Analysis of Ecological Blockage Pattern in Beijing Important Ecological Function Area, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Remote Sensing Ecological Index
- (1)
- Calculation of greenness index
- (2)
- Calculation of wetness index
- (3)
- Calculation of heat index
- (4)
- Calculation of dryness index
- (5)
- Construction of comprehensive ecological index
2.3.2. Circuit Theory
- 1.
- Simulation of circuit connectivity
- 2.
- Identification of ecological break points
- 3.
- Identification of ecological pinch points and barriers
2.3.3. Grid Analysis Method
2.3.4. Creation of a Landscape Resistance Layer
2.3.5. Selection of Habitat Core Areas
3. Results
3.1. Spatio-Temporal Analysis of Ecological Quality Pattern
3.2. Spatio-Temporal Analysis of Ecological Blockage Pattern
3.3. Trend Analysis of Spatial Fragmentation of Corridor Habitats during 1998–2018
4. Discussion
4.1. Correlation Analysis
4.2. Suggestions for Improvement and Restoration of Ecological Blockage Conditions
4.3. Research Limitations and Future Further Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahrig, L. Effects of Habitat Fragmentation on Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Krauss, J.; Bommarco, R.; Guardiola, M.; Heikkinen, R.K.; Helm, A.; Kuussaari, M.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J.; et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 2010, 13, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Hu, Y.; Zhao, M. Progress and prospect of the spatiotemporal change and ecosystem services evaluation of urban green space pattern. Prog. Geogr. 2020, 39, 1770–1782. [Google Scholar] [CrossRef]
- LaPoint, S.; Balkenhol, N.; Hale, J.; Sadler, J.; van der Ree, R. Ecological connectivity research in urban areas. Funct. Ecol. 2015, 29, 868–878. [Google Scholar] [CrossRef]
- Andrén, H. Effects of Habitat Fragmentation on Birds and Mammals in Landscapes with Different Proportions of Suitable Habitat: A Review. Oikos 1994, 71, 355–366. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, B.J. Is landscape connectivity a dependent or independent variable? Landscape Ecol. 2003, 18, 687–699. [Google Scholar] [CrossRef]
- Bednar, M.; Sarapatka, B.; Mazalova, M.; Kuras, T. Connectivity modelling with automatic determination of landscape resista-nce values. A new approach tested on butterflies and burnet moths. Ecol. Indic. 2020, 116, 106480. [Google Scholar] [CrossRef]
- Saura, S.; Bertzky, B.; Bastin, L.; Battistella, L.; Mandrici, A.; Dubois, G. Global trends in protected area connectivity from 2010 to 2018. Biol. Conserv. 2019, 238, 108183. [Google Scholar] [CrossRef]
- Su, J.; Yin, H.; Kong, F. Ecological networks in response to climate change and the human footprint in the Yangtze River Delta urban agglomeration, China. Landsc. Ecol. 2020, 36, 2095–2112. [Google Scholar] [CrossRef]
- Pelorosso, R.; Gobattoni, F.; Geri, F.; Monaco, R.; Leone, A. Evaluation of Ecosystem Services related to Bio-Energy Landscape Connectivity (BELC) for land use decision making across different planning scales. Ecol. Indic. 2016, 61, 114–129. [Google Scholar] [CrossRef]
- Pierik, M.E.; Dell’Acqua, M.; Confalonieri, R.; Bocchi, S.; Gomarasca, S. Designing ecological corridors in a fragmented landscape: A fuzzy approach to circuit connectivity analysis. Ecol. Indic. 2016, 67, 807–820. [Google Scholar] [CrossRef]
- McRae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minor, E.S.; Urban, D.L. A Graph-Theory Framework for Evaluating Landscape Connectivityand Conservation Planning. Conserv. Biol. 2008, 22, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, A.T.; Fava, F.; Gonçalves, J.; Huete, A.; Gusmeroli, F.; Parolo, G.; Spano, D.; Bocchi, S. Landscape context determina-nts to plant diversity in the permanent meadows of Southern European Alps. Biodivers. Conserv. 2013, 22, 937–958. [Google Scholar] [CrossRef]
- Nikolakaki, P. A GIS site-selection process for habitat creation: Estimating connectivity of habitat patches. Landsc. Urban. Plann. 2004, 68, 77–94. [Google Scholar] [CrossRef]
- Schmitt, T.; Varga, Z.; Seitz, A. Forests as dispersal barriers for Erebia medusa (Nymphalidae, Lepidoptera). Basic Appl. Ecol. 2000, 1, 53–59. [Google Scholar] [CrossRef]
- Lande, R. Genetics and Demography in Biological Conservation. Science 1988, 241, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- Qu, R.; Hou, L.; Lü, H.; Li, H. The gene flow of population genetic structure. Hereditas 2004, 26, 377–382. [Google Scholar] [CrossRef]
- Trizio, I.; Crestanello, B.; Galbusera, P.; Wauters, L.A.; Tosi, G.; Matthysen, E.; Hauffe, H.C. Geographical distance and physical barriers shape the genetic structure of Eurasian red squirrels (Sciurus vulgaris) in the Italian Alps. Mol. Ecol. 2005, 14, 469–481. [Google Scholar] [CrossRef]
- Vignieri, S.N. Streams over mountains: Influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus). Mol. Ecol. 2005, 14, 1925–1937. [Google Scholar] [CrossRef]
- Keller, I.; Nentwig, W.; Largiadér, C.R. Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol. Ecol. 2004, 13, 2983–2994. [Google Scholar] [CrossRef] [PubMed]
- Vos, C.C.; Chardon, J.P. Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. J. Appl. Ecol. 1998, 35, 44–56. [Google Scholar] [CrossRef]
- Purrenhage, J.L.; Niewiarowski, P.H.; Moore, F.B.G. Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol. Ecol. 2009, 18, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Wang, Y.F.; Li, X.X.; Ma, J.C. Analysis of the application potential of circuit theory in plant landscape genetics. Plant. Sci. J. 2019, 37, 116–123. [Google Scholar] [CrossRef]
- McRae, B.H. Isolation by resistance. Evolution 2006, 60, 1551–1561. [Google Scholar] [CrossRef]
- McRae, B.; Dickson, B.; Keitt, T.; Shah, V. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, J.; Bi, X.; Li, Y.; Xiao, L. Application of the least cost distance model and the circuit theory model in the evaluation of wetland landscape connectivity in the Yellow River Delta. Acta Ecol. Sin. 2022, 42, 4. [Google Scholar] [CrossRef]
- Dickson, B.G.; Albano, C.M.; Anantharaman, R.; Beier, P.; Fargione, J.; Graves, T.A.; Gray, M.E.; Hall, K.R.; Lawler, J.J.; Leonard, P.B.; et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 2019, 33, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Wang, D.; Yin, H.; Dronova, I.; Fei, F.; Chen, J.; Pu, Y.; Li, M. Coupling urban 3-D information and circuit theory to advance the development of urban ecological networks. Conserv. Biol. 2021, 35, 1140–1150. [Google Scholar] [CrossRef]
- Song, L.; Qin, M. Identification of ecological corridors and its importance by integrating circuit theory. Chin. J. Appl. Ecol. 2016, 27, 3344–3352. [Google Scholar] [CrossRef]
- Du, Y.Y.; Wang, Z.Q.; Yu, Q.H.; Yang, Y.C.; Zhang, Q.W. Construction of a regional ecological security pattern based on a habitat quality model and circuit theory: A case study of the Qinling Mountains (Shaanxi Section). J. Agric. Resour. Environ. 2021. [Google Scholar] [CrossRef]
- Liu, J.; Yin, H.; Kong, F.; Li, M. Structure optimization of circuit theory-based green infrastructure in Nanjing. Acta Ecol. Sin. 2018, 38, 4363–4372. [Google Scholar] [CrossRef]
- Peng, J.; Li, H.; Liu, Y.; Hu, Y.; Yang, Y. Identification and optimization of ecological security pattern in Xiong’an New Area. Acta Geogr. Sin. 2018, 73, 701–710. [Google Scholar] [CrossRef]
- Yang, Z.G.; Jiang, Z.Y.; Guo, C.X.; Yang, X.J.; Xu, X.J.; Li, X.; Hu, Z.M.; Zhou, H.Y. Construction of ecological network using morphological spatial pattern analysis and minimal cumulative resistance models in Guangzhou City, China. Chin. J. Appl. Ecol. 2018, 29, 3367–3376. [Google Scholar] [CrossRef]
- Wang, X.Y.; Chen, T.Q.; Feng, Z.; Wu, K.N.; Lin, Q. Construction of ecological security pattern based on boundary analysis: A case study on Jiangsu Province. Acta Ecol. Sin. 2020, 40, 3375–3384. [Google Scholar] [CrossRef]
- Zhu, Z.J.; Zuo, L.J.; Zhang, Z.X.; Wang, Y.F.; Sun, F.F.; Pan, T.S.; Zhao, X.L.; Wang, X. Analysis of spatial and temporal changes of regional ecological pattern in the northwest of Jingjinji as water conservation area during the past 30 years. Pratac. Sci. 2020, 37, 1325–1336. [Google Scholar] [CrossRef]
- Niu, W.; Xiao, L.X.; Li, J.X. The North West of Hebei ecological protection and improvement construction strategy based on the perspective of the coordinated development of Beijing-Tianjin-Hebei. Chin. J. Agric. Resour. Reg. Plann. 2016, 37, 87–92. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, Z.; Zuo, L.; Zhao, X.; Pan, T.; Zhu, Z.; Wang, X.; Liu, F.; Yi, L.; Wen, Q.; et al. Difference assessment on ecologi-cal functions of artificial coniferous forests in water conservation area of Northwestern Hebei. J. Nat. Resour. 2020, 35, 06001348. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, F.; Wang, D.; Li, M. Analysis on changes of ecological spatial connectivity inJiangsu Province based on ecological network. Acta Ecol. Sin. 2021, 41, 3007–3020. [Google Scholar] [CrossRef]
- Wang, G.; Bai, W.; Xiong, X.; Mu, X.; Qiu, L. Research on ecological space damage identification of Beijing-Tianjin-Hebei urban Agglomeration. City Plan. Rev. 2021, 8, 1002–1329. [Google Scholar] [CrossRef]
- Albert, C.H.; Rayfield, B.; Dumitru, M.; Gonzalez, A. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change. Conserv. Biol. 2017, 31, 1383–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, Y.; Yang, R.; Carver, S. Linking wilderness mapping and connectivity modelling: A methodological framework for wildland network planning. Biol. Conserv. 2020, 251, 108679. [Google Scholar] [CrossRef]
- Delmas, E.; Besson, M.; Brice, M.H.; Burkle, L.A.; Dalla Riva, G.V.; Fortin, M.J.; Gravel, D.; Guimaraes, P.R., Jr.; Hembry, D.H.; Newman, E.A.; et al. Analysing ecological networks of species interactions. Biol. Rev. Camb. Philos. Soc. 2018, 94, 16–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tatem, A.J. WorldPop, open data for spatial demography. Sci. Data 2017, 4, 170004. [Google Scholar] [CrossRef]
- Xu, H.Q. A remote sensing urban ecological index and its application. Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar] [CrossRef]
- Xu, H. A remote sensing index for assessment of regional ecological changes. China Environ. Sci. 2013, 33, 889–897. [Google Scholar] [CrossRef]
- Yang, K.; Lu, Y.; Weng, Y.; Wei, L. Dynamic monitoring of ecological and environmental quality of the Nanliu River basin, su-pported by Google Earth Engine. J. Agric. Resour. Environ. 2021, 38, 1112–1121. [Google Scholar] [CrossRef]
- Chen, W.; Huang, H.P.; Tian, Y.C.; Du, Y.Y. Monitoring and assessment of the eco-environment quality in the Sanjiangyuan region based on Google Earth Engine. J. Geo-Inf. Sci. 2019, 21, 1382–1391. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.H.; Wu, J.S. Dynamic monitoring of long time series of ecological quality in urban agglomerations using Google Earth Engine cloud computing: A case study of the Guangdong-Hong Kong-Macao Greater Bay Area, China. Acta Ecol. Sin. 2020, 40, 8461–8473. [Google Scholar] [CrossRef]
- Chen, X.; Zeng, X.; Zhao, C.; Qiu, R.; Zhang, L.; Hou, X.; Hu, X. The ecological effect of road network based on remote sensing ecological index: A case study of Fuzhou City, Fujian Province. Acta Ecol. Sin. 2021, 41, 4732–4745. [Google Scholar] [CrossRef]
- Wen, X.; Zhou, Z.; Zhang, M.; Zhang, P.; Zhang, G.; Zhang, Q. Identification of Key Areas of Land Space Ecological Restorati-on in Taihang Mountains—A case study of Tang County. Chin. J. Eco-Agric. 2021, 29, 2093–2106. [Google Scholar] [CrossRef]
- Lü, D.W.; Cai, H.S.; Zhang, X.L.; Luo, H.L.; Zeng, H.; Zhang, T. Construction and optimization of the ecological security system in Yiyang County based on the remote sensing ecological index. Res. Agric. Mod. 2021, 42, 545–556. [Google Scholar] [CrossRef]
- Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Lin, Z. Prediction of ecological effects of potential population and impervious surface inc-reases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2019, 93, 730–740. [Google Scholar] [CrossRef]
- Anantharaman, R.; Hall, K.; Shah, V.B.; Edelman, A. Circuitscape in Julia: High Performance Connectivity Modelling to Support Conservation Decisions. JuliaCon Proc. 2020, 1, 58. [Google Scholar] [CrossRef]
- McRae, B.H.; Kavanagh, D.M. Linkage Mapper Connectivity Analysis Software; The Nature Conservancy in Washington: Seattle, WA, USA, 2011; Available online: https://linkagemapper.org (accessed on 23 October 2021).
- Meng, J.; Wang, X.; You, N.; Zhu, L. Dynamic changes of landscape connectivity for ecological lands and distance thresholds in the middle reaches of the Heihe River, Northwest China. Chin. J. Appl. Ecol. 2016, 27, 1715–1726. [Google Scholar] [CrossRef]
- McRae, B.H. Centrality Mapper Connectivity Analysis Software; The Nature Conservancy in Washington: Seattle, WA, USA, 2012; Available online: https://linkagemapper.org (accessed on 23 October 2021).
- McRae, B.H. Pinchpoint Mapper Connectivity Analysis Software; The Nature Conservancy in Washington: Seattle, WA, USA, 2012; Available online: https://linkagemapper.org (accessed on 23 October 2021).
- McRae, B.H. Barrier Mapper Connectivity Analysis Software; The Nature Conservancy in Washington: Seattle, WA, USA, 2012; Available online: https://linkagemapper.org (accessed on 23 October 2021).
- Chen, C.; Wu, S.J.; Douglas, M.C.; Lü, M.Q.; Wen, Z.F.; Jiang, Y.; Chen, J.L. Effects of changing cost values on landscape connectivity simulation. Acta Ecol. Sin. 2015, 35, 7367–7376. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Li, Q.; Wang, X. Analysis of ecological security pattern of southern rare earth mining area based on MCR model. Sci. Geogr. Sin. 2020, 40, 989–998. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, Y.X.; Qian, J.L.; Guo, Y.; Hu, Y.S. Improving ecological security pattern based on the integrated observation of m-ultiple source data: A case study of Wannian Countyy, Jiangxi Province. Resour. Sci. 2020, 42, 2010–2021. [Google Scholar] [CrossRef]
- Ayram, C.A.C.; Mendoza, M.E.; Etter, A.; Salicrup, D.R.P. Anthropogenic impact on habitat connectivity: A multidimensional human footprint index evaluated in a highly biodiverse landscape of Mexico. Ecol. Indic. 2017, 72, 895–909. [Google Scholar] [CrossRef]
- Rana, M.S.; Sarkar, S. Prediction of urban expansion by using land cover change detection approach. Heliyon 2021, 7, e08437. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Kazak, J.; Han, Q.; de Vries, B. A framework for path-dependent industrial land transition analysis using vector data. Eur. Plann. Stud. 2019, 27, 1391–1412. [Google Scholar] [CrossRef]
Data | Data Type | Resolution | Data Source |
---|---|---|---|
Land cover data | Raster | 5 m | Beijing Municipal Science and Technology Project (Z181100005318003) |
Vector boundary of the study area | Vector | - | |
Socio-economic, demographic, and climatic data | Statistical | - | Yearbook data, etc. |
Administrative zoning map | Vector | - | Geospatial data cloud (http://www.gscloud.cn, accessed on 30 July 2021) |
DEM data | Raster | 90 m | Data Center for Resource and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn, accessed on 12 April 2021) |
Road network data | Vector | - | Beijing University Data Platform (http://geodata.pku.edu.cn, accessed on 30 July 2021) |
Population density data | Raster | 100 m | High precision Worldpop population density dataset (http://www.worldpop.org, accessed on 30 July 2021) |
Target Year | 1998 | 2010 | 2018 |
---|---|---|---|
Sources | Google Earth Engine | ||
Number of image views | 21 | 21 | 27 |
Datasets | Landsat 5 TM datasets 1984–2012 (30 m) | Landsat 8 OLI and TIRS datasets 2013–2018 (30 m) | |
Name | LANDSAT/LT05/C02/T1_L2 | LANDSAT/LC08/C02/T1_L2 | |
Description | Surface reflectance data | ||
Season | Summer (June–September) |
Aspect | Evaluation Factor | Resistance Value | Weights | ||||
---|---|---|---|---|---|---|---|
1 | 250 | 500 | 750 | 1000 | |||
Natural Factors | Land use types | Water body, Arbor Forest | Shrubs, Grasslands | Cultivated land, Bare land | Building area | Gravel pit, Ore pile | 0.3 |
Elevation (m) | <500 | 500–800 | 800–1200 | 1200–1600 | >1600 | 0.1 | |
Slope (°) | 0–8 | 8–15 | 15–25 | 25–45 | >45 | 0.1 | |
RESI = f (ndvi, wet, ndbsi, lst) | 0.8–1 | 0.6–0.8 | 0.4–0.6 | 0.2–0.4 | 0–0.2 | 0.2 | |
Water source density | >200 | 100–200 | 50–100 | 10–50 | <10 | 0.05 | |
Human Factors | Mining site density | <50 | 50–300 | 300–1800 | 1800–5400 | >5400 | 0.05 |
Population density | 0–10 | 10–50 | 50–100 | 100–200 | >200 | 0.1 | |
Road density | 0–1 | 1–3 | 3–5 | 5–10 | >10 | 0.1 |
Year | 1998 | 2010 | 2018 |
---|---|---|---|
Number of patches | 33 | 34 | 63 |
Areas (ha) | 36,961.1 | 33,109.3 | 42,953.3 |
Percentage of redline area (%) | 54.49 | 60.03 | 60.59 |
Level | RESI | Proportion of Different Quality Levels in Different Years (%) | ||
---|---|---|---|---|
1998 | 2010 | 2018 | ||
Low | (0–0.2) | 1.84 | 2.17 | 1.90 |
Lower | (0.2–0.4) | 9.13 | 18.85 | 7.35 |
Medium | (0.4–0.6) | 26.01 | 32.80 | 12.66 |
Higher | (0.6–0.8) | 28.27 | 18.27 | 5.65 |
High | (0.8–1.0) | 34.75 | 27.90 | 72.44 |
Year | 1998 | 2010 | 2018 | 1998–2018 | |
---|---|---|---|---|---|
Active LCPs (strips) | 70 | 74 | 152 | 82 | |
Corridor areas (km2) | 774.63 | 856.84 | 1170.50 | 395.87 | |
Percentage of corridors (%) | 15.03 | 16.63 | 22.72 | 7.68 | |
Inactive LCPs (strip) | 13 | 13 | 22 | 9 | |
Number of break points | 51 | 44 | 73 | 22 | |
Number of breakpoints (by type of road) | Railroad | 19 | 19 | 34 | 15 |
Expressway | 2 | 1 | 14 | 12 | |
National highway | 30 | 24 | 25 | −5 |
Year | Habitat Core Areas (A–B) 1 | Cost-Weighted Distance (CWD) (m) | LCP Distance (m) | CWD/LCP 2 | Current Flow Centrality (amps) |
---|---|---|---|---|---|
1998 | 16–21 | 1,243,684.9 | 4751 | 261.77 | 94.8 |
12–13 | 254,030.9 | 1215 | 209.08 | 84.1 | |
16–20 | 1,288,180.4 | 4556 | 282.74 | 68.6 | |
4–6 | 3,358,211.3 | 13,473 | 249.25 | 62.3 | |
12–16 | 2,366,038.0 | 10,306 | 229.58 | 60.1 | |
5–7 | 4,711,881 | 16,202 | 290.82 | 59.8 | |
12–15 | 2,550,988.3 | 10,824 | 235.68 | 55.5 | |
6–9 | 5,611,562 | 23,819 | 235.59 | 53.5 | |
6–7 | 2,801,278.8 | 12,230 | 229.05 | 52.8 | |
6–8 | 2,008,986.6 | 8425 | 238.46 | 50.8 | |
2010 | 12–15 | 3,287,091.3 | 15,107 | 217.59 | 111.4 |
10–12 | 5,363,715 | 25,300 | 212.00 | 83.6 | |
25–28 | 292,513.3 | 1190 | 245.81 | 76.6 | |
16–17 | 423,946.3 | 1744 | 243.09 | 72.7 | |
14–17 | 319,338.9 | 1332 | 239.74 | 70.7 | |
15–18 | 1,085,680.1 | 5108 | 212.55 | 70.2 | |
7–8 | 564,652.9 | 3947 | 143.06 | 69.1 | |
6–9 | 2,714,221.5 | 13,432 | 202.07 | 67.7 | |
11–12 | 6,246,280 | 27,155 | 230.02 | 66.1 | |
8–17 | 13,488,987 | 65,391 | 206.28 | 65.6 | |
2018 | 28–32 | 813,206.4 | 4214 | 192.98 | 234.4 |
17–18 | 1,117,795 | 5485 | 203.79 | 224.2 | |
14–16 | 3,962,851 | 2,3101 | 171.54 | 219.9 | |
18–29 | 467,855.4 | 2256 | 207.38 | 187.0 | |
14–19 | 3,389,893.5 | 22,811 | 148.61 | 185.8 | |
21–28 | 2,262,608.5 | 12,000 | 188.55 | 183.0 | |
31–33 | 1,259,569 | 7282 | 172.97 | 177.9 | |
8–10 | 2,232,187 | 13,236 | 168.65 | 173.6 | |
13–19 | 4,281,318.5 | 28,036 | 152.71 | 172.3 | |
41–44 | 270,386.3 | 1555 | 173.88 | 171.5 |
Land Use Type | 1998–2010 | 2010–2018 | 1998–2018 | |
---|---|---|---|---|
The rate of change in the proportion of corridors (%) | Water body | −3.24 | 0.88 | −2.36 |
Arbor forest | 3.92 | 1.46 | 5.38 | |
Shrubland | 0.35 | 2.97 | 3.32 | |
Grassland | 0.44 | −0.28 | 0.16 | |
Cropland | −3.38 | −3.81 | −7.19 | |
Bare ground | −0.34 | 0.01 | −0.33 | |
Built area | 2.10 | −0.99 | 1.11 | |
Gravel pit | 0.21 | −0.19 | 0.02 | |
Ore heap | −0.02 | −0.06 | −0.08 | |
Landscape fragmentation index | 0.04 | 0.04 | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Wang, J.; Xiong, N.; Chen, Y.; Sun, L.; Wang, Y.; An, L. Analysis of Ecological Blockage Pattern in Beijing Important Ecological Function Area, China. Remote Sens. 2022, 14, 1151. https://doi.org/10.3390/rs14051151
Xu J, Wang J, Xiong N, Chen Y, Sun L, Wang Y, An L. Analysis of Ecological Blockage Pattern in Beijing Important Ecological Function Area, China. Remote Sensing. 2022; 14(5):1151. https://doi.org/10.3390/rs14051151
Chicago/Turabian StyleXu, Jiangqi, Jia Wang, Nina Xiong, Yuhan Chen, Lu Sun, Yutang Wang, and Likun An. 2022. "Analysis of Ecological Blockage Pattern in Beijing Important Ecological Function Area, China" Remote Sensing 14, no. 5: 1151. https://doi.org/10.3390/rs14051151
APA StyleXu, J., Wang, J., Xiong, N., Chen, Y., Sun, L., Wang, Y., & An, L. (2022). Analysis of Ecological Blockage Pattern in Beijing Important Ecological Function Area, China. Remote Sensing, 14(5), 1151. https://doi.org/10.3390/rs14051151