Optimizing a Standard Spectral Measurement Protocol to Enhance the Quality of Soil Spectra: Exploration of Key Variables in Lab-Based VNIR-SWIR Spectral Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Materials
2.1.1. Sampling Sites
2.1.2. Soil Samples Pretreatment
2.1.3. Basic Laboratory Materials
2.2. Sample Treatment and Control Experiments
2.2.1. Light Interference Control Group
2.2.2. Soil Temperature Control Group
2.2.3. Soil Moisture Control Group
2.2.4. Soil Particle Size Control Group
2.3. Methodology
2.3.1. Spectra Pre-Processing
2.3.2. Partial Least Squares Calibration and Validation
3. Results
3.1. The PLSR Modeling Benchmarks
3.2. Spectral Response and Estimation Results under Light Interference
3.3. Spectral Response and Estimation Results under Soil Temperature Interference
3.4. Spectral Response and Estimation Results under Soil Moisture Interference
3.5. Spectral Response and Estimation Results under Soil Particle Size Interference
3.6. Observation of the Temperature of the Spectrometer and Probe
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bengera, I.; Norris, K.H. Determination of moisture content in soybeans by direct spectrophotometry. Isr. J. Agric. Res. 1968, 18, 124–132. [Google Scholar]
- Ben-Dor, E.; Banin, A. Visible and near-infrared (0.4–1.1 μm) analysis of arid and semiarid soils. Remote Sens. Environ. 1994, 48, 261–274. [Google Scholar] [CrossRef]
- Ben-Dor, E. Quantitative remote sensing of soil properties. Adv. Agron. 2002, 75, 173–243. [Google Scholar] [CrossRef]
- Pasquini, C. Near Infrared Spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 2003, 14, 198–219. [Google Scholar] [CrossRef] [Green Version]
- Viscarra Rossel, R.A.; Walvoort, D.J.J.; McBratney, A.B.; Janik, L.J.; Skjemstad, J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006, 131, 59–75. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra-Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, A.; Boruvka, L. Common Chemometric Indicators for Prediction of Soil Organic Matter Content and Quality from Soil Spectra: A Review and Research Perspectives. In Proceedings of the International Workshop “Soil Spectroscopy: The Present and Future of Soil Monitoring”, Rome, Italy, 4 December 2013. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; Van Wesemael, B. Imaging Spectroscopy for Soil Mapping and Monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Morgan, C.L.; Grunwald, S.; Brown, D.J.; Sarkhot, D.V. Comparison of soil reflectance spectra and calibration models obtained using multiple spectrometers. Geoderma 2011, 161, 202–211. [Google Scholar] [CrossRef]
- Kopačková, V.; Ben-Dor, E. Normalizing reflectance from different spectrometers and protocols with an internal soil standard. Int. J. Remote Sens. 2016, 37, 1276–1290. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Carmon, N.; Klement, A.; Ben-Dor, E.; Borůvka, L. Agricultural Soil Spectral Response and Properties Assessment: Effects of Measurement Protocol and Data Mining Technique. Remote Sens. 2017, 9, 1078. [Google Scholar] [CrossRef] [Green Version]
- Chodak, M.; Ludwig, B.; Khanna, P.; Beese, F. Use of near infrared spectroscopy to determine biological and chemical char-acteristics of organic layers under spruce and beech stands. J. Plant Nutr. Soil Sci. 2002, 165, 27–33. [Google Scholar] [CrossRef]
- Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [Google Scholar] [CrossRef]
- Brown, D.J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed. Geoderma 2007, 140, 444–453. [Google Scholar] [CrossRef]
- Ben Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma 2015, 245, 112–124. [Google Scholar] [CrossRef]
- Reeves, J.; McCarty, G.; Mimmo, T. The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environ. Pollut. 2002, 116, S277–S284. [Google Scholar] [CrossRef]
- Nduwamungu, C.; Ziadi, N.; Parent, L.-É.; Tremblay, G.F.; Thuriès, L. Opportunities for, and limitations of, near infrared reflectance spectroscopy applications in soil analysis: A review. Can. J. Soil Sci. 2009, 89, 531–541. [Google Scholar] [CrossRef]
- Miltz, J.; Don, A. Optimising Sample Preparation and near Infrared Spectra Measurements of Soil Samples to Calibrate Organic Carbon and Total Nitrogen Content. J. Near Infrared Spectrosc. 2012, 20, 695–706. [Google Scholar] [CrossRef]
- Xiao, S.; He, Y. Application of Near-infrared Spectroscopy and Multiple Spectral Algorithms to Explore the Effect of Soil Particle Sizes on Soil Nitrogen Detection. Molecules 2019, 24, 2486. [Google Scholar] [CrossRef] [Green Version]
- Nie, P.; Dong, T.; He, Y.; Qu, F. Detection of Soil Nitrogen Using Near Infrared Sensors Based on Soil Pretreatment and Algorithms. Sensors 2017, 17, 1102. [Google Scholar] [CrossRef]
- Bowers, S.A.; Hanks, R.J. Reflection of radiant energy from soils. Soil Sci. 1965, 100, 130–138. [Google Scholar] [CrossRef] [Green Version]
- Neema, D.L.; Shah, A.; Patel, A.N. A statistical optical model for light reflection and penetration through sand. Int. J. Remote Sens. 1987, 8, 1209–1217. [Google Scholar] [CrossRef]
- Aurelien, B.; Vu, P.V.H.; Stéphane, J.; Françoise, V.; Sophie, F.; Xavier, B.; Morteza, S.; Michael, L.W.; Frédéric, B.; Jia, T. Marmit: A multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm). Remote Sens. Environ. 2018, 217, 1–17. [Google Scholar]
- Waiser, T.H.; Morgan, C.L.S.; Brown, D.J.; Hallmark, C.T. In Situ Characterization of Soil Clay Content with Visible Near-Infrared Diffuse Reflectance Spectroscopy. Soil Sci. Soc. Am. J. 2007, 71, 389–396. [Google Scholar] [CrossRef]
- Fontán, J.M.; Calvache, S.; López-Bellido, R.J.; López-Bellido, L. Soil carbon measurement in clods and sieved samples in a Mediterranean Vertisol by Visible and Near-Infrared Reflectance Spectroscopy. Geoderma 2010, 156, 93–98. [Google Scholar] [CrossRef]
- Disla, J.S.; Janik, L.J.; Rossel, R.V.; Macdonald, L.; McLaughlin, M.J. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2013, 49, 139–186. [Google Scholar] [CrossRef]
- Hou, Y.; Lv, C.; Xiang, H.; Wang, H. Treatment effects on soil hyperspectral stability in laboratory test. Chin. J. Soil Sci. 2013, 46, 287–291. (In Chinese) [Google Scholar]
- Wu, C.; Zheng, Y.; Yang, H.; Yang, Y.; Wu, Z. Effects of different particle sizes on the spectral prediction of soil organic matter. Catena 2020, 196, 104933. [Google Scholar] [CrossRef]
- Fearn, T. Standardisation and Calibration Transfer for near Infrared Instruments: A Review. J. Near Infrared Spectrosc. 2001, 9, 229–244. [Google Scholar] [CrossRef]
- Feudale, R.N.; Woody, N.A.; Tan, H.; Myles, A.J.; Brown, S.D.; Ferré, J. Transfer of multivariate calibration models: A review. Chemom. Intell. Lab. Syst. 2002, 64, 181–192. [Google Scholar] [CrossRef]
- Liu, H.; Yu, W.; Zhang, X.; Ma, Q.; Zhou, H.; Jiang, Z. Study on the main influencing factors of black soil spectral characteristics. Spectrosc. Spectr. Anal. 2009, 29, 3019–3022. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Borůvka, L.; Saberioon, M.; Kozák, J.; Vašát, R.; Němeček, K. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil Water Res. 2016, 10, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef] [Green Version]
- Dotto, A.C.; Dalmolin, R.S.D.; Caten, A.T.; Grunwald, S. A systematic study on the application of scatter-corrective and spectral-derivative preprocessing for multivariate prediction of soil organic carbon by Vis-NIR spectra. Geoderma 2018, 314, 262–274. [Google Scholar] [CrossRef]
- Vašát, R.; Kodešová, R.; Klement, A.; Borůvka, L. Simple but efficient signal pre-processing in soil organic carbon spectroscopic estimation. Geoderma 2017, 298, 46–53. [Google Scholar] [CrossRef]
- Soltani, I.; Fouad, Y.; Michot, D.; Bréger, P.; Dubois, R.; Cudennec, C. A near infrared index to assess effects of soil texture and organic carbon content on soil water content. Eur. J. Soil Sci. 2018, 70, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Burras, C.L.; Kravchenko, Y.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.A.; Zhang, X.; Cruse, R.M.; Yuan, X. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar] [CrossRef]
- DZ/T 0279. 27-2016: Analysis Methods for Regional Geochemical Sample-Part 27: Determination of Organic Carbon Contents by Potassium Dichromate Volumetric Method. Available online: http://www.doc88.com/p-7724868306719.html (accessed on 17 January 2022).
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Biney, J.K.M.; Blöcher, J.R.; Borůvka, L.; Vašát, R. Does the limited use of orthogonal signal correction pre-treatment approach to improve the prediction accuracy of soil organic carbon need attention? Geoderma 2021, 388, 114945. [Google Scholar] [CrossRef]
- De Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18, 251–263. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, S.; Zhu, B.; Chen, L.; Ye, Y.; Lu, P. Evaluating the Capability of Satellite Hyperspectral Imager, the ZY1–02D, for Topsoil Nitrogen Content Estimation and Mapping of Farmlands in Black Soil Area, China. Remote Sens. 2022, 14, 1008. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Curcio, J.A.; Petty, C.C. The Near Infrared Absorption Spectrum of Liquid Water. J. Opt. Soc. Am. 1951, 41, 302. [Google Scholar] [CrossRef]
- Stoner, E.R.; Baumgardner, M.F. Physiochemical, Site and Bidirectional Reflectance Factor Characteristics of Uniformly Moist Soils; Purdue University: West Lafayette, IN, USA, 1979. [Google Scholar]
- Bedidi, A.; Cervelle, B.; Madeira, J.; Pouget, M. Moisture effects on visible spectral characteristics of lateritic soils. Soil Sci. 1992, 153, 129–141. [Google Scholar] [CrossRef]
- Tekin, Y.; Tumsavas, Z.; Mouazen, A.M. Effect of Moisture Content on Prediction of Organic Carbon and pH Using Visible and Near-Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 188–198. [Google Scholar] [CrossRef]
- Barthès, B.G.; Brunet, D.; Ferrer, H.; Chotte, J.-L.; Feller, C. Determination of Total Carbon and Nitrogen Content in a Range of Tropical Soils Using near Infrared Spectroscopy: Influence of Replication and Sample Grinding and Drying. J. Near Infrared Spectrosc. 2006, 14, 341–348. [Google Scholar] [CrossRef]
- Krishnan, P.; Alexander, J.D.; Butler, B.J.; Hummel, J.W. Reflectance Technique for Predicting Soil Organic Matter. Soil Sci. Soc. Am. J. 1980, 44, 1282–1285. [Google Scholar] [CrossRef]
- Dalal, R.C.; Henry, R.J. Simultaneous Determination of Moisture, Organic Carbon, and Total Nitrogen by Near Infrared Reflectance Spectrophotometry. Soil Sci. Soc. Am. J. 1986, 50, 120–123. [Google Scholar] [CrossRef]
- Chang, C.-W.; Laird, D.A.; Mausbach, M.J.; Hurburgh, C.R., Jr. Near-Infrared Reflectance Spectroscopy-Principal Components Regression Analyses of Soil Properties. Soil Sci. Soc. Am. J. 2001, 65, 480–490. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Chen, X.; Peng, Z.; Chen, S.; Chen, W.; Han, L.; Li, Y. Prediction of soil organic matter content in a litchi orchard of South China using spectral indices. Soil Tillage Res. 2012, 123, 78–86. [Google Scholar] [CrossRef]
Datasets | SOC Content (%) | SD | CV | |||||
---|---|---|---|---|---|---|---|---|
Min | Q1 | Median | Q3 | Max | Mean | |||
JL | 0.91 | 2.50 | 2.63 | 2.47 | 3.70 | 2.60 | 0.52 | 0.20 |
HLJ | 1.78 | 2.62 | 2.51 | 2.17 | 3.76 | 2.55 | 0.41 | 0.16 |
Sample Set | Control Experiment | Treatment | Spectra Form | Model |
---|---|---|---|---|
Jilin | Benchmark | Standard | R/R’/A/C | Model JLBR/JLBR’/JLBA/JLBC |
Light | Darkroom 0.3 cm | R/R’/A/C | Model LaR/LaR’/LaA/LaC | |
Illuminated 0.3 cm | R/R’/A/C | Model LbR/LbR’/LbA/LbC | ||
Darkroom 1 cm | R/R’/A/C | Model LcR/LcR’/LcA/LcC | ||
Temperature | 30 °C | R/R’/A/C | Model TaR/TaR’/TaA/TaC | |
40 °C | R/R’/A/C | Model TbR/TbR’/TbA/TbC | ||
50 °C | R/R’/A/C | Model TcR/TcR’/TcA/TcC | ||
Moisture | slightly wet | R/R’/A/C | Model MaR/MaR’/MaA/MaC | |
severely wet | R/R’/A/C | Model MbR/MbR’/MbA/MbC | ||
Heilongjiang | Particle size | 0.075 mm sieved | R/R’/A/C | Model HBR/HBR’/HBA/HBC |
0.1 mm sieved | R/R’/A/C | Model PaR/PaR’/PaA/PaC | ||
0.25 mm sieved | R/R’/A/C | Model PbR/PbR’/PbA/PbC | ||
0.5 mm sieved | R/R’/A/C | Model PcR/PcR’/PcA/PcC | ||
1 mm sieved | R/R’/A/C | Model PdR/PdR’/PdA/PdC |
Model | JLBR | LaR | LbR | LcR | JLBR’ | LaR’ | LbR’ | LcR’ |
R2c | 0.938 | 0.944 | 0.929 | 0.914 | 0.994 | 0.984 | 0.990 | 0.981 |
R2v | 0.873 | 0.852 | 0.823 | 0.789 | 0.518 | 0.156 | 0.276 | −0.351 |
RMSEc | 0.128 | 0.122 | 0.137 | 0.150 | 0.041 | 0.065 | 0.050 | 0.071 |
RMSEv | 0.182 | 0.197 | 0.216 | 0.235 | 0.356 | 0.470 | 0.436 | 0.595 |
Model | JLBA | LaA | LbA | LcA | JLBC | LaC | LbC | LcC |
R2c | 0.893 | 0.931 | 0.927 | 0.921 | 0.748 | 0.861 | 0.801 | 0.694 |
R2v | 0.720 | 0.665 | 0.656 | 0.650 | 0.285 | 0.130 | 0.200 | −0.265 |
RMSEc | 0.167 | 0.135 | 0.139 | 0.144 | 0.257 | 0.191 | 0.229 | 0.283 |
RMSEv | 0.271 | 0.296 | 0.300 | 0.303 | 0.433 | 0.477 | 0.458 | 0.576 |
Model | JLBR | TaR | TbR | TcR | JLBR’ | TaR’ | TbR’ | TcR’ |
R2c | 0.938 | 0.902 | 0.934 | 0.947 | 0.994 | 0.993 | 0.984 | 0.995 |
R2v | 0.873 | 0.798 | 0.867 | 0.857 | 0.518 | 0.538 | 0.296 | 0.344 |
RMSEc | 0.128 | 0.160 | 0.132 | 0.118 | 0.041 | 0.043 | 0.064 | 0.035 |
RMSEv | 0.182 | 0.230 | 0.187 | 0.194 | 0.356 | 0.347 | 0.430 | 0.415 |
Model | JLBA | TaA | TbA | TcA | JLBC | TaC | TbC | TcC |
R2c | 0.893 | 0.854 | 0.875 | 0.885 | 0.748 | 0.719 | 0.921 | 0.896 |
R2v | 0.720 | 0.574 | 0.673 | 0.689 | 0.285 | −0.500 | 0.100 | −0.008 |
RMSEc | 0.167 | 0.196 | 0.181 | 0.174 | 0.257 | 0.272 | 0.144 | 0.166 |
RMSEv | 0.271 | 0.334 | 0.293 | 0.285 | 0.433 | 0.627 | 0.486 | 0.514 |
Model | JLBR | MaR | MbR | JLBR’ | MaR’ | MbR’ | JLBA | MaA | MbA | JLBC | MaC | MbC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2c | 0.938 | 0.884 | 0.857 | 0.994 | 0.973 | 0.990 | 0.893 | 0.880 | 0.865 | 0.748 | 0.603 | 0.730 |
R2v | 0.873 | 0.721 | 0.587 | 0.518 | −0.293 | 0.180 | 0.720 | 0.621 | 0.533 | 0.285 | −0.390 | 0.146 |
RMSEc | 0.128 | 0.175 | 0.194 | 0.041 | 0.085 | 0.051 | 0.167 | 0.178 | 0.188 | 0.257 | 0.322 | 0.266 |
RMSEv | 0.182 | 0.270 | 0.329 | 0.356 | 0.582 | 0.464 | 0.271 | 0.315 | 0.350 | 0.433 | 0.604 | 0.473 |
Model | HBR | PaR | PbR | PcR | PdR | HBR’ | PaR’ | PbR’ | PcR’ | PdR’ |
R2c | 0.980 | 0.968 | 0.961 | 0.959 | 0.971 | 0.973 | 0.972 | 0.952 | 0.961 | 0.957 |
R2v | 0.919 | 0.876 | 0.853 | 0.850 | 0.909 | 0.603 | 0.702 | 0.347 | 0.279 | 0.231 |
RMSEc | 0.057 | 0.072 | 0.079 | 0.081 | 0.068 | 0.066 | 0.067 | 0.087 | 0.079 | 0.083 |
RMSEv | 0.114 | 0.141 | 0.153 | 0.155 | 0.120 | 0.252 | 0.218 | 0.323 | 0.339 | 0.350 |
Model | HBA | PaA | PbA | PcA | PdA | HBC | PaC | PbC | PcC | PdC |
R2c | 0.999 | 0.999 | 0.998 | 0.999 | 0.999 | 0.987 | 0.989 | 0.979 | 0.983 | 0.980 |
R2v | 0.925 | 0.801 | 0.758 | 0.741 | 0.743 | 0.431 | 0.312 | 0.300 | 0.296 | 0.386 |
RMSEc | 0.010 | 0.012 | 0.016 | 0.014 | 0.014 | 0.045 | 0.042 | 0.058 | 0.052 | 0.057 |
RMSEv | 0.109 | 0.179 | 0.197 | 0.203 | 0.202 | 0.301 | 0.331 | 0.334 | 0.335 | 0.313 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Chen, S.; Lu, P.; Wang, Z.; Li, A.; Zeng, Q.; Chen, L. Optimizing a Standard Spectral Measurement Protocol to Enhance the Quality of Soil Spectra: Exploration of Key Variables in Lab-Based VNIR-SWIR Spectral Measurement. Remote Sens. 2022, 14, 1558. https://doi.org/10.3390/rs14071558
Xu Z, Chen S, Lu P, Wang Z, Li A, Zeng Q, Chen L. Optimizing a Standard Spectral Measurement Protocol to Enhance the Quality of Soil Spectra: Exploration of Key Variables in Lab-Based VNIR-SWIR Spectral Measurement. Remote Sensing. 2022; 14(7):1558. https://doi.org/10.3390/rs14071558
Chicago/Turabian StyleXu, Zhengyuan, Shengbo Chen, Peng Lu, Zibo Wang, Anzhen Li, Qinghong Zeng, and Liwen Chen. 2022. "Optimizing a Standard Spectral Measurement Protocol to Enhance the Quality of Soil Spectra: Exploration of Key Variables in Lab-Based VNIR-SWIR Spectral Measurement" Remote Sensing 14, no. 7: 1558. https://doi.org/10.3390/rs14071558
APA StyleXu, Z., Chen, S., Lu, P., Wang, Z., Li, A., Zeng, Q., & Chen, L. (2022). Optimizing a Standard Spectral Measurement Protocol to Enhance the Quality of Soil Spectra: Exploration of Key Variables in Lab-Based VNIR-SWIR Spectral Measurement. Remote Sensing, 14(7), 1558. https://doi.org/10.3390/rs14071558