Assessment of Canopy Health with Drone-Based Orthoimagery in a Southern Appalachian Red Spruce Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Orthoimagery Collection/Generation
2.3. Visual Interpretation of Spruce Health Status from Orthomosaic
2.4. Kernel Density Estimation of Spruce Classes
3. Results
3.1. Interpretation of Spruce Health Status from Orthomosaic and Kernel Density Estimation
3.2. Kernel Density Estimation and Spruce Regeneration
4. Discussion
Significance of Forest Health Survey and Conservation Management Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watts, W.A. Late Quaternary Vegetation of Central Appalachia and the New Jersey Coastal Plain. Ecol. Monogr. 1979, 49, 427–469. [Google Scholar] [CrossRef]
- Delcourt, H.R.; Delcourt P., A. Late-Quaternary history of the spruce-fir ecosystems in the southern Appalachian mountain region. In The Southern Appalachian Spruce-Fir Ecosystem: Its Biology and Threats; Research/Resource Management Report SER-71; White, P.S., Ed.; United States Department of the Interior, National Park Service: Washington, DC, USA, 1984; pp. 22–35. [Google Scholar]
- Adams, H.S.; Stephenson, S.L.; Rollins, A.W.; Adams, M.B. The isolated red spruce communities of Virginia and West Virginia. In Proceedings of the Conference of Ecological High-Elevation Forests in the Central and Southern Appalachian Mountains, Slatyfork, WV, USA, 14–15 May 2009; GTR- NRS-P-64. USDA Forest Service: Asheville, NC, USA, 2010; pp. 1–12. [Google Scholar]
- Pyle, C.; Schafale, M.P. Land Use History of Three Spruce-Fir Forest Sites in Southern Appalachia. For. Conserv. Hist. 1988, 32, 4–21. [Google Scholar] [CrossRef]
- Rives, W.C., Jr. Notes on the Birds of White Top Mountain, Virginia. Auk 1889, 50–53. [Google Scholar]
- Pashley, D.N.; Beardmore, C.J.; Fitzgerald, J.A.; Ford, R.P.; Hunter, W.C.; Morrison, M.S.; Rosenberg, K.V. Partners in Flight: Conservation of the Land Birds of the United States; American Bird Conservancy: The Plains, VA, USA, 2000. [Google Scholar]
- Rich, T.D.; Beardmore, C.J.; Berlanga, H.; Blancher, P.J.; Bradstreet, M.S.W.; Butcher, G.S.; Demarest, D.W.; Dunn, E.H.; Hunter, W.C.; Inigo-Elias, E.E.; et al. Partners in Flight North American Landbird Conservation Plan; Cornell Lab of Ornithology: Ithaca, NY, USA, 2004. [Google Scholar]
- Noss, R.F.; Peters, R.L. Endangered Ecosystems: A Status Report on America’s Vanishing Habitat and Wildlife; Defenders of Wildlife: Washington, DC, USA, 1995. [Google Scholar]
- Adams, M.B.; Eagar, C. Impacts of acidic deposition on high-elevation spruce-fir forests: Results from the SpruceFir Research Cooperative. Ecol. Manag. 1992, 51, 195–205. [Google Scholar] [CrossRef]
- Busing, R.; Pauley, E. Mortality trends in a southern Appalachian red spruce population. For. Ecol. Manag. 1994, 64, 41–45. [Google Scholar] [CrossRef]
- Johnson, A.; Cook, E.; Eagar, C.; Cogbill, C.; Jensen, K. Ecology and Decline of Red Spruce in the Eastern United States; Springer: New York, NY, USA, 2012. [Google Scholar]
- Capblancq, T.; Butnor, J.R.; Deyoung, S.; Thibault, E.; Munson, H.; Nelson, D.M.; Fitzpatrick, M.C.; Keller, S.R. Whole-exome sequencing reveals a long-term decline in effective population size of red spruce (Picea rubens). Evol. Appl. 2020, 13, 2190–2205. [Google Scholar] [CrossRef] [PubMed]
- Aristizábal-Botero, A.; Páez-Pérez, D.; Realpe, E.; Vanschoenwinkel, B. Mapping microhabitat structure and connectivity on a tropical inselberg using UAV remote sensing. Prog. Phys. Geogr. Earth Environ. 2020, 45, 427–445. [Google Scholar] [CrossRef]
- Fabbri, S.; Grottoli, E.; Armaroli, C.; Ciavola, P. Using High-Spatial Resolution UAV-Derived Data to Evaluate Vegetation and Geomorphological Changes on a Dune Field Involved in a Restoration Endeavour. Remote Sens. 2021, 13, 1987. [Google Scholar] [CrossRef]
- Pingel, T.J.; Saavedra, A.; Cobo, L. Deriving Land and Water Surface Elevations in the Northeastern Yuca-tán Peninsula Using PPK GPS and UAV-Based Structure from Motion. Pap. Appl. Geogr. 2021, 7, 294–315. [Google Scholar] [CrossRef]
- Prior, E.; Aquilina, C.; Czuba, J.; Pingel, T.; Hession, W. Estimating Floodplain Vegetative Roughness Using Drone-Based Laser Scanning and Structure from Motion Photogrammetry. Remote Sens. 2021, 13, 2616. [Google Scholar] [CrossRef]
- Liu, T.; Sun, Y.; Wang, C.; Zhang, Y.; Qiu, Z.; Gong, W.; Lei, S.; Tong, X.; Duan, X. Unmanned aerial vehicle and artificial intelligence revolutionizing efficient and precision sustainable forest management. J. Clean. Prod. 2021, 311, 127546. [Google Scholar] [CrossRef]
- Wang, C.; Morgan, G.; Hodgson, M. sUAS for 3D Tree Surveying: Comparative Experiments on a Closed-Canopy Earthen Dam. Forests 2021, 12, 659. [Google Scholar] [CrossRef]
- Fraser, B.; Congalton, R. Estimating Primary Forest Attributes and Rare Community Characteristics Using Unmanned Aerial Systems (UAS): An Enrichment of Conventional Forest Inventories. Remote Sens. 2021, 13, 2971. [Google Scholar] [CrossRef]
- Alonzo, M.; Andersen, H.E.; Morton, D.C.; Cook, B.D. Quantifying boreal forest structure and composition using UAV structure from motion. Forests 2018, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Ivosevic, B.; Han, Y.-G.; Kwon, O. Calculating coniferous tree coverage using unmanned aerial vehicle photogrammetry. J. Ecol. Environ. 2017, 41, 10. [Google Scholar] [CrossRef] [Green Version]
- Safonova, A.; Hamad, Y.; Dmitriev, E.; Georgiev, G.; Trenkin, V.; Georgieva, M.; Dimitrov, S.; Iliev, M. Individual Tree Crown Delineation for the Species Classification and Assessment of Vital Status of Forest Stands from UAV Images. Drones 2021, 5, 77. [Google Scholar] [CrossRef]
- Camarretta, N.; Harrison, P.; Bailey, T.; Potts, B.; Lucieer, A.; Davidson, N.; Hunt, M. Monitoring forest structure to guide adaptive management of forest restoration: A review of remote sensing approaches. New For. 2019, 51, 573–596. [Google Scholar] [CrossRef]
- Komárek, J.; Klápště, P.; Hrach, K.; Klouček, T. The Potential of Widespread Ready-Made UAVs in Quantifying Conifers and Delineating Their Crowns. 2021. Available online: https://www.researchsquare.com/article/rs-723971/v1 (accessed on 21 January 2022).
- Rankin, D.W. The volcanogenic Mount Rogers Formation and the overlying glaciogenic Konnarock For-mation—Two Late Proterozoic units in southwestern Virginia. US Geol. Surv. Bull. 1993, 2029, 26. [Google Scholar]
- Rheinhardt, R.D. Comparative study of composition and distribution patterns of subalpine forests in the Bal-sam Mountains of southwest Virginia and the Great Smoky Mountains. Bull. Torrey Bot. Club 1984, 111, 489–493. [Google Scholar] [CrossRef]
- Potter, K.M.; Frampton, J.; Sidebottom, J.; Onken, B.; Reardon, R. Impacts of balsam woolly adelgid on the southern Appalachian spruce-fir ecosystem and the North Carolina Christmas tree industry. In Proceedings of the Third Symposium on Hemlock Woolly Adelgid in the Eastern United States, Asheville, NC, USA, 1–3 February 2005; USFS Forest Health Technology Enterprise Team: Asheville, NC, USA, 2005; pp. 1–3. [Google Scholar]
- Krustchinsky, A.R. Post-Fire Recovery and Successional Dynamics of an Old-Growth Red Spruce Forest in the Southern Appalachian Mountains. Master’s Thesis, Texas A & M University, College Station, TX, USA, 2010. [Google Scholar]
- Robertson, D.P.; Hull, R.B. Which Nature? A Case Study of Whitetop Mountain. Landsc. J. 2001, 20, 176–185. [Google Scholar] [CrossRef]
- Cartwright, J.M.; Wolfe, W.J. Insular Ecosystems of the Southeastern United States—A Regional Synthesis to Support Biodiversity Conservation in a Changing Climate; US Department of the Interior-Southeast Climate Science Center, US Geological Survey: Reston, VA, USA, 2016. [Google Scholar] [CrossRef] [Green Version]
- Mielke, M.E. Decline and Mortality of Red Spruce in West Virginia. Report 86 4; Methods Application Group; Department of Agriculture, Forest Service, Forest Pest Management: Fort Collins, CO, USA, 1986. [Google Scholar]
- Leblanc, D.C.; Nicholas, N.; Zedaker, S. Prevalence of individual-tree growth decline in red spruce populations of the southern Appalachian Mountains. Can. J. For. Res. 1992, 22, 905–914. [Google Scholar] [CrossRef]
- Battles, J.J.; Fahey, T.J. Gap dynamics following forest decline: A case study of red spruce forests. Ecol. Appl. 2000, 10, 760–774. [Google Scholar] [CrossRef]
- Rentch, J.; Ford, W.; Schuler, T.; Palmer, J. Release of Suppressed Red Spruce Using Canopy Gap Creation—Ecological Restoration in the Central Appalachians. Nat. Areas J. 2016, 36, 29. [Google Scholar] [CrossRef]
- Gray, C.A.; Toone, C.; Jenkins, M.J.; Null, S.E.; Yocom, L.L. Spatial and temporal fuels changes in white-bark pine (Pinus albicaulis) from mountain pine beetle (Dendroctonus ponderosae). For. Ecol. Manag. 2021, 482, 118789. [Google Scholar] [CrossRef]
Pix4D Mapper Classification Parameters | |
---|---|
Sampling Image Scale | ½ (Half size grid) |
Matching | Aerial Grid Corridor |
Calibration method | Standard |
Point cloud image scale | 1 |
Point density | High |
Min. number matches | 3 |
Matching window size | 7 × 7 pixels |
Resolution | 3.59 cm/pixel |
Images | 448 |
Relative Geolocation Error (RMSE) | - |
x | 1.866518 |
y | 1.876386 |
z | 0.972783 |
Status | Count | Criteria |
---|---|---|
Healthy | 8700 | Spruce had no observable dead foliage. |
Declining | 251 | Dead spruce limbs present with green foliage in the surrounding crown pixels. |
Dead | 451 | Dead spruce limbs present with no foliage in the surrounding pixels of the crown. |
Fallen | 37 | Visually apparent, white-colored spruce in a horizontal position. |
Total Standing | 9402 | Includes dead, declining, and healthy. |
Total Spruce | 9439 | Includes all four classes. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harris, R.C.; Kennedy, L.M.; Pingel, T.J.; Thomas, V.A. Assessment of Canopy Health with Drone-Based Orthoimagery in a Southern Appalachian Red Spruce Forest. Remote Sens. 2022, 14, 1341. https://doi.org/10.3390/rs14061341
Harris RC, Kennedy LM, Pingel TJ, Thomas VA. Assessment of Canopy Health with Drone-Based Orthoimagery in a Southern Appalachian Red Spruce Forest. Remote Sensing. 2022; 14(6):1341. https://doi.org/10.3390/rs14061341
Chicago/Turabian StyleHarris, Ryley C., Lisa M. Kennedy, Thomas J. Pingel, and Valerie A. Thomas. 2022. "Assessment of Canopy Health with Drone-Based Orthoimagery in a Southern Appalachian Red Spruce Forest" Remote Sensing 14, no. 6: 1341. https://doi.org/10.3390/rs14061341
APA StyleHarris, R. C., Kennedy, L. M., Pingel, T. J., & Thomas, V. A. (2022). Assessment of Canopy Health with Drone-Based Orthoimagery in a Southern Appalachian Red Spruce Forest. Remote Sensing, 14(6), 1341. https://doi.org/10.3390/rs14061341