.7 0.13
2003 175.8 0.37
2004 52.4 0.50
2005 51.7 0.65
2006 138.5 0.73
2007 192.0 0.87
2008 192.0 1.23
2009 107.2 1.10
2010 100.0 1.36
2011 87.2 1.04
2012 93.5 1.13
2013 93.5 1.28
2014 92.9 1.09
2015 99.5 1.43
2016 243.1 1.66
2017 148.2 1.95

Average
(2002–2017) 118.6 1.03
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3.4. Sources of Uncertainty

Our analysis was subject to two primary sources of error: lake area determination and water
consumption calculation. Both of these are mainly dependent on the lake-interpretation by remote
sensing. In this study, clear-sky subsets of Landsat images were carefully selected, but a few images of
low contamination had to be used due to limited image availability for some time periods. Although
the adaptive method performs well and mitigates the effects of most interfering factors, cloud, cloud
shadows, and transmission striping can obscure the spectral response of lake water and impose
challenges to unambiguous lake interpretation [26,27]. Therefore, subsequent editing efforts based
on time-adjacent images are necessary to ensure the optimal product quality. Manual editing of lake
boundaries can certainly improve the accuracy of lake interpretation, but it does not guarantee properly
delineated lakes in the images and may cause minor errors due to lake interpretation.

Moreover, lake evaporation rate is also affected by the uncertainty of water consumption calculation
in this study. For the study site, Liu et al. (2016) [25] conducted an in-site experiment and obtained the
only observed data of lake evaporation rate of which we are aware. The semi-empirical model used in
the study was derived based on these short-term experimental results, and requires meteorological data
inputs from Ejina weather station. As regulated by lakes, micro-meteorological conditions around the
lakes are different from those in the weather station and it might cause some errors. However, as small
lakes in the study region could only have limited effects [9], meteorological conditions are similar
between the lakes and the weather station [25]. Therefore, it is reliable to derive lake evaporation rate
by using the semi-empirical model, which is confirmed by the determination coefficient of the model of
0.94 [25]. In addition, meteorological differences in short observation period and long estimation period
might also contribute non-negligible errors in lake evaporation rate. Since meteorological conditions in
the study region have proved stable over time during recent years [23–25], the semi-empirical model is
suited to obtain long time series used in this study.

4. Discussion

4.1. Ecological Effects of the EWDP on Terminal-Lake Ecosystems

The EWDP was first launched in 2000 and aimed to restore the ecological environment of the
Ejina Oasis, including the restoration of completely dried terminal lakes [35]. To achieve these target
objectives, river flow was effectively transported to the downstream area of the HRB, especially in
the East river [31]. However, due to the small amount of runoff at the LXS station during 2000–2001
(Figure 6a), the river flow went dry before entering the terminal lake. Thus, EJL recovered two years
after the project commenced. As described above (Figure 3), EJL expanded to 30.7 km2 in 2002 after
10 years of being dried up, and the lake has continued to hold free water since September 2003. By 2017,
the area of EJL was twice as large as its historical level observed in 1958 (35 km2) [36]. The expansion of
EJL also brought about the apparent formation of oases surrounding the lake [37]. Field investigations
and remotely sensed observations have confirmed significant increases in native vegetation growth
and species diversity around EJL [20,38], which were attributed to the increased groundwater recharge
and soil moisture content caused by the increased water volume in EJL [39]. The natural oases of the
terminal-lake ecosystem also played a role as an important ecological defense against sandstorms in
Northwestern China [31]. The strong sandstorms that broadly affected environmental health at the
beginning of the 21st century, were reported to drop in frequency following water reallocation [3].
This result was due to the conservation of surface water and groundwater, the promotion of natural
oases, and the consequent decrease in the quantity of sand sources [40]. Moreover, an adjacent ML has
also been replenished with the improved hydrological environment caused by the increased river flow
into the downstream area of the East river and the augmented surface area of EJL.

Furthermore, the river regulation by artificial water diversion also enabled the reallocation of
water for ecological storage by other un-targeted lakes in the lower HRB (Table 3). It was found
that, by an increase of 53.2% in LXS runoff from 2002 to 2003, the eastern SL, western WJL and BL,
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and an artificial Xiala reservoir in the core oases appeared in the area. Along with the EWDP, ecological
protection and restoration measures have been carried out in this area, and anthropogenic water use
of lakes is strictly restricted [40]. Lakes in the study area gradually expanded after the project was
launched, reaching a maximum of 243.2 km2 in 2016 and an average area of 118.6 km2 over the last
16 years. The area of terminal lakes may vary largely among years (Figure 6a), which was dependent on
the total runoff into the Ejina Oasis. As shown in Figure 6b, the total area of the lakes was positively and
strongly correlated with the LXS runoff, with a correlation coefficient of 0.71. Significant increases in
lake area were found during the periods of 2002–2008 and 2016–2017, in particular; however, the spatial
expansion of lakes was more evident after 2008 due to the dispersity of ecological water attribution and
the persistent water runoff from the upstream area. SL, XL, and BL have developed and maintained
certain scales since July 2008, September 2011, and October 2015, respectively. Additionally, lake
recovery processes along the East and West river showed spatially distinct consistency with the water
reallocation provided by the project.
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4.2. Implications for Sustainable Water Management

The implementation of the water diversion project since 2000 has led to not only a significant
increase in water surface area but also the restoration of surrounding vegetation and possibly a slight
recovery of shallow groundwater in the terminal-lake regions of the lower HRB [37,41]. Although
these positive outcomes have been achieved by the current water diversion project, potential problems
have also arisen. One of the most striking problems of the project was the competitive water use
between lakes and natural oases during the growing season. To effectively transport water to the
downstream area of the HRB and the terminal EJL, the natural river was replaced by artificial main
canals as a result of the EWDP [31]. The artificial canal along the East river cut off the hydrological
relationship between the river flow and groundwater, which caused some degradation of vegetation
along the East river [37]. In addition, EJL and other major lakes consumed water mainly during the
growing season, which might occupy the water use of natural oases growing throughout the region.
The small water reserves at the end of the West river might indicate a deficiency of water for oasis
development in the West river, which was evidenced by the decline in groundwater in the lower
reaches of the West river after the EWDP [42].

Another serious problem was the growing contradictions between increasing the lake area to
support the tourism economy and sustaining wetland ecology and reducing water losses to improve
water storage with a lesser amount of water discharge [40]. The increased availability of water
resulted in the expansion of EJL and accompanying surface water and development of the tourist
industry, which produces wealth and attracts people, leading to increased demands for water [39].
Our results showed that the lower reaches of the HRB experienced a continuous increase in lake water
consumption (Figure 5b), of which 37% was consumed by un-targeted water use, especially in the
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East river. Furthermore, the area of EJL recovered and reached up to 70.1 km2 due to the efficient
water supply, and the large-sized scale in EJL resulted in extensive water consumption as a result
of hyper-arid climate conditions, accounting for nearly 48% of the ecological water demand of the
terminal lake [36]. The smaller changes in EJL area with ever-increasing water supply to the lake after
2010 also highlighted the significant contribution of un-targeted lakes to the total water consumption
in the lower HRB. Therefore, it is essential to quantify the appropriate lake area and satisfy the water
requirements of the surrounding ecosystems.

For sustainable water resource allocation and ecosystem management in the study area, it is of great
importance to optimize the water distribution scheme with a detailed water resources management
project. Priority should be assigned to ecological restoration areas (i.e., riparian oases of the East and
West rivers, and EJL). The distribution of water resources for EJL should be determined on demand,
and the water diversions to the West river should be improved based on the current scale of riparian
oases in the lower HRB. Additionally, adequate water should be delivered within a suitable time
to guarantee that the water requirements of vegetation are being met at critical growth stages [43].
Joint restoration of surface-groundwater should be conducted on natural canals to ensure higher
conductivity and should be carried out mainly during the non-growing season due to the lag in
groundwater replenishment and high evaporation of free water surface in the area during the growing
period [37]. Overall, this study provides an integrated approach combining remote-sensing techniques
and in situ measures for determining lake area and lake water consumption. In this way, much longer
time series of simulation data can be obtained to reveal the actual restoration process of lake ecosystems
in the study area, and the study can also provide important implications for sustainable water resources
management on the basin scale in other arid endorheic basins.

5. Conclusions

The results of this study indicated that the EWDP in the HRB has effectively reallocated the surface
water resources, replenished the targeted EJL, and facilitated the recovery of five other lakes in the
area. EJL has gradually expanded since 2002, and the area increased by 128.3%, from 30.7 to 70.1 km2,
by 2017. With the recovery of un-targeted lakes in 2003, the total lake area of the lower HRB increased to
148.2 km2 by 2017, representing a 382.6% increase. However, the project has directly led to an imbalance
in the spatial distribution of lakes between the East and West rivers, resulting in approximately 90%
of water volume consumed in the East river, and the terminal Swan Lake has recently increased
to as large as EJL. Although administrative measures have ensured the efficient implementation of
EJL, these measures have generated an increase in water consumption by the over-enlargement of
the lake area, and an excess 37% of water volume has been consumed by the expansion of other
un-targeted lakes, especially during the growing season. Hence, the water management strategies
should be improved by integrating the East and West rivers as an integrated entity based on the current
scale of the oases and the appropriate area of EJL. Moreover, water allocation should be coordinated
by considering the distinguished characteristics of water used for vegetation development and for
surface-water and groundwater restoration.
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