Application of Multispectral Remote Sensing for Mapping Flood-Affected Zones in the Brumadinho Mining District (Minas Gerais, Brasil)
Abstract
:1. Introduction
2. Geological Setting
3. Main Features of the Brumadinho Tailing Dam B1: Structure and Geochemical Characterization
4. Methods of Study
5. Results
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- dos Santos Vergilio, C.; Lacerda, D.; de Oliveira, B.C.V.; Sartori, E.; Campos, G.M.; de Souza Pereira, A.L.; de Aguiar, D.B.; da Silva Souza, T.; de Almeida, M.G.; Thompson, F.; et al. Metal Concentrations and Biological Effects from One of the Largest Mining Disasters in the World (Brumadinho, Minas Gerais, Brazil). Sci. Rep. 2020, 10, 5936. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.; de Oliveira, B.C.; Cordeiro, M.C.; Masi, B.P.; Rangel, T.P.; Paz, P.; Freitas, T.; Lopes, G.; Silva, B.S.; Cabral, A.S.; et al. Severe Impacts of the Brumadinho Dam Failure (Minas Gerais, Brazil) on the Water Quality of the Paraopeba River. Sci. Total Environ. 2020, 705, 135914. [Google Scholar] [CrossRef]
- Silva Rotta, L.H.; Alcântara, E.; Park, E.; Negri, R.G.; Lin, Y.N.; Bernardo, N.; Mendes, T.S.G.; Souza Filho, C.R. The 2019 Brumadinho Tailings Dam Collapse: Possible Cause and Impacts of the Worst Human and Environmental Disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102119. [Google Scholar] [CrossRef]
- Agência Nacional de Águas; Companhia de Saneamento de Minas Gerais; Serviço Geológico do Brasil; Instituto Mineiro de Gestão das Águas. Informativo N° 32-Informativo Diário Dos Parâmetros de Qualidade Das Águas Nos Locais Monitorados Ao Longo Do Rio Paraopeba, Após o Desastre Na Barragem B1 No Complexo Da Mina Córrego Feijão Da Mineradora Vale/SA de Brumadinho-Minas Gerais. 2019. Available online: http://www.repositorioigam.meioambiente.mg.gov.br/handle/123456789/2971 (accessed on 11 January 2022).
- Furlan, J.P.R.; dos Santos, L.D.R.; Moretto, J.A.S.; Ramos, M.S.; Gallo, I.F.L.; de Assis Dias Alves, G.; Paulelli, A.C.; de Souza Rocha, C.C.; Cesila, C.A.; Gallimberti, M.; et al. Occurrence and Abundance of Clinically Relevant Antimicrobial Resistance Genes in Environmental Samples after the Brumadinho Dam Disaster, Brazil. Sci. Total Environ. 2020, 726, 138100. [Google Scholar] [CrossRef] [PubMed]
- Du, Z.; Ge, L.; Ng, A.H.-M.; Zhu, Q.; Horgan, F.G.; Zhang, Q. Risk Assessment for Tailings Dams in Brumadinho of Brazil Using InSAR Time Series Approach. Sci. Total Environ. 2020, 717, 137125. [Google Scholar] [CrossRef] [PubMed]
- Holden, D.; Donegan, S.; Pon, A.; Dight, P.M. Brumadinho Dam InSAR Study: Analysis of TerraSAR-X, COSMO-SkyMed and Sentinel-1 Images Preceding the Collapse; Australian Centre for Geomechanics: Crawley, Australia, 2020; pp. 293–306. [Google Scholar]
- Ammirati, L.; Mondillo, N.; Calcaterra, D.; Di Martire, D. Sentinel-1 Data for Monitoring a Pre-Failure Event of Tailings Dam. In European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 140–148. [Google Scholar]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and Hyperspectral Geologic Remote Sensing: A Review. International J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for Geological Applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Gläßer, C.; Reinartz, P. Multitemporal and Multispectral Remote Sensing Approach for Flood Detection in the Elbe-Mulde Region 2002. Acta Hydrochim. Et Hydrobiol. 2005, 33, 395–403. [Google Scholar] [CrossRef]
- Aamir, M.; Ali, T.; Irfan, M.; Shaf, A.; Azam, M.Z.; Glowacz, A.; Brumercik, F.; Glowacz, W.; Alqhtani, S.; Rahman, S. Natural Disasters Intensity Analysis and Classification Based on Multispectral Images Using Multi-Layered Deep Convolutional Neural Network. Sensors 2021, 21, 2648. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Azad, R.K.; Chowdary, V.M.; Jha, C.S. Delineation of Frequently Flooded Areas Using Remote Sensing: A Case Study in Part of Indo-Gangetic Basin. In Geospatial Technologies for Land and Water Resources Management; Pandey, A., Chowdary, V.M., Behera, M.D., Singh, V.P., Eds.; Water Science and Technology Library; Springer International Publishing: Cham, Switzerland, 2022; pp. 505–530. ISBN 978-3-030-90479-1. [Google Scholar]
- Yan, D.; Zhang, H.; Li, G.; Li, X.; Lei, H.; Lu, K.; Zhang, L.; Zhu, F. Improved Method to Detect the Tailings Ponds from Multispectral Remote Sensing Images Based on Faster R-CNN and Transfer Learning. Remote Sens. 2022, 14, 103. [Google Scholar] [CrossRef]
- Kasmaeeyazdi, S.; Braga, R.; Tinti, F.; Mandanici, E. Mapping Bauxite Mining Residues Using Remote Sensing Techniques. Mater. Proc. 2022, 5, 91. [Google Scholar] [CrossRef]
- European Space Agency. Sentinel-2 User Handbook; European Space Agency: Paris, France, 2015; Volume 1, pp. 1–64. [Google Scholar]
- Ge, W.; Cheng, Q.; Jing, L.; Wang, F.; Zhao, M.; Ding, H. Assessment of the Capability of Sentinel-2 Imagery for Iron-Bearing Minerals Mapping: A Case Study in the Cuprite Area, Nevada. Remote Sens. 2020, 12, 3028. [Google Scholar] [CrossRef]
- Van der Werff, H.; Van der Meer, F. Sentinel-2 for Mapping Iron Absorption Feature Parameters. Remote Sens. 2015, 7, 12635–12653. [Google Scholar] [CrossRef] [Green Version]
- Mielke, C.; Boesche, N.K.; Rogass, C.; Kaufmann, H.; Gauert, C.; De Wit, M. Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens. 2014, 6, 6790–6816. [Google Scholar] [CrossRef] [Green Version]
- Cudahy, T.J.; Ramanaidou, E.R. Measurement of the Hematite:Goethite Ratio Using Field Visible and Near-infrared Reflectance Spectrometry in Channel Iron Deposits, Western Australia. Aust. J. Earth Sci. 1997, 44, 411–420. [Google Scholar] [CrossRef]
- Crowley, J.K.; Williams, D.E.; Hammarstrom, J.M.; Piatak, N.; Chou, I.-M.; Mars, J.C. Spectral Reflectance Properties (0.4–2.5 Μm) of Secondary Fe-Oxide, Fe-Hydroxide, and Fe-Sulphate-Hydrate Minerals Associated with Sulphide-Bearing Mine Wastes. Geochem. Explor. Environ. Anal. 2003, 3, 219–228. [Google Scholar] [CrossRef]
- Hensler, A.-S.; Hagemann, S.G.; Rosière, C.A.; Angerer, T.; Gilbert, S. Hydrothermal and Metamorphic Fluid-Rock Interaction Associated with Hypogene “Hard” Iron Ore Mineralisation in the Quadrilátero Ferrífero, Brazil: Implications from in-Situ Laser Ablation ICP-MS Iron Oxide Chemistry. Ore Geol. Rev. 2015, 69, 325–351. [Google Scholar] [CrossRef]
- Dorr, J.V.N. Physiographic, Stratigraphic, and Structural Development of the Quadrilatero Ferrifero, Minas Gerais, Brazil. Available online: https://pubs.er.usgs.gov/publication/pp641A (accessed on 11 January 2022).
- Chemale, F.; Rosière, C.A.; Endo, I. The Tectonic Evolution of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambr. Res. 1994, 65, 25–54. [Google Scholar] [CrossRef]
- Hensler, A.-S.; Rosière, C.A.; Hagemann, S.G. Iron Oxide Mineralization at the Contact Zone Between Phyllite and Itabirite of the Pau Branco Deposit, Quadrilátero Ferrífero, Brazil—Implications for Fluid-Rock Interaction during Iron Ore Formation. Econ. Geol. 2017, 112, 941–982. [Google Scholar] [CrossRef]
- Guimarães, D. Contribuição Ao Estudo Da Origem Dos Depositos de Minerio de Ferro e Manganez Do Centro de Minas Geraes. 1935. Available online: https://catalog.lib.uchicago.edu/vufind/Record/4095137 (accessed on 11 January 2022).
- Alkmim, F.F.; Marshak, S. Transamazonian Orogeny in the Southern São Francisco Craton Region, Minas Gerais, Brazil: Evidence for Paleoproterozoic Collision and Collapse in the Quadrilátero Ferrífero. Precambr. Res. 1998, 90, 29–58. [Google Scholar] [CrossRef]
- Klein, C.; Ladeira, E.A. Geochemistry and Petrology of Some Proterozoic Banded Iron-Formations of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Econ. Geol. 2000, 95, 405–427. [Google Scholar] [CrossRef]
- Cabral, A.R.; Zeh, A.; Koglin, N.; Gomes, A.A.S., Jr.; Viana, D.J.; Lehmann, B. Dating the Itabira Iron Formation, Quadrilátero Ferrífero of Minas Gerais, Brazil, at 2.65 Ga: Depositional U–Pb Age of Zircon from a Metavolcanic Layer. Precambr. Res. 2012, 204, 40–45. [Google Scholar] [CrossRef]
- Rosiere, C.A.; Chemale, F. Genesis of Banded Iron-Formations; Discussion. Econ. Geol. 1996, 91, 466–468. [Google Scholar] [CrossRef]
- Baltazar, O.F.; Zucchetti, M. Lithofacies Associations and Structural Evolution of the Archean Rio Das Velhas Greenstone Belt, Quadrilátero Ferrífero, Brazil: A Review of the Setting of Gold Deposits. Ore Geol. Rev. 2007, 32, 471–499. [Google Scholar] [CrossRef]
- Herz, N. Metamorphic Rocks of the Quadrilatero Ferrifero, Minas Gerais, Brazil. 1978. Available online: https://pubs.er.usgs.gov/publication/pp641C (accessed on 11 January 2022).
- Renger, F.E.; Noce, C.M.; Romano, A.W.; Machado, N. Evolução Sedimentar Do Supergrupo Minas: 500 MA. De Registro Geológico No Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos 1994, 2, 1–11. [Google Scholar] [CrossRef]
- Pires, F. Textural and Mineralogical Variations during Metamosphism of the Proterozoic Itabira Iron Formation in the Quadrilatero Ferrifero, Minas Gerais, Brazil. An. Acad. Bras. Ciências 1995, 67, 77–106. [Google Scholar]
- Babinski, M.; Chemale, F.; Van Schmus, W.R. The Pb/Pb Age of the Minas Supergroup Carbonate Rocks, Quadrilátero Ferrífero, Brazil. Precambr. Res. 1995, 72, 235–245. [Google Scholar] [CrossRef]
- Lüders, V.; Romer, R.L.; Cabral, A.R.; Schmidt, C.; Banks, D.A.; Schneider, J. Genesis of Itabirite-Hosted Au–Pd–Pt-Bearing Hematite-(Quartz) Veins, Quadrilátero Ferrífero, Minas Gerais, Brazil: Constraints from Fluid Inclusion Infrared Microthermometry, Bulk Crush-Leach Analysis and U–Pb Systematics. Min. Depos. 2005, 40, 289–306. [Google Scholar] [CrossRef]
- Spier, C.A.; de Oliveira, S.M.B.; Rosière, C.A. Geology and Geochemistry of the Águas Claras and Pico Iron Mines, Quadrilátero Ferrífero, Minas Gerais, Brazil. Min. Depos. 2003, 38, 751–774. [Google Scholar] [CrossRef]
- Rosière, C.A.; Spier, C.A.; Rios, F.J.; Suckau, V.E. The Itabirites of the Quádrilátero Ferrífero and Related High-Grade Iron Ore Deposits: An Overview; Society of Economic Geologists: Littleton, CO, USA, 2008. [Google Scholar] [CrossRef]
- Guild, P.W. Iron Deposits of the Congonhas District, Minas Gerais, Brazil. Econ. Geol. 1953, 48, 639–676. [Google Scholar] [CrossRef]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine Tailings Dams: Characteristics, Failure, Environmental Impacts, and Remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Vick, S.G. Planning, Design, and Analysis of Tailings Dams. Available online: https://open.library.ubc.ca/soa/cIRcle/collections/ubccommunityandpartnerspublicati/52387/items/1.0394902 (accessed on 11 January 2022).
- Almeida, C.A.; de Oliveira, A.F.; Pacheco, A.A.; Lopes, R.P.; Neves, A.A.; Lopes Ribeiro de Queiroz, M.E. Characterization and Evaluation of Sorption Potential of the Iron Mine Waste after Samarco Dam Disaster in Doce River Basin–Brazil. Chemosphere 2018, 209, 411–420. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.H.; von Krüger, F.L.; da Silva Araújo, F.G.; Mendes, J.J. Mineralogical Characterization Applied to Iron Ore Tailings from the Desliming Stage with Emphasis on Quantitative Electron Microscopy (QEM). Mat. Res. 2021, 24. [Google Scholar] [CrossRef]
- SNAP-Earth Online. Available online: https://earth.esa.int/eogateway/tools/snap (accessed on 1 March 2022).
- Keshava, N.; Mustard, J.F. Spectral Unmixing. IEEE Signal Process. Mag. 2002, 19, 44–57. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.-M.; Lavender, S.; Castaing, P. Spectral Signature of Highly Turbid Waters: Application with SPOT Data to Quantify Suspended Particulate Matter Concentrations. Remote Sens. Environ. 2002, 81, 149–161. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Rugege, D. Multispectral and Hyperspectral Remote Sensing for Identification and Mapping of Wetland Vegetation: A Review. Wetl. Ecol. Manag. 2010, 18, 281–296. [Google Scholar] [CrossRef]
- Curtiss, B. Evaluation of the Physical Properties of Naturally Occurring Iron (III) Oxyhydroxides on Rock Surfaces in Arid and Semi-Arid Regions Using Visible and Near Infrared Reflectance Spectroscopy. Ph.D. Thesis, University of Washington, Seattle, WA, USA, 1985. [Google Scholar]
- Scheinost, A.C.; Schulze, D.G.; Schwertmann, U. Diffuse Reflectance Spectra of A1 Substituted Goethite: A Ligand Field Approach. Clays Clay Miner. 1999, 47, 156–164. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7; Data Series; U.S. Geological Survey: Reston, VA, USA, 2017; Volume 1035, p. 68.
- Sanches, I.D.; Filho, C.R.S.; Kokaly, R. Spectroscopic Remote Sensing of Plant Stress at Leaf and Canopy Levels Using the Chlorophyll 680 Nm Absorption Feature with Continuum Removal. ISPRS J. Photogramm. Remote Sens. 2014, 97, 111–122. [Google Scholar] [CrossRef]
- Syifa, M.; Park, S.J.; Achmad, A.R.; Lee, C.-W.; Eom, J. Flood Mapping Using Remote Sensing Imagery and Artificial Intelligence Techniques: A Case Study in Brumadinho, Brazil. J. Coast. Res. 2019, 90, 197–204. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, Q.; Hong, H.; Zhao, L.; Kukolich, S.; Yin, K.; Wang, C. Visible and Near-Infrared Reflectance Spectroscopy for Investigating Soil Mineralogy: A Review. J. Spectrosc. 2018, 2018, e3168974. [Google Scholar] [CrossRef]
- Sekandari, M.; Masoumi, I.; Beiranvand Pour, A.; M Muslim, A.; Rahmani, O.; Hashim, M.; Zoheir, B.; Pradhan, B.; Misra, A.; Aminpour, S.M. Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 Spectral Imagery for Exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT). Remote Sens. 2020, 12, 1239. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammirati, L.; Chirico, R.; Di Martire, D.; Mondillo, N. Application of Multispectral Remote Sensing for Mapping Flood-Affected Zones in the Brumadinho Mining District (Minas Gerais, Brasil). Remote Sens. 2022, 14, 1501. https://doi.org/10.3390/rs14061501
Ammirati L, Chirico R, Di Martire D, Mondillo N. Application of Multispectral Remote Sensing for Mapping Flood-Affected Zones in the Brumadinho Mining District (Minas Gerais, Brasil). Remote Sensing. 2022; 14(6):1501. https://doi.org/10.3390/rs14061501
Chicago/Turabian StyleAmmirati, Lorenzo, Rita Chirico, Diego Di Martire, and Nicola Mondillo. 2022. "Application of Multispectral Remote Sensing for Mapping Flood-Affected Zones in the Brumadinho Mining District (Minas Gerais, Brasil)" Remote Sensing 14, no. 6: 1501. https://doi.org/10.3390/rs14061501
APA StyleAmmirati, L., Chirico, R., Di Martire, D., & Mondillo, N. (2022). Application of Multispectral Remote Sensing for Mapping Flood-Affected Zones in the Brumadinho Mining District (Minas Gerais, Brasil). Remote Sensing, 14(6), 1501. https://doi.org/10.3390/rs14061501