Predicting Individual Tree Diameter of Larch (Larix olgensis) from UAV-LiDAR Data Using Six Different Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Field Data
2.2. UAVLS Data
2.3. UAVLS Data Pre-Processing
2.4. Individual Tree Delineation
2.5. Stand Delineation
2.6. Calculation of the LiDAR Metrics
2.7. Modeling Methods
2.8. Feature Selection and Hyper-Parameter Tuning
- Select the optimal feature subset using the initial (first repetition) or tuned (later repetitions) hyper-parameters and 10-fold cross-validation.
- Tune the hyper-parameters by using 10-fold cross-validation and the feature subset found in Step 1.
- Repeat Steps 1 and 2 using tuned hyper-parameters in Step 1 until the feature subset and the hyper-parameters stabilize.
2.9. Model Validation
3. Results
3.1. The Best LiDAR Metrics for Predicting DBH
3.2. Performance of the Prediction Methods
3.3. Performance of the Prediction Methods in Independent Validation Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leite, R.V.; Silva, C.A.; Mohan, M.; Cardil, A.; de Almeida, D.R.A.; Carvalho, S.; Jaafar, W.S.W.M.; Guerra-Hernández, J.; Weiskittel, A.; Hudak, A.T.; et al. Individual Tree Attribute Estimation and Uniformity Assessment in Fast-Growing Eucalyptus spp. Forest Plantations Using Lidar and Linear Mixed-Effects Models. Remote Sens. 2020, 12, 3599. [Google Scholar] [CrossRef]
- Kotivuori, E.; Kukkonen, M.; Mehtätalo, L.; Maltamo, M.; Korhonen, L.; Packalen, P. Forest inventories for small areas using drone imagery without in-situ field measurements. Remote Sens. Environ. 2020, 237, 111404. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Holopainen, M.; Vastaranta, M. Comparison of Area-Based and Individual Tree-Based Methods for Predicting Plot-Level Forest Attributes. Remote Sens. 2010, 2, 1481–1495. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Su, Y.; Hu, T.; Zhao, X.; Wu, F.; Li, Y.; Liu, J.; Chen, L.; Xu, G.; Lin, G.; et al. An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China. Int. J. Remote Sens. 2017, 38, 2954–2972. [Google Scholar] [CrossRef]
- Liu, K.; Shen, X.; Cao, L.; Wang, G.; Cao, F. Estimating forest structural attributes using UAV-LiDAR data in Ginkgo plantations. ISPRS J. Photogramm. Remote Sens. 2018, 146, 465–482. [Google Scholar] [CrossRef]
- Hao, Y.; Widagdo, F.R.A.; Liu, X.; Quan, Y.; Liu, Z.; Dong, L.; Li, F. Estimation and calibration of stem diameter distribution using UAV laser scanning data: A case study for larch (Larix olgensis) forests in Northeast China. Remote Sens. Environ. 2022, 268, 112769. [Google Scholar] [CrossRef]
- Navarro, A.; Young, M.; Allan, B.; Carnell, P.; Macreadie, P.; Ierodiaconou, D. The application of Unmanned Aerial Vehicles (UAVs) to estimate above-ground biomass of mangrove ecosystems. Remote Sens. Environ. 2020, 242, 111747. [Google Scholar] [CrossRef]
- Hao, Y.; Widagdo, F.R.A.; Liu, X.; Quan, Y.; Dong, L.; Li, F. Individual Tree Diameter Estimation in Small-Scale Forest Inventory Using UAV Laser Scanning. Remote Sens. 2021, 13, 24. [Google Scholar] [CrossRef]
- Fu, L.; Duan, G.; Ye, Q.; Meng, X.; Luo, P.; Sharma, R.P.; Sun, H.; Wang, G.; Liu, Q. Prediction of Individual Tree Diameter Using a Nonlinear Mixed-Effects Modeling Approach and Airborne LiDAR Data. Remote Sens. 2020, 12, 1066. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Li, B.; Maltamo, M.; Tokola, T.; Hou, Z. Predicting tree diameter using allometry described by non-parametric locally-estimated copulas from tree dimensions derived from airborne laser scanning. For. Ecol. Manag. 2019, 434, 205–212. [Google Scholar] [CrossRef]
- Pascual, A. Multi-objective forest planning at tree-level combining mixed integer programming and airborne laser scanning. For. Ecol. Manag. 2021, 483, 118714. [Google Scholar] [CrossRef]
- Packalen, P.; Pukkala, T.; Pascual, A. Combining spatial and economic criteria in tree-level harvest planning. For. Ecosyst. 2020, 7. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, W.; Pukkala, T.; Jin, X. Stand delineation based on laser scanning data and simulated annealing. Eur. J. For. Res. 2021, 140, 1065–1080. [Google Scholar] [CrossRef]
- Corte, A.P.D.; Souza, D.V.; Rex, F.E.; Sanquetta, C.R.; Mohan, M.; Silva, C.A.; Zambrano, A.M.A.; Prata, G.; Alves de Almeida, D.R.; Trautenmüller, J.W.; et al. Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes. Comput. Electron. Agric. 2020, 179, 105815. [Google Scholar] [CrossRef]
- Dalla Corte, A.P.; Rex, F.E.; Almeida, D.R.A.d.; Sanquetta, C.R.; Silva, C.A.; Moura, M.M.; Wilkinson, B.; Zambrano, A.M.A.; da Cunha Neto, E.M.; Veras, H.F.P.; et al. Measuring Individual Tree Diameter and Height Using GatorEye High-Density UAV-Lidar in an Integrated Crop-Livestock-Forest System. Remote Sens. 2020, 12, 863. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Pukkala, T.; Li, F.; Jin, X. Developing distance-dependent growth models from irregularly measured sample plot data—A case for Larix olgensis in Northeast China. For. Ecol. Manag. 2021, 486, 118965. [Google Scholar] [CrossRef]
- Osborne, J.; Waters, E. Four Assumptions of Multiple Regression That Researchers Should Always Test. Pract. Assess. Res. Eval. 2002, 8, 1. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative Analysis of Modeling Algorithms for Forest Aboveground Biomass Estimation in a Subtropical Region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Duzan, H.; Shariff, N.S.B.M. Ridge Regression for Solving the Multicollinearity Problem: Review of Methods and Models. J. Appl. Sci. 2015, 15, 392–404. [Google Scholar] [CrossRef] [Green Version]
- Pascual, A.; Bravo, F.; Ordoñez, C. Assessing the robustness of variable selection methods when accounting for co-registration errors in the estimation of forest biophysical and ecological attributes. Ecol. Modell. 2019, 403, 11–19. [Google Scholar] [CrossRef]
- Brede, B.; Calders, K.; Lau, A.; Raumonen, P.; Bartholomeus, H.M.; Herold, M.; Kooistra, L. Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR. Remote Sens. Environ. 2019, 233, 111355. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Vastaranta, M.; Holopainen, M.; Viitala, R. Predicting individual tree attributes from airborne laser point clouds based on the random forests technique. ISPRS J. Photogramm. Remote Sens. 2011, 66, 28–37. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Peng, W.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Guo, Q.; Li, W.; Yu, H.; Alvarez, O. Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods. Photogramm. Eng. Remote Sens. 2010, 76, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Baldocchi, D.; Gong, P.; Kelly, M. Isolating Individual Trees in a Savanna Woodland using Small Footprint LIDAR data. Photogramm. Eng. Remote Sens. 2006, 72, 923–932. [Google Scholar] [CrossRef] [Green Version]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Jiang, H.; Huang, K.; Zhang, R. Field Support Vector Regression. In Proceedings of the Neural Information Processing; Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 699–708. [Google Scholar]
- de Almeida, C.T.; Galvão, L.S.; Aragão, L.E.D.O.C.E.; Ometto, J.P.H.B.; Jacon, A.D.; de Souza Pereira, F.R.; Sato, L.Y.; Lopes, A.P.; de Alencastro Graça, P.M.L.; de Jesus Silva, C.V.; et al. Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 2019, 232, 111323. [Google Scholar] [CrossRef]
- Monnet, J.-M.; Chanussot, J.; Berger, F. Support Vector Regression for the Estimation of Forest Stand Parameters Using Airborne Laser Scanning. IEEE Geosci. Remote Sens. Lett. 2011, 8, 580–584. [Google Scholar] [CrossRef] [Green Version]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Næsset, E.; Gobakken, T. Optimizing the k-Nearest Neighbors technique for estimating forest aboveground biomass using airborne laser scanning data. Remote Sens. Environ. 2015, 163, 13–22. [Google Scholar] [CrossRef]
- Morera, A.; Martínez de Aragón, J.; Bonet, J.A.; Liang, J.; de-Miguel, S. Performance of statistical and machine learning-based methods for predicting biogeographical patterns of fungal productivity in forest ecosystems. For. Ecosyst. 2021, 8, 21. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, L.; She, G. Estimating Forest Structural Parameters Using Canopy Metrics Derived from Airborne LiDAR Data in Subtropical Forests. Remote Sens. 2017, 9, 940. [Google Scholar] [CrossRef] [Green Version]
- Fehrmann, L.; Lehtonen, A.; Kleinn, C.; Tomppo, E. Comparison of linear and mixed-effect regression models and a k-nearest neighbour approach for estimation of single-tree biomass. Can. J. For. Res. 2008, 38, 1–9. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Q.; Luo, P.; Ye, Q.; Duan, G.; Sharma, R.P.; Zhang, H.; Wang, G.; Fu, L. Prediction of Individual Tree Diameter and Height to Crown Base Using Nonlinear Simultaneous Regression and Airborne LiDAR Data. Remote Sens. 2020, 12, 2238. [Google Scholar] [CrossRef]
- Wang, Y.; Hyyppä, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C.; Ferraz, A.; et al. International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5011–5027. [Google Scholar] [CrossRef] [Green Version]
- Pascual, A. Building Pareto Frontiers under tree-level forest planning using airborne laser scanning, growth models and spatial optimization. For. Policy Econ. 2021, 128, 102475. [Google Scholar] [CrossRef]
- Fransson, P.; Franklin, O.; Lindroos, O.; Nilsson, U.; Brännström, Å. A simulation-based approach to a near-optimal thinning strategy: Allowing harvesting times to be determined for individual trees. Can. J. For. Res. 2020, 50, 320–331. [Google Scholar] [CrossRef]
- Vastaranta, M.; Kankare, V.; Holopainen, M.; Yu, X.; Hyyppä, J.; Hyyppä, H. Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 73–79. [Google Scholar] [CrossRef]
Variable | Mean | Std Dev | Minimum | Maximum |
---|---|---|---|---|
DBH (cm) | 17.39 | 7.80 | 5.00 | 38.80 |
Total height (m) | 15.61 | 6.69 | 5.20 | 32.70 |
Variable | Value |
---|---|
Laser pulse repetition rate | 380 kHz |
Accuracy | 5 mm |
Maximum echo number | 5 |
Maximum scan speed | 200 scans/second |
Echo signal intensity | 16 bit |
Laser wavelength | 1550 nm |
Beam divergence | 0.5 mrad |
Abbreviation | Description |
---|---|
Tree level metrics | |
H5T, H10T, H20T, H25T, H30T, H40T, H50T, H60T, H75T, H80T, H90T, H95T, H99T | Percentiles of the height distributions of the echoes within the perimeters of individual trees (5th, 10th, …, 95th, and 99th). |
HmaxT, HminT, HmeanT, HmedT | Maximum, minimum, mean, and medium of the echo heights within the perimeters of individual trees. |
HvarT, HstdT, HcvT, HskeT, HkurT | Variance, standard deviation, coefficient of variation, skewness, and kurtosis of the echo heights within the perimeters of individual trees. |
HIQT | H75T–H25T |
AIH5T, AIH10T, AIH20T, AIH25T, AIH30T, AIH40T, AIH50T, AIH60T, AIH75T, AIH80T, AIH90T, AIH95T, AIH99T | Percentiles of accumulated echo heights within individual tree perimeters (5th, 10th, …, 95th, and 99th). |
RCHmax, RCHmean | The ratios of a target tree’s height to the maximum and mean tree height of the stand. |
D10T, D20T, D30T, D40T, D50T,D60T, D70T, D80T, D90T | The proportion of points above the quantiles (10th, 20th, …, 80th, and 90th) of the total number of points within the perimeters of a tree. |
CPA | The projected area of the tree crown. |
Stand level metrics | |
H5S, H10S, H20S, H25S, H30S, H40S, H50S, H60S, H75S, H80S, H90S, H95S, H99S | Percentiles of the echo height distributions (5th, 10th, …, 95th, and 99th) within a stand. |
HmaxS, HminS, HmeanS, HmedS | Maximum, minimum, mean and medium values of the echo heights within a stand. |
HvarS, HstdS, HcvS, HskeS, HkurS | Variance, standard deviation, coefficient of variation, skewness, and kurtosis of the echo heights within a stand. |
HIQS | H75S–H25S |
AIH5S, AIH10S, AIH20S, AIH25S, AIH30S, AIH40S, AIH50S, AIH60S, AIH75S, AIH80S, AIH90S, AIH95S, AIH99S | Percentiles of accumulated echo heights (5th, 10th, …, 95th, and 99th) within a stand. |
D10S, D20S, D30S, D40S, D50S, D60S, D70S, D80S, D90S | The proportion of points above the quantiles (10th, 20th, …, 80th, and 90th) of the total number of points within a stand. |
SD | Stem density measured from individual tree segmentation results within a stand. |
Slope | The average slope of the stand (degrees). |
Aspect | The aspect of the stand, calculated as the azimuth of an inclined plane (degrees). |
Model | Hyper-Parameter Values |
---|---|
Linear Model (LM) | - |
Linear Model with Ridge Regularization (LMR) | λ = 0.0001, 0.003, 0.001, 0.003, 0.01, 0.03, 0.1 |
Random Forest (RF) | ntree = 50, 100, 150,…, 300 mtry = n × m (n = 0.1, 0.2, 0.3,…, 0.9) |
Support Vector Regression (SVR) | C = 1, 3, 6, 10, 30, 60, 100 r = 0.0001, 0.003, 0.001, 0.003, 0.01, 0.03, 0.1 |
K-Nearest Neighbors (KNN) | k = 1, 2, 3,…, 10 |
Artificial Neural Networks (ANN) | activation function: {logistic, tanh, relu} size = 1, 2, 3,…, 15 η = 0.1, 0.2, 0.3, …, 1 |
Model | Hyper-Parameter Values | Statistics | 10-Fold Cross-Validation | ||
---|---|---|---|---|---|
R2 | RMSE (cm) | rRMSE (%) | |||
LM | - | Mean | 0.82 | 2.56 | 15.59 |
Std Dev | 0.01 | 0.15 | 0.93 | ||
LMR | λ = 0.003 | Mean | 0.83 | 2.09 | 14.15 |
Std Dev | 0.01 | 0.16 | 1.00 | ||
SVR | C = 30 r = 0.001 | Mean | 0.84 | 1.98 | 14.11 |
Std Dev | 0.01 | 0.17 | 1.02 | ||
RF | ntree = 100 mtry = 6 | Mean | 0.81 | 2.36 | 14.43 |
Std Dev | 0.01 | 0.12 | 0.09 | ||
KNN | k = 9 | Mean | 0.83 | 2.09 | 12.75 |
Std Dev | 0.02 | 0.16 | 0.99 | ||
ANN | size = 10 ƞ = 0.8 activation function = logistic | Mean | 0.84 | 1.92 | 11.75 |
Std Dev | 0.02 | 0.16 | 1.00 |
Models | Std Dev | Minimum | Maximum | Range | RMSE | rRMSE | BIAS |
---|---|---|---|---|---|---|---|
LM | 7.66 | −0.84 | 38.91 | 39.76 | 2.68 | 15.76 | −0.01 |
LMR | 7.70 | −1.38 | 38.90 | 39.26 | 2.25 | 13.23 | −0.04 |
SVR | 7.67 | 3.82 | 36.37 | 32.54 | 2.22 | 13.06 | 0.02 |
RF | 7.36 | 6.91 | 28.68 | 21.77 | 2.53 | 14.88 | 0.02 |
KNN | 7.54 | 5.53 | 34.51 | 28.97 | 2.19 | 12.80 | −0.06 |
ANN | 7.71 | 5.20 | 32.57 | 27.37 | 2.11 | 12.41 | −0.01 |
Field-measured DBH | 7.98 | 4.50 | 37.60 | 33.10 | - | - | - |
Model | Statistics | DBH Ranges (cm) | ||
---|---|---|---|---|
<12 | 12–23 | >23 | ||
LM | BIAS | −0.44 | −0.50 | 1.28 |
RMSE | 2.28 | 2.28 | 2.75 | |
rRMSE | 27.42 | 12.62 | 10.22 | |
LMR | BIAS | −0.37 | −0.55 | 1.18 |
RMSE | 2.22 | 2.24 | 2.54 | |
rRMSE | 26.32 | 12.39 | 9.46 | |
SVR | BIAS | −0.37 | −0.53 | 1.05 |
RMSE | 2.12 | 2.18 | 2.48 | |
rRMSE | 25.59 | 12.01 | 9.18 | |
RF | BIAS | −0.63 | −0.48 | 1.59 |
RMSE | 2.41 | 2.37 | 2.94 | |
rRMSE | 28.88 | 13.09 | 10.94 | |
KNN | BIAS | −0.39 | −0.74 | 1.19 |
RMSE | 1.88 | 2.28 | 2.62 | |
rRMSE | 22.59 | 12.57 | 9.74 | |
ANN | BIAS | −0.01 | −0.48 | 1.39 |
RMSE | 1.92 | 2.19 | 2.64 | |
rRMSE | 23.18 | 12.11 | 9.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Jin, X.; Pukkala, T.; Li, F. Predicting Individual Tree Diameter of Larch (Larix olgensis) from UAV-LiDAR Data Using Six Different Algorithms. Remote Sens. 2022, 14, 1125. https://doi.org/10.3390/rs14051125
Sun Y, Jin X, Pukkala T, Li F. Predicting Individual Tree Diameter of Larch (Larix olgensis) from UAV-LiDAR Data Using Six Different Algorithms. Remote Sensing. 2022; 14(5):1125. https://doi.org/10.3390/rs14051125
Chicago/Turabian StyleSun, Yusen, Xingji Jin, Timo Pukkala, and Fengri Li. 2022. "Predicting Individual Tree Diameter of Larch (Larix olgensis) from UAV-LiDAR Data Using Six Different Algorithms" Remote Sensing 14, no. 5: 1125. https://doi.org/10.3390/rs14051125
APA StyleSun, Y., Jin, X., Pukkala, T., & Li, F. (2022). Predicting Individual Tree Diameter of Larch (Larix olgensis) from UAV-LiDAR Data Using Six Different Algorithms. Remote Sensing, 14(5), 1125. https://doi.org/10.3390/rs14051125