Vertical Profile of Ozone Derived from Combined MLS and TES Satellite Observations
Abstract
:1. Introduction
2. Data
2.1. TES Ozone Retrievals
2.2. MLS Ozone Retrievals
2.3. Ozonesonde Observations
3. Methods
3.1. Data Screening
3.2. Pairing MLS and TES Observations
3.3. Vertical Profile Mapping
3.4. Combination Algorithm Design
4. Results
4.1. Combined Vertical Profile of Ozone
4.2. Horizonal Distribution of Combined Ozone at Specific Pressure Levels
4.3. Cases of Vertical Profile Validation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seinfeld, J.H.P.; Spyros, N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd ed.; Wiley: New York, NY, USA, 2016. [Google Scholar]
- Haagen-Smit, A.J. Chemistry and Physiology of Los Angeles Smog. Ind. Eng. Chem. 1952, 44, 1342–1346. [Google Scholar] [CrossRef]
- Jones, A.E.; Anderson, P.S.; Wolff, E.W.; Roscoe, H.K.; Marshall, G.J.; Richter, A.; Brough, N.; Colwell, S.R. Vertical structure of Antarctic tropospheric ozone depletion events: Characteristics and broader implications. Atmos. Chem. Phys. 2010, 10, 7775–7794. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Bhartia, P.K.; Chance, K.; Spurr, R.J.D.; Kurosu, T.P. Ozone profile retrievals from the Ozone Monitoring Instrument. Atmos. Chem. Phys. 2010, 10, 2521–2537. [Google Scholar] [CrossRef] [Green Version]
- Barré, J.; Peuch, V.-H.; Attié, J.-L.; El Amraoui, L.; Lahoz, W.A.; Josse, B.; Claeyman, M.; Nédélec, P. Stratosphere-troposphere ozone exchange from high resolution MLS ozone analyses. Atmos. Chem. Phys. 2012, 12, 6129–6144. [Google Scholar] [CrossRef] [Green Version]
- Wargan, K.; Pawson, S.; Stajner, I.; Thouret, V. Spatial structure of assimilated ozone in the upper troposphere and lower stratosphere. J. Geophys. Res. Atmos. 2010, 115, D24316. [Google Scholar] [CrossRef]
- Semane, N.; Peuch, V.-H.; El Amraoui, L.; Bencherif, H.; Massart, S.; Cariolle, D.; Attié, J.-L.; Abida, R. An observed and analysed stratospheric ozone intrusion over the high Canadian Arctic UTLS region during the summer of 2003. Q. J. R. Meteorol. Soc. 2007, 133, 171–178. [Google Scholar] [CrossRef]
- Stajner, I.; Wargan, K.; Pawson, S.; Hayashi, H.; Chang, L.-P.; Hudman, R.C.; Froidevaux, L.; Livesey, N.; Levelt, P.F.; Thompson, A.M.; et al. Assimilated ozone from EOS-Aura: Evaluation of the tropopause region and tropospheric columns. J. Geophys. Res. 2008, 113, D16. [Google Scholar] [CrossRef] [Green Version]
- El Amraoui, L.; Attié, J.-L.; Semane, N.; Claeyman, M.; Peuch, V.-H.; Warner, J.; Ricaud, P.; Cammas, J.-P.; Piacentini, A.; Josse, B.; et al. Midlatitude stratosphere–troposphere exchange as diagnosed by MLS O3 and MOPITT CO assimilated fields. Atmos. Chem. Phys. 2010, 10, 2175–2194. [Google Scholar] [CrossRef] [Green Version]
- Megie, G.J.; Ancellet, G.; Pelon, J. Lidar measurements of ozone vertical profiles. Appl. Opt. 1985, 24, 3454–3463. [Google Scholar] [CrossRef] [Green Version]
- Chi, X.; Liu, C.; Xie, Z.; Fan, G.; Wang, Y.; He, P.; Fan, S.; Hong, Q.; Wang, Z.; Yu, X.; et al. Observations of ozone vertical profiles and corresponding precursors in the low troposphere in Beijing, China. Atmos. Res. 2018, 213, 224–235. [Google Scholar] [CrossRef]
- Komhyr, W.D. Electrical concentration cells for gas analysis. Ann. Geophys. 1969, 25, 203–210. [Google Scholar]
- Komhyr, W.D.; Barnes, R.A.; Brothers, G.B.; Lathrop, J.A.; Opperman, D.P. Electrochemical concentration cell ozonesonde performance evaluation during STOIC 1989. J. Geophys. Res. Atmos. 1995, 100, 9231–9244. [Google Scholar] [CrossRef]
- Jonson, J.E.; Stohl, A.; Fiore, A.M.; Hess, P.; Szopa, S.; Wild, O.; Zeng, G.; Dentener, F.J.; Lupu, A.; Schultz, M.G.; et al. A multi-model analysis of vertical ozone profiles. Atmos. Chem. Phys. 2010, 10, 5759–5783. [Google Scholar] [CrossRef] [Green Version]
- Newchurch, M.J.; Ayoub, M.A.; Oltmans, S.; Johnson, B.; Schmidlin, F.J. Vertical distribution of ozone at four sites in the United States. J. Geophys. Res. 2003, 108, ACH 9-1–ACH 9-17. [Google Scholar] [CrossRef]
- Russell III, J.M.; Gordley, L.L.; Park, J.H.; Drayson, S.R.; Hesketh, W.D.; Cicerone, R.J.; Tuck, A.F.; Frederick, J.E.; Harries, J.E.; Crutzen, P.J. The halogen occultation experiment. J. Geophys. Res. Atmos. 1993, 98, 10777–10797. [Google Scholar] [CrossRef]
- Roche, A.; Kumer, J.; Mergenthaler, J.; Ely, G.; Uplinger, W.; Potter, J.; James, T.; Sterritt, L. The cryogenic limb array etalon spectrometer (CLAES) on UARS: Experiment description and performance. J. Geophys. Res. Atmos. 1993, 98, 10763–10775. [Google Scholar] [CrossRef]
- Connor, B.J.; Scheuer, C.; Chu, D.; Remedios, J.; Grainger, R.; Rodgers, C.; Taylor, F. Ozone in the middle atmosphere as measured by the improved stratospheric and mesospheric sounder. J. Geophys. Res. Atmos. 1996, 101, 9831–9841. [Google Scholar] [CrossRef]
- Barath, F.; Chavez, M.; Cofield, R.; Flower, D.; Frerking, M.; Gram, M.; Harris, W.; Holden, J.; Jarnot, R.; Kloezeman, W. The upper atmosphere research satellite microwave limb sounder instrument. J. Geophys. Res. Atmos. 1993, 98, 10751–10762. [Google Scholar] [CrossRef]
- Llewellyn, E.; Lloyd, N.; Degenstein, D.; Gattinger, R.; Petelina, S.; Bourassa, A.; Wiensz, J.; Ivanov, E.; McDade, I.; Solheim, B. The OSIRIS instrument on the Odin spacecraft. Can. J. Phys. 2004, 82, 411–422. [Google Scholar] [CrossRef]
- Fischer, H.; Birk, M.; Blom, C.; Carli, B.; Carlotti, M.; Von Clarmann, T.; Delbouille, L.; Dudhia, A.; Ehhalt, D.; Endemann, M. MIPAS: An instrument for atmospheric and climate research. Atmos. Chem. Phys. 2008, 8, 2151–2188. [Google Scholar] [CrossRef] [Green Version]
- Kyrölä, E.; Tamminen, J.; Leppelmeier, G.; Sofieva, V.; Hassinen, S.; Bertaux, J.; Hauchecorne, A.; Dalaudier, F.; Cot, C.; Korablev, O. GOMOS on Envisat: An overview. Adv. Space Res. 2004, 33, 1020–1028. [Google Scholar] [CrossRef]
- Burrows, J.; Hölzle, E.; Goede, A.; Visser, H.; Fricke, W. SCIAMACHY—Scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronaut. 1995, 35, 445–451. [Google Scholar] [CrossRef]
- Pagano, T.S.P.; Vivienne, H. The Atmospheric Infrared Sounder. In Handbook of Air Quality and Climate Change; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Levelt, P.F.; Van Den Oord, G.H.; Dobber, M.R.; Malkki, A.; Visser, H.; De Vries, J.; Stammes, P.; Lundell, J.O.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Gille, J.C.; Barnett, J.J.; Whitney, J.G.; Dials, M.A.; Woodard, D.; Rudolf, W.P.; Lambert, A.; Mankin, W. The High-Resolution Dynamics Limb Sounder (HIRDLS) experiment on AURA. In Proceedings of the Optical Science and Technology, SPIE’s 48th Annual Meeting, San Diego, CA, USA, 3 August 2003; pp. 162–171. [Google Scholar]
- Waters, J.W.; Froidevaux, L.; Harwood, R.S.; Jarnot, R.F.; Pickett, H.M.; Read, W.G.; Siegel, P.H.; Cofield, R.E.; Filipiak, M.J.; Flower, D.A. The earth observing system microwave limb sounder (EOS MLS) on the Aura satellite. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1075–1092. [Google Scholar] [CrossRef]
- Beer, R.; Glavich, T.A.; Rider, D.M. Tropospheric Emission Spectrometer for the Earth Observing System’s Aura satellite. Appl. Opt. 2001, 40, 2356–2367. [Google Scholar] [CrossRef]
- Mauldin III, L.; Zaun, N.; McCormick, M., Jr.; Guy, J.; Vaughn, W. Stratospheric Aerosol and Gas Experiment II instrument: A functional description. Opt. Eng. 1985, 24, 307–312. [Google Scholar] [CrossRef]
- Thomason, L.W.; Chu, W.P.; Pitts, M.C. Stratospheric Aerosol and Gas Experiment III. In Satellite Remote Sensing of Clouds and the Atmosphere III; International Society for Optics and Photonics: Bellingham, WA, USA, 1998; pp. 286–291. [Google Scholar]
- Tan, S.-Y. NOAA Satellites and Solar Backscatter Ultra Violet (SBUV) Subsystems. In Handbook of Cosmic Hazards and Planetary Defense; Springer: Cham, The Netherlands, 2015. [Google Scholar] [CrossRef]
- De Laat, A.T.J.; van Weele, M. The 2010 Antarctic ozone hole: Observed reduction in ozone destruction by minor sudden stratospheric warmings. Sci. Rep. 2011, 1, 38. [Google Scholar] [CrossRef] [Green Version]
- Ziemke, J.R.; Chandra, S.; Labow, G.J.; Bhartia, P.K.; Froidevaux, L.; Witte, J.C. A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements. Atmos. Chem. Phys. 2011, 11, 9237–9251. [Google Scholar] [CrossRef] [Green Version]
- McPeters, R.D.; Labow, G.J. Climatology 2011: An MLS and sonde derived ozone climatology for satellite retrieval algorithms. J. Geophys. Res. Atmos. 2012, 117, D17. [Google Scholar] [CrossRef] [Green Version]
- Labow, G.J.; Ziemke, J.R.; McPeters, R.D.; Haffner, D.P.; Bhartia, P.K. A total ozone-dependent ozone profile climatology based on ozonesondes and Aura MLS data. J. Geophys. Res. Atmos. 2015, 120, 2537–2545. [Google Scholar] [CrossRef]
- Shine, K.P.; Fouquart, Y.; Ramaswamy, V.; Solomon, S.; Srinivasan, J. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Section 2.4; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Ziemke, J.R.; Olsen, M.A.; Witte, J.C.; Douglass, A.R.; Strahan, S.E.; Wargan, K.; Liu, X.; Schoeberl, M.R.; Yang, K.; Kaplan, T.B.; et al. Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model. J. Geophys. Res. Atmos. 2014, 119, 5671–5699. [Google Scholar] [CrossRef]
- Jourdain, L.; Worden, H.M.; Worden, J.R.; Bowman, K.; Li, Q.; Eldering, A.; Kulawik, S.S.; Osterman, G.; Boersma, K.F.; Fisher, B.; et al. Tropospheric vertical distribution of tropical Atlantic ozone observed by TES during the northern African biomass burning season. Geophys. Res. Lett. 2007, 34, 28284. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Jacob, D.J.; Bowman, K.W.; Logan, J.A.; Turquety, S.; Hudman, R.C.; Li, Q.; Beer, R.; Worden, H.M.; Worden, J.R.; et al. Ozone-CO correlations determined by the TES satellite instrument in continental outflow regions. Geophys. Res. Lett. 2006, 33, 26399. [Google Scholar] [CrossRef] [Green Version]
- Jourdain, L.; Kulawik, S.S.; Worden, H.M.; Pickering, K.E.; Worden, J.; Thompson, A.M. Lightning NOx emissions over the USA constrained by TES ozone observations and the GEOS-Chem model. Atmos. Chem. Phys. 2010, 10, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Hess, P.; Tian, B. The response of the equatorial tropospheric ozone to the Madden–Julian Oscillation in TES satellite observations and CAM-chem model simulation. Atmos. Chem. Phys. 2014, 14, 11775–11790. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, K.; Eskes, H.J.; Sudo, K.; Takigawa, M.; van Weele, M.; Boersma, K.F. Simultaneous assimilation of satellite NO2, O3, CO, and HNO3 data for the analysis of tropospheric chemical composition and emissions. Atmos. Chem. Phys. 2012, 12, 9545–9579. [Google Scholar] [CrossRef] [Green Version]
- Miyazaki, K.; Eskes, H.J.; Sudo, K. A tropospheric chemistry reanalysis for the years 2005–2012 based on an assimilation of OMI, MLS, TES, and MOPITT satellite data. Atmos. Chem. Phys. 2015, 15, 8315–8348. [Google Scholar] [CrossRef] [Green Version]
- Warner, J.X.; Yang, R.; Wei, Z.; Carminati, F.; Tangborn, A.; Sun, Z.; Lahoz, W.; Attié, J.-L.; El Amraoui, L.; Duncan, B. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites. Atmos. Chem. Phys. 2014, 14, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; World Scientific: Singapore, 2000; Volume 2. [Google Scholar]
- Fu, D.; Worden, J.R.; Liu, X.; Kulawik, S.S.; Bowman, K.W.; Natraj, V. Characterization of ozone profiles derived from Aura TES and OMI radiances. Atmos. Chem. Phys. 2013, 13, 3445–3462. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Read, W.; Kulawik, S.; Worden, J.; Livesey, N.; Bowman, K.; Herman, R. Carbon monoxide (CO) vertical profiles derived from joined TES and MLS measurements. J. Geophys. Res. Atmos. 2013, 118, 10601–610613. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.; Kulawik, S.S.; Miyazaki, K.; Bowman, K.W.; Worden, J.R.; Eldering, A.; Livesey, N.J.; Teixeira, J.; Irion, F.W.; Herman, R.L.; et al. Retrievals of tropospheric ozone profiles from the synergism of AIRS and OMI: Methodology and validation. Atmos. Meas. Tech. 2018, 11, 5587–5605. [Google Scholar] [CrossRef] [Green Version]
- Beer, R.; Bowman, K.W.; Brown, P.D.; Clough, S.A.; Eldering, A.; Goldman, A.; Jacob, D.J.; Lampel, M.; Logan, J.A.; Luo, M.; et al. Tropospheric Emission Spectrometer (TES) Level 2 Algorithm Theoretical Basis Document, version 1.15; Jet Propulsion Laboratory, California Institute of Technology: Pasadena, CA, USA, 2002. [Google Scholar]
- Waymark, C.; Dudhia, A.; Barnett, J.; Taylor, F.; Piccolo, C. Combined ozone retrieval using the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Tropospheric Emission Spectrometer (TES). In Proceedings of the Envisat Symposium 2007, Montreux, Switzerland, 23–27 April 2007. [Google Scholar]
- Schoeberl, M.R.; Douglass, A.R.; Hilsenrath, E.; Bhartia, P.K.; Beer, R.; Waters, J.W.; Gunson, M.R.; Froidevaux, L.; Gille, J.C.; Barnett, J.J.; et al. Overview of the EOS Aura mission. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1066–1074. [Google Scholar] [CrossRef] [Green Version]
- Beer, R. TES on the Aura mission: Scientific objectives, measurements, and analysis overview. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1102–1105. [Google Scholar] [CrossRef]
- Livesey, N.J.; Read, W.G.; Wagner, P.A.; Froidevaux, L.; Santee, M.L.; Schwartz, M.J.; Lambert, A.; Valle, L.F.M.; Pumphrey, H.C.; Manney, G.L.; et al. Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) Version 5.0× Level 2 and 3 Data Quality and Description Document, Version 5.0–1.0a; JPL D-105336; California Institute of Technology: Pasadena, CA, USA, 2020. [Google Scholar]
- Livesey, N.J.; Van Snyder, W.; Read, W.G.; Wagner, P.A. Retrieval algorithms for the EOS Microwave Limb Sounder (MLS). IEEE Trans. Geosci. Remote Sens. 2006, 44, 1144–1155. [Google Scholar] [CrossRef]
- Deshler, T.; Mercer, J.L.; Smit, H.G.J.; Stubi, R.; Levrat, G.; Johnson, B.J.; Oltmans, S.J.; Kivi, R.; Thompson, A.M.; Witte, J.; et al. Atmospheric comparison of electrochemical cell ozonesondes from different manufacturers, and with different cathode solution strengths: The Balloon Experiment on Standards for Ozonesondes. J. Geophys. Res. 2008, 113, 8975. [Google Scholar] [CrossRef]
- Bowman, K.; Cady-Pereira, K.; Eldering, A.F.; Brendan, F.D.; Herman, R.J.D.; Jourdain, L.; Kulawik, S.; Luo, M.; Monarrez, R.O.; Gregory, P.; et al. Earth Observating System (EOS) Tropospheric Emission Spectrometer (TES) Level 2 (L2) Data User’s Guide, Version 8.0.; JPL D-38042; California Institute of Technology: Pasadena, CA, USA, 2020. [Google Scholar]
- Rodgers, C.D.; Connor, B.J. Intercomparison of remote sounding instruments. J. Geophys. Res. Atmos. 2003, 108, 2299. [Google Scholar] [CrossRef] [Green Version]
- Luo, M.; Rinsland, C.P.; Rodgers, C.D.; Logan, J.A.; Worden, H.; Kulawik, S.; Eldering, A.; Goldman, A.; Shephard, M.W.; Gunson, M.; et al. Comparison of carbon monoxide measurements by TES and MOPITT: Influence of a priori data and instrument characteristics on nadir atmospheric species retrievals. J. Geophys. Res. 2007, 112, 7663. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cohen, J.B.; Lin, C.; Deng, W. Constraining the relationships between aerosol height, aerosol optical depth and total column trace gas measurements using remote sensing and models. Atmos. Chem. Phys. 2020, 20, 15401–15426. [Google Scholar] [CrossRef]
- Wang, S.; Cohen, J.B.; Deng, W.; Qin, K.; Guo, J. Using a New Top-Down Constrained Emissions Inventory to Attribute the Previously Unknown Source of Extreme Aerosol Loadings Observed Annually in the Monsoon Asia Free Troposphere. Earth’s Future 2021, 9, e2021EF002167. [Google Scholar] [CrossRef]
- Lin, C.; Cohen, J.B.; Wang, S.; Lan, R.; Deng, W. A new perspective on the spatial, temporal, and vertical distribution of biomass burning: Quantifying a significant increase in CO emissions. Environ. Res. Lett. 2020, 15, 104091. [Google Scholar] [CrossRef]
- Kalashnikova, O.V.; Garay, M.J.; Martonchik, J.V.; Diner, D.J. MISR Dark Water aerosol retrievals: Operational algorithm sensitivity to particle non-sphericity. Atmos. Meas. Tech. 2013, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, P.; King, M.D.; Baum, B.A. Optical Property Model for Cirrus Clouds Based on Airborne Multi-Angle Polarization Observations. Remote Sens. 2021, 13, 2754. [Google Scholar] [CrossRef]
- Liang, L.; Di Girolamo, L. A global analysis on the view-angle dependence of plane-parallel oceanic liquid water cloud optical thickness using data synergy from MISR and MODIS. J. Geophys. Res. Atmos. 2013, 118, 15. [Google Scholar] [CrossRef]
- Kunzi, K.; Bauer, P.; Eresmaa, R.; Eriksson, P.; Healy, S.B.; Mugnai, A.; Livesey, N.; Prigent, C.; Smith, E.A.; Stephens, G. Microwave absorption, emission and scattering: Trace gases and meteorological parameters. In The Remote Sensing of Tropospheric Composition from Space; Springer: Berlin/Heidelberg, Germany, 2011; pp. 153–230. [Google Scholar]
- Rosenkranz, P.W.; Hutchison, K.D.; Hardy, K.R.; Davis, M.S. An assessment of the impact of satellite microwave sounder incidence angle and scan geometry on the accuracy of atmospheric temperature profile retrievals. J. Atmos. Ocean. Technol. 1997, 14, 488–494. [Google Scholar] [CrossRef]
- Zeng, Z.-C.; Xu, F.; Natraj, V.; Pongetti, T.J.; Shia, R.-L.; Zhang, Q.; Sander, S.P.; Yung, Y.L. Remote sensing of angular scattering effect of aerosols in a North American megacity. Remote Sens. Environ. 2020, 242, 111760. [Google Scholar] [CrossRef] [Green Version]
- Aben, I.; Hasekamp, O.; Hartmann, W. Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth’s atmosphere. J. Quant. Spectrosc. Radiat. Transf. 2007, 104, 450–459. [Google Scholar] [CrossRef]
- Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734. [Google Scholar] [CrossRef] [Green Version]
- O’Dell, C.W.; Connor, B.; Bösch, H.; O’Brien, D.; Frankenberg, C.; Castano, R.; Christi, M.; Eldering, D.; Fisher, B.; Gunson, M.; et al. The ACOS CO2 retrieval algorithm–Part 1: Description and validation against synthetic observations. Atmos. Meas. Tech. 2012, 5, 99–121. [Google Scholar] [CrossRef] [Green Version]
No. | Location | 681.291 hPa | 215.444 hPa | ||||||
---|---|---|---|---|---|---|---|---|---|
Ozonesonde | TES | MLS | Combined | Ozonesonde | TES | MLS | Combined | ||
1 | 64.2°S, 56.6°W * | 35.95 | 31.09 | 34.89 | 31.09 | 108.55 | 198.60 | 249.52 | 257.85 |
2 | 47.8°N, 11.0°E | 59.54 | 61.93 | 57.20 | 61.93 | 330.57 | 105.92 | 177.17 | 138.26 |
3 | 10.0°N, 84.2°W | 32.14 | 39.13 | 33.21 | 39.13 | 44.55 | 47.71 | 88.43 | 93.96 |
4 | 21.0°N, 105.8°E | 37.79 | 40.81 | 46.64 | 49.48 | 50.58 | 61.06 | 48.78 | 41.18 |
5 | 45.0°S, 169.7°E | 42.58 | 34.07 | 38.44 | 34.07 | 97.90 | 223.40 | 234.90 | 261.90 |
6 | 46.5°N, 6.6°E | 49.84 | 71.92 | 57.50 | 71.92 | 432.73 | 176.63 | 255.31 | 197.42 |
7 | 52.2°N, 14.1°E | 57.90 | 59.62 | 56.09 | 59.62 | 457.19 | 148.46 | 222.86 | 246.50 |
8 | 50.8°N, 4.4°E | 43.42 | 76.58 | 56.48 | 76.58 | 530.27 | 217.05 | 372.37 | 371.74 |
Location | Time (UTC) | |||
---|---|---|---|---|
TES | MLS | TES | MLS | |
Pair A | 68.8°S, 43.1°E | 68.9°S, 44.8°E | 15 January 2007 21:24:49 | 15 January 2007 21:17:42 |
Pair B | 70.4°S, 41.0°E | 70.3°S, 42.9°E | 15 January 2007 21:25:16 | 15 January 2007 21:18:07 |
Pair C | 42.9°N, 140.3°E | 42.9°N, 142.1°E | 26 December 2007 03:51:26 | 26 December 2007 03:44:28 |
Pair D | 41.2°N, 33.9°E | 41.5°N, 35.6°E | 10 October 2007 10:58:55 | 10 October 2007 10:51:59 |
RMSE | MARE | ||||||
---|---|---|---|---|---|---|---|
Combined | MLS | MLS a Priori | TES | Combined | MLS | MLS a Priori | |
Pair A | 232.08 | 231.86 | 668.97 | 332.89 | 0.16 | 0.26 | - |
Pair B Pair C Pair D | 288.47 453.60 315.24 | 288.61 454.62 312.17 | 733.35 772.59 199.13 | 451.72 915.07 904.27 | 0.18 0.43 0.20 | 0.29 0.42 0.21 | - - 0.22 |
RMSE | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lower Troposphere | Upper Troposphere | Stratosphere | ||||||||||
Combined | MLS | MLS a Priori | TES | Combined | MLS | MLS a Priori | TES | Combined | MLS | MLS a Priori | TES | |
Pair A | 2.74 | 10.56 | 10.10 | 2.66 | 82.27 | 81.26 | 160.27 | 120.66 | 314.88 | 314.70 | 918.58 | 451.20 |
Pair B | 1.96 | 11.92 | 11.41 | 1.93 | 89.07 | 87.76 | 164.39 | 112.52 | 389.41 | 389.76 | 997.92 | 613.41 |
Pair C | 19.02 | 17.62 | 18.44 | 19.00 | 86.44 | 86.73 | 215.58 | 140.63 | 631.72 | 633.13 | 1068.78 | 1277.15 |
Pair D | 4.76 | 8.04 | 8.77 | 4.73 | 86.67 | 85.56 | 57.71 | 43.77 | 431.49 | 427.31 | 272.13 | 1253.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, S.; Yuan, Q.; Zhang, F.; Zhu, L. Vertical Profile of Ozone Derived from Combined MLS and TES Satellite Observations. Remote Sens. 2022, 14, 1588. https://doi.org/10.3390/rs14071588
Liu J, Wang S, Yuan Q, Zhang F, Zhu L. Vertical Profile of Ozone Derived from Combined MLS and TES Satellite Observations. Remote Sensing. 2022; 14(7):1588. https://doi.org/10.3390/rs14071588
Chicago/Turabian StyleLiu, Jingwen, Sihui Wang, Qiangqiang Yuan, Feng Zhang, and Liye Zhu. 2022. "Vertical Profile of Ozone Derived from Combined MLS and TES Satellite Observations" Remote Sensing 14, no. 7: 1588. https://doi.org/10.3390/rs14071588
APA StyleLiu, J., Wang, S., Yuan, Q., Zhang, F., & Zhu, L. (2022). Vertical Profile of Ozone Derived from Combined MLS and TES Satellite Observations. Remote Sensing, 14(7), 1588. https://doi.org/10.3390/rs14071588