Scale-Specific Prediction of Topsoil Organic Carbon Contents Using Terrain Attributes and SCMaP Soil Reflectance Composites
Abstract
:1. Introduction
2. Materials and Methods
- “Input data” comprises the provision of soil samples (Section 2.1.1) as well as the derivation of terrain attributes (Section 2.1.2) and multi-temporal SRCs (Section 2.1.3). By applying a segmentation algorithm (Section 2.1.4), both data types are used for generating multi-hierarchical reference units (RU), which are parameterized by applying zonal statistics operations (Section 2.1.5).
- “Machine learning” refers to the actual spatial SOC content prediction by applying the Random Forest algorithm. In addition, an internal and independent validation schema, as well as a recursive feature elimination analysis, is included (Section 2.2).
2.1. Input Data
2.1.1. Soil samples
2.1.2. Terrain Attributes
2.1.3. SCMaP-SRC
2.1.4. Segmentation
2.1.5. Parametrization
2.2. Machine Learning
3. Results
3.1. Filter-Based Parametrization
3.2. Scale-Specific Parametrization
4. Discussion
4.1. Data Quality and Fitness-for-Use
4.2. Scale-Specific Optimization
4.3. SCMaP-SRC as Additional Input for SOC Modeling
5. Conclusions
- There are scale-specific dependencies between the representativeness of the soil samples and the explanatory power of the variables used.
- Compared to terrain attributes, parameters based on multi-temporal soil reflectance composites are characterized by a higher explanatory power at fine scales.
- The explanatory power of terrain attributes is generally smaller but more balanced across scale levels.
- The best modeling variant is characterized by an accuracy of and , which outperforms modeling results based on a static window-based aggregation procedure with and .
- The study results suggest that DSM workflows should include scale-related optimizations.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil Organic Carbon—An Appropriate Indicator to Monitor Trends of Land and Soil Degradation within the SDG Framework? Number 77/2016 in UBA-Texte; Umweltbundesamt: Dessau-Roßlau, Germany, 2016. [Google Scholar]
- Prechtel, A.; von Lützow, M.; Uwe Schneider, B.; Bens, O.; Bannick, C.G.; Kögel-Knabner, I.; Hüttl, R.F. Organic carbon in soils of Germany: Status quo and the need for new data to evaluate potentials and trends of soil carbon sequestration. J. Plant Nutr. Soil Sci. 2009, 172, 601–614. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Chabrillat, S.; Demattê, J.A.M.; Ben-Dor, E.; Gholizadeh, A.; Zalidis, G.; van Wesemael, B. Earth observation data-driven cropland soil monitoring: A review. Remote Sens. 2021, 13, 4439. [Google Scholar] [CrossRef]
- Zepp, S.; Heiden, U.; Bachmann, M.; Wiesmeier, M.; Steininger, M.; van Wesemael, B. Estimation of soil organic carbon contents in croplands of Bavaria from SCMaP soil reflectance composites. Remote Sens. 2021, 13, 3141. [Google Scholar] [CrossRef]
- Möller, M.; Koschitzki, T.; Hartmann, K.J.; Jahn, R. Plausibility test of conceptual soil maps using relief parameters. CATENA 2012, 88, 57–67. [Google Scholar] [CrossRef]
- Lokers, R.; Knapen, R.; Janssen, S.; van Randen, Y.; Jansen, J. Analysis of Big Data technologies for use in agro-environmental science. Environ. Model. Softw. 2016, 84, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Wiesmeier, M.; Spörlein, P.; Geuß, U.; Hangen, E.; Haug, S.; Reischl, A.; Schilling, B.; Lützow, M.; Kögel-Knabner, I. Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob. Chang. Biol. 2012, 18, 2233–2245. [Google Scholar] [CrossRef]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2018, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Poeplau, C.; Jacobs, A.; Don, A.; Vos, C.; Schneider, F.; Wittnebel, M.; Tiemeyer, B.; Heidkamp, A.; Prietz, R.; Flessa, H. Stocks of organic carbon in German agricultural soils—Key results of the first comprehensive inventory. J. Plant Nutr. Soil Sci. 2020, 183, 665–681. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A. Digital soil mapping: A brief history and some lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Lausch, A.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Chabrilliat, S.; Dietrich, P.; Gerighausen, H.; Glässer, C.; Hacker, J.; et al. Linking remote sensing and geodiversity and their traits relevant to biodiversity—Part I: Soil characteristics. Remote Sens. 2019, 11, 2356. [Google Scholar] [CrossRef] [Green Version]
- Demattê, J.A.M.; Safanelli, J.L.; Poppiel, R.R.; Rizzo, R.; Silvero, N.E.Q.; Mendes, W.d.S.; Bonfatti, B.R.; Dotto, A.C.; Salazar, D.F.U.; Mello, F.A.d.O.; et al. Bare earth’s surface spectra as a proxy for soil resource monitoring. Sci. Rep. 2020, 10, 4461. [Google Scholar] [CrossRef] [PubMed]
- Dvorakova, K.; Heiden, U.; van Wesemael, B. Sentinel-2 exposed soil composite for soil organic carbon prediction. Remote Sens. 2021, 13, 1791. [Google Scholar] [CrossRef]
- Mello, F.A.; Bellinaso, H.; Mello, D.C.; Safanelli, J.L.; Mendes, W.D.S.; Amorim, M.T.; Gomez, A.M.; Poppiel, R.R.; Silvero, N.E.; Gholizadeh, A.; et al. Soil parent material prediction through satellite multispectral analysis on a regional scale at the Western Paulista Plateau, Brazil. Geoderma Reg. 2021, 26, e00412. [Google Scholar] [CrossRef]
- Silvero, N.E.Q.; Demattê, J.A.M.; Amorim, M.T.A.; Santos, N.V.d.; Rizzo, R.; Safanelli, J.L.; Poppiel, R.R.; Mendes, W.d.S.; Bonfatti, B.R. Soil variability and quantification based on Sentinel-2 and Landsat-8 bare soil images: A comparison. Remote Sens. Environ. 2021, 252, 112117. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Lagacherie, P.; Loiseau, T.; Baghdadi, N.; Urbina-Salazar, D.; Loubet, B.; Arrouays, D. Temporal mosaicking approaches of Sentinel-2 images for extending topsoil organic carbon content mapping in croplands. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102277. [Google Scholar] [CrossRef]
- Žížala, D.; Minařík, R.; Skála, J.; Beitlerová, H.; Juřicová, A.; Reyes Rojas, J.; Penížek, V.; Zádorová, T. High-resolution agriculture soil property maps from digital soil mapping methods, Czech Republic. CATENA 2022, 212, 106024. [Google Scholar] [CrossRef]
- Luo, C.; Wang, Y.; Zhang, X.; Zhang, W.; Liu, H. Spatial prediction of soil organic matter content using multiyear synthetic images and partitioning algorithms. CATENA 2022, 211, 106023. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, X.; Wang, Y.; Men, Z.; Liu, H. Regional soil organic matter mapping models based on the optimal time window, feature selection algorithm and Google Earth Engine. Soil Tillage Res. 2022, 219, 105325. [Google Scholar] [CrossRef]
- Möller, M.; Volk, M.; Friedrich, K.; Lymburner, L. Placing soil-genesis and transport processes into a landscape context: A multiscale terrain-analysis approach. J. Plant Nutr. Soil Sci. 2008, 171, 419–430. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; Zhu, A.X.; Scholten, T. The ConMap approach for terrain-based digital soil mapping. Eur. J. Soil Sci. 2010, 61, 133–143. [Google Scholar] [CrossRef]
- Deumlich, D.; Schmidt, R.; Sommer, M. A multiscale soil-landform relationship in the glacial-drift area based on digital terrain analysis and soil attributes. J. Plant Nutr. Soil Sci. 2010, 173, 843–851. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; Ramirez-Lopez, L.; Gallant, J.; Zhu, A.X.; Scholten, T. Hyper-scale digital soil mapping and soil formation analysis. Geoderma 2014, 213, 578–588. [Google Scholar] [CrossRef]
- Behrens, T.; Schmidt, K.; MacMillan, R.A.; Viscarra Rossel, R.A. Multi-scale digital soil mapping with deep learning. Sci. Rep. 2018, 8, 15244. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Adhikari, K.; Chellasamy, M.; Greve, M.B.; Owens, P.R.; Greve, M.H. Selection of terrain attributes and its scale dependency on soil organic carbon prediction. Geoderma 2019, 340, 303–312. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.C.; Padarian, J.; Minasny, B. Multi-source data integration for soil mapping using deep learning. SOIL 2019, 5, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Dornik, A.; Cheţan, M.A.; Drăguţ, L.; Dicu, D.D.; Iliuţă, A. Optimal scaling of predictors for digital mapping of soil properties. Geoderma 2022, 405, 115453. [Google Scholar] [CrossRef]
- Drăguţ, L.; Eisank, C. Object representations at multiple scales from digital elevation models. Geomorphology 2011, 129, 183–189. [Google Scholar] [CrossRef] [Green Version]
- Möller, M.; Volk, M. Effective map scales for soil transport processes and related process domains—Statistical and spatial characterization of their scale-specific inaccuracies. Geoderma 2015, 247–248, 151–160. [Google Scholar] [CrossRef]
- Radoux, J.; Bourdouxhe, A.; Coos, W.; Dufrêne, M.; Defourny, P. Improving ecotope segmentation by combining topographic and spectral data. Remote Sens. 2019, 11, 354. [Google Scholar] [CrossRef] [Green Version]
- Minár, J.; Evans, I.S. Elementary forms for land surface segmentation: The theoretical basis of terrain analysis and geomorphological mapping. Geomorphology 2008, 95, 236–259. [Google Scholar] [CrossRef]
- MacMillan, R.; Shary, P. Landforms and landform elements in geomorphometry. In Geomorphometry: Concepts, Software, Applications; Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 227–254. [Google Scholar] [CrossRef]
- Dornik, A.; Drăguţ, L.; Urdea, P. Classification of Soil Types Using Geographic Object-Based Image Analysis and Random Forests. Pedosphere 2018, 28, 913–925. [Google Scholar] [CrossRef]
- Coelho, F.F.; Giasson, E.; Campos, A.R.; de Oliveira e Silva, R.G.P.; Costa, J.J.F. Geographic object-based image analysis and artificial neural networks for digital soil mapping. CATENA 2021, 206, 105568. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization (FAO) of the United Nations: Rome, Italy, 2014. [Google Scholar]
- Thas, O. Comparing Distributions; Springer Series in Statistics; Springer: New York, NY, USA; London, UK, 2010. [Google Scholar]
- McBratney, A.; Mendonca Santos, M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Lamichhane, S.; Kumar, L.; Wilson, B. Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review. Geoderma 2019, 352, 395–413. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Yokoyama, R.; Shlrasawa, M.; Pike, R.J. Visualizing topography by openness: A new application of image processing to digital elevation models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Olaya, V. Chapter 6 Basic Land-Surface Parameters. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 141–169. [Google Scholar] [CrossRef]
- Planchon, O.; Darboux, F. A fast, simple and versatile algorithm to fill the depressions of digital elevation models. CATENA 2002, 46, 159–176. [Google Scholar] [CrossRef]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Rogge, D.; Bauer, A.; Zeidler, J.; Mueller, A.; Esch, T.; Heiden, U. Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ. 2018, 205, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zepp, S.; Jilge, M.; Metz-Marconcini, A.; Heiden, U. The influence of vegetation index thresholding on EO-based assessments of exposed soil masks in Germany between 1984 and 2019. ISPRS J. Photogramm. Remote Sens. 2021, 178, 366–381. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery/ATCOR-2/3 User Guide; Technical Report Version 8.3.1; ReSe Applications: Wil, Switzerland, 2014. [Google Scholar]
- Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sens. 2004, 58, 239–258. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Weng, Q.; Hay, G.J.; He, Y. Geographic object-based image analysis (GEOBIA): Emerging trends and future opportunities. GIScience Remote Sens. 2018, 55, 159–182. [Google Scholar] [CrossRef]
- Johnson, B.A.; Ma, L. Image segmentation and object-based image analysis for environmental monitoring: Recent areas of interest, researchers’ views on the future priorities. Remote Sens. 2020, 12, 1772. [Google Scholar] [CrossRef]
- Baston, D. Exactextractr: Fast Extraction from Raster Datasets Using Polygons. 2021. Available online: https://cran.r-project.org/web/packages/exactextractr/ (accessed on 13 March 2022).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.l.; Liu, F.; Song, X.d. Recent progress and future prospect of digital soil mapping: A review. J. Integr. Agric. 2017, 16, 2871–2885. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.; Gräler, B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef] [Green Version]
- Khaledian, Y.; Miller, B.A. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Svetnik, V.; Liaw, A.; Tong, C.; Wang, T. Application of breiman’s random forest to modeling structure-activity relationships of pharmaceutical molecules. In Multiple Classifier Systems; Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., et al., Eds.; Series Title: Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3077, pp. 334–343. [Google Scholar] [CrossRef]
- Drǎguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- MacMillan, R. Experiences with Applied DSM: Protocol, Availability, Quality and Capacity Building. In Digital Soil Mapping with Limited Data; Hartemink, A.E., McBratney, A., Mendonça-Santos, M.d.L., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 113–135. [Google Scholar] [CrossRef]
- Arrouays, D.; McBratney, A.; Bouma, J.; Libohova, Z.; Richer-de Forges, A.C.; Morgan, C.L.; Roudier, P.; Poggio, L.; Mulder, V.L. Impressions of digital soil maps: The good, the not so good, and making them ever better. Geoderma Reg. 2020, 20, e00255. [Google Scholar] [CrossRef]
- Kidd, D.; Searle, R.; Grundy, M.; McBratney, A.; Robinson, N.; O’Brien, L.; Zund, P.; Arrouays, D.; Thomas, M.; Padarian, J.; et al. Operationalising digital soil mapping—Lessons from Australia. Geoderma Reg. 2020, 23, e00335. [Google Scholar] [CrossRef]
- Hengl, T.; MacMillan, R.A. Predictive Soil Mapping with R; OpenGeoHub Foundation: Wageningen, The Netherlands, 2019. [Google Scholar]
- Piikki, K.; Wetterlind, J.; Söderström, M.; Stenberg, B. Perspectives on validation in digital soil mapping of continuous attributes—A review. Soil Use Manag. 2021, 37, 7–21. [Google Scholar] [CrossRef]
- Wentz, E.A.; Shimizu, M. Measuring spatial data fitness-for-use through multiple criteria decision making. Ann. Am. Assoc. Geogr. 2018, 108, 1150–1167. [Google Scholar] [CrossRef]
- Höck, H.; Toussaint, F.; Thiemann, H. Fitness for Use of Data Objects Described with Quality Maturity Matrix at Different Phases of Data Production. Data Sci. J. 2020, 19, 45. [Google Scholar] [CrossRef]
- Closa, G.; Masó, J.; Zabala, A.; Pesquer, L.; Pons, X. A provenance metadata model integrating ISO geospatial lineage and the OGC WPS: Conceptual model and implementation. Trans. GIS 2019, 23, 1102–1124. [Google Scholar] [CrossRef] [Green Version]
- Vaysse, K.; Lagacherie, P. Using quantile regression forest to estimate uncertainty of digital soil mapping products. Geoderma 2017, 291, 55–64. [Google Scholar] [CrossRef]
- Szatmári, G.; Pásztor, L. Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms. Geoderma 2019, 337, 1329–1340. [Google Scholar] [CrossRef]
- Kasraei, B.; Heung, B.; Saurette, D.D.; Schmidt, M.G.; Bulmer, C.E.; Bethel, W. Quantile regression as a generic approach for estimating uncertainty of digital soil maps produced from machine-learning. Environ. Model. Softw. 2021, 144, 105139. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T. Uncertainty analysis of sample locations within digital soil mapping approaches. Geoderma 2010, 155, 154–163. [Google Scholar] [CrossRef]
- Wu, J. Hierarchy and Scaling: Extrapolating Information along a Scaling Ladder. Can. J. Remote Sens. 1999, 25, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Volk, M.; Möller, M.; Wurbs, D. A pragmatic approach for soil erosion risk assessment within policy hierarchies. Land Use Policy 2010, 27, 997–1009. [Google Scholar] [CrossRef]
- Behrens, T.; Zhu, A.X.; Schmidt, K.; Scholten, T. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 2010, 155, 175–185. [Google Scholar] [CrossRef]
- Behrens, T.; Viscarra Rossel, R.A. On the interpretability of predictors in spatial data science: The information horizon. Sci. Rep. 2020, 10, 16737. [Google Scholar] [CrossRef] [PubMed]
- Verdonck, T.; Baesens, B.; Óskarsdóttir, M.; vanden Broucke, S. Special issue on feature engineering editorial. Mach. Learn. 2021. [Google Scholar] [CrossRef]
- Behrens, T.; Viscarra Rossel, R.A.; Kerry, R.; MacMillan, R.; Schmidt, K.; Lee, J.; Scholten, T.; Zhu, A.X. The relevant range of scales for multi-scale contextual spatial modelling. Sci. Rep. 2019, 9, 14800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühnel, A.; Wiesmeier, M.; Kögel-Knabner, I.; Spörlein, P. Veränderungen der Humusqualität und -Quantität bayerischer Böden im Klimawandel; Technical Report; Bayerisches Landesamt für Umwelt: Hof, Germany, 2020. [Google Scholar]
- Sharma, M.; Kaushal, R.; Kaushik, P.; Ramakrishna, S. Carbon farming: Prospects and challenges. Sustainability 2021, 13, 11122. [Google Scholar] [CrossRef]
- Lacroix, P.; Bièvre, G.; Pathier, E.; Kniess, U.; Jongmans, D. Use of Sentinel-2 images for the detection of precursory motions before landslide failures. Remote Sens. Environ. 2018, 215, 507–516. [Google Scholar] [CrossRef]
- Ienco, D.; Interdonato, R.; Gaetano, R.; Ho Tong Minh, D. Combining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture. ISPRS J. Photogramm. Remote Sens. 2019, 158, 11–22. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
Explanatory Variable | Meaning | Multi-Scale Tuning Parameter (Start and End Value) | Variant Number | Source |
---|---|---|---|---|
Digital Elevation Model with filled sinks | – | 1 | [46] | |
Slope | – | 1 | [47] | |
Vertical Distance above Channel Network | Catchment Area (CA ∈ [10,000:1000,000]) | 10 | [41] | |
Terrain Classification Index | Catchment Area (CA ∈ [10,000:1000,000]) | 10 | [41] | |
Topographic Wetness Index | – | 1 | [44] | |
Mass Balance Index | Curvature Transfer Constant ( 0.0001:0.1) | 10 | [21] | |
Topographic (positive) Openness | – | 1 | [43] | |
Topographic (negative) Openness | – | 1 | [43] | |
Normalized Height | Generalization Parameter ( [2:1000]) | 10 | [41] | |
Topographic Position Index | Scale Parameter ( [20:1000]) | 10 | [42] | |
SCMaP-SRC (1984–2014), Landsat Reflectances | – | 7 | [48] | |
SCMaP-SRC (1984–2014), normalized Landsat Reflectances | – | 7 | [48] |
Variant | Sample Number | |||||||
---|---|---|---|---|---|---|---|---|
Bavaria | 939 | 1.29 | 0.62 | 0.54 | 0.94 | 1.32 | 0.65 | 0.58 |
Subset | 220 | 2.30 | 0.60 | 1.00 | 0.92 | 2.11 | 0.74 | 0.74 |
Scale Level | Object Number | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
10 | 18183 | 2.89 | 31 | 0.43 | 85 | 3.26 | 0.53 | 0.35 | 2.57 | 0.45 | 1.33 | 0.87 | 3.28 | 0.47 | 0.42 | 2.61 | 0.44 | 1.32 | 0.87 | 3.34 | 0.48 | 0.41 |
9 | 54306 | 2.90 | 0.32 | 1.34 | 0.87 | 2.96 | 0.58 | 0.38 | 2.49 | 0.51 | 1.28 | 0.86 | 3.01 | 0.53 | 0.44 | 2.54 | 0.50 | 1.18 | 0.90 | 3.18 | 0.51 | 0.43 |
8 | 55011 | 3.04 | 0.27 | 1.37 | 0.86 | 3.07 | 0.57 | 0.34 | 2.73 | 0.43 | 1.30 | 0.86 | 2.97 | 0.53 | 0.45 | 2.73 | 0.44 | 1.39 | 0.85 | 2.92 | 0.59 | 0.39 |
7 | 56113 | 2.86 | 0.33 | 1.11 | 0.90 | 2.91 | 0.61 | 0.35 | 2.55 | 0.44 | 1.18 | 0.88 | 3.01 | 0.58 | 0.48 | 2.57 | 0.44 | 1.09 | 0.91 | 2.88 | 0.64 | 0.45 |
6 | 57718 | 2.85 | 0.33 | 1.10 | 0.89 | 2.78 | 0.62 | 0.36 | 2.39 | 0.52 | 1.11 | 0.90 | 2.65 | 0.65 | 0.51 | 2.49 | 0.48 | 1.10 | 0.90 | 2.76 | 0.65 | 0.48 |
5 | 60338 | 2.75 | 0.36 | 1.15 | 0.89 | 3.00 | 0.56 | 0.34 | 2.51 | 0.45 | 1.17 | 0.88 | 2.88 | 0.55 | 0.48 | 2.53 | 0.45 | 1.07 | 0.90 | 3.00 | 0.55 | 0.39 |
4 | 65018 | 2.76 | 0.36 | 1.12 | 0.90 | 3.26 | 0.43 | 0.33 | 2.39 | 0.49 | 1.00 | 0.92 | 2.95 | 0.49 | 0.46 | 2.46 | 0.48 | 0.94 | 0.92 | 3.17 | 0.43 | 0.41 |
3 | 74575 | 2.64 | 0.41 | 0.97 | 0.91 | 3.47 | 0.46 | 0.34 | 2.19 | 0.59 | 0.98 | 0.92 | 2.88 | 0.59 | 0.48 | 2.22 | 0.58 | 0.86 | 0.94 | 2.74 | 0.62 | 0.46 |
2 | 98630 | 2.85 | 0.32 | 0.95 | 0.91 | 3.03 | 0.56 | 0.34 | 2.19 | 0.61 | 0.97 | 0.91 | 2.35 | 0.73 | 0.60 | 2.28 | 0.57 | 0.89 | 0.94 | 2.43 | 0.71 | 0.50 |
1 | 203379 | 2.62 | 0.41 | 0.85 | 0.93 | 3.31 | 0.52 | 0.37 | 2.15 | 0.60 | 0.90 | 0.94 | 2.16 | 0.81 | 0.69 | 2.20 | 0.58 | 0.85 | 0.95 | 2.35 | 0.78 | 0.61 |
0.9 | 235484 | 2.73 | 0.37 | 0.93 | 0.93 | 3.32 | 0.50 | 0.35 | 2.14 | 0.61 | 0.81 | 0.95 | 2.39 | 0.75 | 0.66 | 2.22 | 0.58 | 0.86 | 0.94 | 2.35 | 0.76 | 0.59 |
0.8 | 280084 | 2.75 | 0.36 | 0.90 | 0.94 | 3.10 | 0.54 | 0.34 | 2.22 | 0.58 | 0.90 | 0.94 | 2.00 | 0.84 | 0.73 | 2.25 | 0.56 | 0.78 | 0.95 | 2.02 | 0.84 | 0.66 |
0.7 | 345398 | 2.80 | 0.33 | 0.93 | 0.93 | 3.18 | 0.54 | 0.34 | 2.24 | 0.57 | 0.90 | 0.94 | 2.23 | 0.79 | 0.72 | 2.26 | 0.56 | 0.82 | 0.94 | 2.30 | 0.79 | 0.65 |
0.6 | 450939 | 2.81 | 0.34 | 0.93 | 0.92 | 3.21 | 0.54 | 0.33 | 2.18 | 0.60 | 0.86 | 0.94 | 2.11 | 0.81 | 0.70 | 2.20 | 0.59 | 0.85 | 0.94 | 1.99 | 0.84 | 0.63 |
0.5 | 631794 | 2.79 | 0.35 | 0.89 | 0.93 | 3.29 | 0.55 | 0.33 | 2.28 | 0.57 | 0.96 | 0.93 | 2.14 | 0.81 | 0.71 | 2.31 | 0.55 | 0.85 | 0.94 | 2.06 | 0.83 | 0.65 |
0.4 | 965994 | 2.86 | 0.31 | 0.93 | 0.93 | 3.44 | 0.53 | 0.35 | 2.43 | 0.52 | 0.96 | 0.93 | 2.31 | 0.82 | 0.66 | 2.39 | 0.52 | 0.89 | 0.93 | 2.27 | 0.82 | 0.65 |
0.3 | 1515513 | 2.83 | 0.32 | 0.96 | 0.93 | 3.30 | 0.58 | 0.36 | 2.12 | 0.65 | 0.84 | 0.95 | 3.10 | 0.65 | 0.53 | 2.16 | 0.63 | 0.81 | 0.95 | 3.18 | 0.67 | 0.50 |
Scale Level | TA | SRC | TA+SRC |
---|---|---|---|
10.0 | , , , | , , , , , , , , , | , , , , , , , , , , |
9.0 | , , , | , , , , , , , , , , , | , , , , , , , , |
8.0 | , , | , , , , | , , , , |
7.0 | , , | , , , | , , , , , , , , , , , , , , , |
6.0 | , , , , | , , | , , , , |
5.0 | , , , , | , , | , , , , , , , , , , , , , , |
4.0 | , , , | , , , , | , , , , , , , , , , , |
3.0 | , | , , , , , , , , | , , , , , , , , , , , , , , , |
2.0 | , | , , , , , , , , , | , , , , , , , , , , , , , , , , , |
1.0 | , , | , , , , , , , , , , , , , | , , , , , , , , , , , , , , , |
0.9 | , | , , , , , , , , | , , , , , , , , , |
0.8 | , | , , | , , , |
0.7 | , | , , | , , , , , |
0.6 | , | , , , , , , , , , | , , , , , , , , , , , , |
0.5 | , , | , , , | , , , , , , , |
0.4 | , | , , , | , , |
0.3 | , , | , , , , , , , , , | , , , , , , , , , , , , , , , , , |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Möller, M.; Zepp, S.; Wiesmeier, M.; Gerighausen, H.; Heiden, U. Scale-Specific Prediction of Topsoil Organic Carbon Contents Using Terrain Attributes and SCMaP Soil Reflectance Composites. Remote Sens. 2022, 14, 2295. https://doi.org/10.3390/rs14102295
Möller M, Zepp S, Wiesmeier M, Gerighausen H, Heiden U. Scale-Specific Prediction of Topsoil Organic Carbon Contents Using Terrain Attributes and SCMaP Soil Reflectance Composites. Remote Sensing. 2022; 14(10):2295. https://doi.org/10.3390/rs14102295
Chicago/Turabian StyleMöller, Markus, Simone Zepp, Martin Wiesmeier, Heike Gerighausen, and Uta Heiden. 2022. "Scale-Specific Prediction of Topsoil Organic Carbon Contents Using Terrain Attributes and SCMaP Soil Reflectance Composites" Remote Sensing 14, no. 10: 2295. https://doi.org/10.3390/rs14102295
APA StyleMöller, M., Zepp, S., Wiesmeier, M., Gerighausen, H., & Heiden, U. (2022). Scale-Specific Prediction of Topsoil Organic Carbon Contents Using Terrain Attributes and SCMaP Soil Reflectance Composites. Remote Sensing, 14(10), 2295. https://doi.org/10.3390/rs14102295