Revealing the Structure and Composition of the Restored Vegetation Cover in Semi-Arid Mine Dumps Based on LiDAR and Hyperspectral Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Method
2.2.1. Data
2.2.2. Overall Technical Process
2.2.3. Extraction of Feature Factors
- Height
- 2.
- Intensity
- 3.
- Echo
- 4.
- Spectrum
- 5.
- Vegetation index
- 6.
- Texture
- 7.
- Single tree segmentation
2.2.4. Decision Tree Classifier
2.2.5. Random Forest Classifier
2.3. Accuracy Verification and Comparison
2.3.1. Accuracy Verification
2.3.2. Accuracy Comparison
3. Results
3.1. Feature Factor Library
3.1.1. Height
3.1.2. Intensity
3.1.3. Echo
3.1.4. Spectrum
3.1.5. Vegetation Index
3.1.6. Texture
3.2. Decision Tree Classifier
3.3. Random Forest Classifier
3.4. Classification Results
3.5. Accuracy
3.5.1. Accuracy of Other Classification Methods
3.5.2. Accuracy of the Hierarchical Classification Method
4. Discussion
4.1. Performance of Different Classification Methods
4.2. Spatial Analysis of Vegetation Species Composition Types
4.3. Research Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.J.; Tang, J.J.; Zhang, Y.Y.; Zhang, S.L.; Zhou, Y.L.; Hou, H.P.; Liu, R. Reforestation improves vegetation coverage and biomass, but not spatial structure, on semi-arid mine dumps. Ecol. Eng. 2022, 175, 106508. [Google Scholar] [CrossRef]
- Hooper, M.J.; Glomb, S.J.; Harper, D.D.; Hoelzle, T.B.; McIntosh, L.M.; Mulligan, D.R. Integrated risk and recovery monitoring of ecosystem restorations on contaminated sites. Integr. Environ. Assess. Manag. 2015, 12, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Vora, R.S. Developing programs to monitor ecosystem health and effectiveness of management practices on Lakes States National Forests, USA. Biol. Conserv. 1997, 80, 289–302. [Google Scholar] [CrossRef]
- Willis, K.S. Remote sensing change detection for ecological monitoring in United States protected areas. Biol. Conserv. 2015, 182, 233–242. [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Zhao, C.J. Research and application progress of agricultural remote sensing. J. Agric. Mach. 2014, 45, 277–293. [Google Scholar]
- Yin, F. Experimental Research on Rape Classification Model Based on Measured Spectrum; Nanjing University of Information Science and Technology: Nanjing, China, 2013. [Google Scholar]
- Xu, Q.Y.; Yang, G.J.; Long, H.L.; Chong, W.C.; Li, X.C.; Huang, D.C. Crop planting classification based on MODISNDVI time series data for many years. J. Agric. Eng. 2014, 30, 134–144. [Google Scholar]
- Yu, J.W.; Cheng, Z.Q.; Zhang, J.S.; Wang, H.S.; Jiang, Y.L.; Yang, S.Y. Classification of agricultural and forestry vegetation based on hyperspectral information. Spectrosc. Spectr. Anal. 2018, 38, 3890–3896. [Google Scholar]
- Chen, L.P.; Sun, Y.J. Classification and comparison of object-oriented remote sensing images in forest areas based on different decision trees. Acta Appl. Ecol. 2018, 29, 3995–4003. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Z.M.; Wu, Z.J. Classification and extraction of crops based on multi-source remote sensing images. J. Shandong Agric. Univ. (Nat. Sci. Ed.) 2021, 52, 615–618. [Google Scholar]
- Wang, X.F. Study on forest land classification based on random forest algorithm. For. Sci. Technol. 2021, 46, 34–37. [Google Scholar] [CrossRef]
- Li, X.; Liu, K.; Zhu, Y.H.; Meng, L.; Yu, C.X.; Cao, J.J. Study on mangrove species classification based on ZY-3 image. Remote Sens. Technol. Appl. 2018, 33, 360–369. [Google Scholar]
- Hill, R.A.; Wilson, A.K.; George, M.; Hinsley, S.A. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data. Appl. Veg. Sci. 2010, 13, 86–99. [Google Scholar] [CrossRef]
- Madonsela, S.; Cho, M.A.; Mathieu, R.; Mutanga, O.; Ramoelo, A.; Kaszta, Z.; Van, D.K.R.; Wolff, E. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Rapinel, S.; Hubert-Moy, L.; Clement, B. Combined Use of LiDAR Data and Multispectral Earth Observation Imagery for Wet-land Habitat Mapping. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 56–64. [Google Scholar] [CrossRef]
- Nie, S.; Wang, C.; Zeng, H.; Xi, X.; Li, G. Above-Ground Biomass Estimation Using Airborne Discrete-Return and Full-Waveform LiDAR Data in a Coniferous Forest. Ecol. Indic. 2017, 78, 221–228. [Google Scholar] [CrossRef]
- Wang, N.; Penson, Y.; Li, M.S. Texture Characteristics of High Resolution Remote Sensing Data Based on Tree Species Classification Analysis. J. Zhejiang AF Univ. 2012, 29, 210–217. [Google Scholar]
- Kim, S.; Mcgaughey, R.J.; Andersen, H.E.; Schreuder, G. Tree species differentiation using intensity data derived from leaf-on and leaf-off airborne laser scanner data. Remote Sens. Environ. 2009, 113, 1575–1586. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Zortea, M.; Zanotta, D.C.; Shimabukuro, Y.E.; Desouza, C.R. Mapping tree species in tropical seasonal semi-deciduous forests with hyperspectral and multispectral data. Remote Sens. Environ. 2016, 179, 66–78. [Google Scholar] [CrossRef]
- Alonzo, M.; Bookhagen, B.; Roberts, D.A. Urban tree species mapping using hyperspectral and LiDAR data fusion. Remote Sens. Environ. 2014, 148, 70–83. [Google Scholar] [CrossRef]
- Tao, J.Y.; Liu, L.J.; Pang, Y.; Li, D.Q.; Feng, Y.Y.; Wang, X.; Ding, Y.L.; Peng, Q.; Xiao, W.H. Automatic identification of tree species based on airborne LiDAR and hyperspectral data. J. Zhejiang AF Univ. 2018, 35, 314–323. [Google Scholar]
- Zhao, Y.J.; Zeng, Y.; Zheng, Z.J.; Dong, W.X.; Zhao, D.; Wu, B.F.; Zhao, Q.J. Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China. Remote Sens. Environ. 2018, 213, 104–114. [Google Scholar] [CrossRef]
- Yu, L.K.; Yu, Y.; Liu, X.Y.; Du, Y.C.; Zhang, H. Tree species classification with hyperspectral image. J. Northeast. For. Univ. 2016, 44, 57. [Google Scholar]
- Cao, B.X.; Huang, J.F. Comparison and application of LiDAR point cloud data processing software Research. Mine Surv. 2019, 47, 109–112. [Google Scholar]
- Wei, D.D.; Zhao, S.H.; Xiao, C.C.; Cui, H.; Liu, S.H. Estimation method of leaf area index from hyperspectral data of Ziyuan-1 02D satellite. Spacecr. Eng. 2020, 29, 169–173. [Google Scholar]
- Li, K.; Chen, Y.Z.; Xu, Z.H.; Huang, X.Y.; Hu, X.Y.; Wang, X.Q. Hyperspectral estimation method of chlorophyll content in Phyllostachys pubescens under pest stress. Spectrosc. Spectr. Anal. 2020, 40, 2578–2583. [Google Scholar]
- Yu, M.; Wei, L.F.; Yin, F.; Li, D.D.; Huang, Q.B. Fine classification of crops from hyperspectral remote sensing images based on conditional random fields. China Agric. Inf. 2018, 30, 74–82. [Google Scholar]
- Liu, L.; Jiang, X.G.; Li, X.B.; Tang, L.L. Study on classification of agricultural crop by hyperspectral remote sensing data. J. Grad. Sch. Chin. Acad. Sci. 2006, 23, 484–488. [Google Scholar]
- Lan, Y.B.; Zhu, Z.H.; Deng, X.L.; Lian, B.Z.; Huang, J.Y.; Huang, Z.X.; Hu, J. Monitoring and classification of citrus Huanglongbing plants based on UAV hyperspectral remote sensing. Agric. Eng. Newsp. 2019, 35, 92–100. [Google Scholar]
- Liang, H.; Liu, H.H.; He, J. Application of rice photosynthetic performance monitoring system based on UAV hyperspectral. Agric. Mech. Res. 2020, 42, 214–218. [Google Scholar]
- Tao, H.L.; Xu, L.J.; Feng, H.K.; Yang, G.J.; Miao, M.K.; Lin, B. Winter wheat growth monitoring based on UAV hyperspectral growth index. J. Agric. Mach. 2020, 51, 180–191. [Google Scholar]
- Huang, Y.; Chen, X.H.; Liu, Y.L.; Huang, Z.H.; Sun, M.; Su, Y.C. Fast identification of ground objects based on different heights of unmanned aerial vehicle ( UAV) hyperspectrum. Anhui Agric. Sci. 2018, 46, 170–173. [Google Scholar]
- Yan, Y.N.; Deng, L.; Liu, X.L. Application of UAV-based multi-angle hyperspectral remote sensing in fine vegetation classification. Remote Sens. 2019, 11, 2753. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.; Lechner, A.M.; Johansen, K.; Ye, B. Object-based classification of semi-arid vegetation to support mine rehabilitation and monitoring. J. Appl. Remote Sens. 2014, 8, 83564. [Google Scholar] [CrossRef]
- Donoghue, D.N.M.; Watt, P.J.; Cox, N.J.; Wilson, J. Remote Sensing of Species Mixtures in Conifer Plantations Using LiDAR Height and Intensity Data. Remote Sens. Environ. 2007, 110, 509–522. [Google Scholar] [CrossRef]
- Pan, S.Y.; Guan, H.Y. Object Classification Using Airborne Multispectral LiDAR Data. Acta Geod. Cartogr. Sin. 2018, 47, 198–207. [Google Scholar]
- Yang, H.Y. Study on Species Classification of Desert Steppe Based on UAV Hyperspectral Remote Sensing; Inner Mongolia Agricultural University: Hohhot, China, 2019. [Google Scholar]
- Barton, C.V.M.; North, P.R.J. Remote sensing of canopy light use efficiency using the photochemical reflectance index model and sensitivity analysis. Remote Sens. Environ. 2001, 264–273. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-Band Model for Noninvasive Estimation of Chlorophyll, Carotenoids, and Anthocyanin Contents in Higher Plant Leaves. Geophys. Res. Lett. 2006, 33, 431–433. [Google Scholar] [CrossRef] [Green Version]
- Maire, G.L.; Fran, O.C.; Dufrêne, E. Towards Universal Broad Leaf Chlorophyll Indices Using Prospect Simulated Database and Hyperspectral Reflectance Measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 100–120. [Google Scholar]
- Huete, A.; Justice, C.; Liu, H. Development of Vegetation and Soil Indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Datt, B. A New Reflectance Index for Remote Sensing of Chlorophyll Content in Higher Plants: Tests using Eucalyptus Leaves. J. Plant Physiol. 1999, 154, 30–36. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Re-flectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships Between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar]
- Driss, H.; John, R.M.; Elizabeth, P.; Pablo, J.Z.T.; Ian, B.S. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 10, 100–120. [Google Scholar]
- Miller, J.R.; Hare, E.W.; Wu, J. Quantitative Characterization of the Vegetation Red Edge Reflectance 1. An Inverted-Gaussian Reflectance Model. Int. J. Remote Sens. 1990, 11, 1755–1773. [Google Scholar] [CrossRef]
- Peuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance Indices Associated with Physiological Changes in Nitrogen—And Wa-ter-Limited Sunflower Leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Rao, N.R.; Garg, P.K.; Ghosh, S.K.; Dadhwal, V.K. Estimation of Leaf Total Chlorophyll and Nitrogen Concentrations Using Hyperspectral Satellite Imagery. J. Agric. Sci. 2008, 146, 65–75. [Google Scholar]
- Thenot, F.; Méthy, M.; Winkel, T. The Photochemical Reflectance Index (PRI) as a Water-stress Index. Int. J. Remote Sens. 2002, 23, 5135–5139. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral Indices for Estimating Photosynthetic Pigment Concentrations: A Test Using Senescent Tree Leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Metternicht, G. Vegetation indices derived from high -resolution airborne videography for precision crop management. Int. J. Remote Sens. 2003, 24, 2855–2877. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C.; Hill, J. Remote Sensing of Forest Biophysical Variables Using HyMap Imaging Spectrometer Data. Remote Sens. Environ. 2005, 95, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Merton, R.; Huntington, J. Early simulation of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS. In Summaries of the Eight JPL Airborne Earth Science Workshop; JPL Publication: Pasadena, CA, USA, 1999; Volume 99, pp. 299–307. [Google Scholar]
- Maccioni, A.; Agati, G.; Mazzinghi, P. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J. Photochem. Photobiol. B Biol. 2001, 61, 52–61. [Google Scholar] [CrossRef]
- Buschman, C.; Nagel, E. In vivo spectroscopy and internal optics of leaves as a basis for remote sensing of vegetation. Int. J. Remote Sens. 1993, 14, 711–722. [Google Scholar] [CrossRef]
- Huete, R.A. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 20, 100–120. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kliest, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel Algorithms for Remote Estimation of Vegetation Fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Zarco-Tejada, P.J.; Miller, J.R.; Noland, T.L.; Mohammed, G.H.; Sampson, P.H. Scaling-up and Model Inversion Methods with Narrowband Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1491–1507. [Google Scholar] [CrossRef] [Green Version]
- Penuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of Plant Water Concentration by the Reflectance Water Index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Marceau, J.; Howaeth, J.; Dubois, M.; Gratton, D.J. Evaluation of the gray-level co-occurrence matrix method for landcover classification using SPOT imagery. IEEE Trans. Geosci. Remote Sens. 1990, 28, 513–518. [Google Scholar] [CrossRef]
- Haralick, R. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Shetty, S.; Gupta, P.K.; Belgiu, M.; Srivastav, S.K. Assessing the Effect of Training Sampling Design on the Performance of Machine Learning Classifiers for Land Cover Mapping Using Multi-Temporal Remote Sensing Data and Google Earth Engine. Remote Sens. 2021, 13, 1433. [Google Scholar] [CrossRef]
- Chen, Y.; Dai, J.F.; Li, J.J. CART- based decision tree classifier using multi-feature of image and its application. Geogr. Geo Inf. Sci. 2008, 24, 33–36. [Google Scholar] [CrossRef]
- Zhang, N.; Wu, Y.; Zhang, Q. Detection of sea ice in sediment laden water using MODIS in the Bohai Sea: A CART decision tree method. Int. J. Remote Sens. 2015, 36, 1661–1674. [Google Scholar] [CrossRef]
- Li, J.L.; Dong, Y.Y.; Shi, Y.; Zhu, Y.N.; Huang, W.J. Remote sensing monitoring of wheat powdery mildew based on random forest model. J. Plant Prot. 2018, 45, 395–396. [Google Scholar]
- Guo, L.; Chehata, N.; Mallet, C.; Boukir, S. Relevance of airborne LiDAR and multispectral image data for urban scene classification using random forests. ISPRS J. Photogramm. Remote Sens. 2011, 66, 56–66. [Google Scholar] [CrossRef]
- Melville, B.; Lucieer, A.; Aryal, J. Classification of lowland native grassland communities using hyperspectral unmanned aircraft system (UAS) imagery in the Tasmanian midlands. Drones 2019, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Dalponte, M.; Ørka, H.O.; Ene, L.T.; Gobakken, T.; Næsset, E. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sens. Environ. 2014, 140, 306–317. [Google Scholar] [CrossRef]
- Immitzer, M.; Atzberger, C.; Koukal, T. Tree species classification with random forest using very high spatial resolution 8-Band WorldView-2 satellite data. Remote Sens. 2012, 4, 2661–2693. [Google Scholar] [CrossRef] [Green Version]
- Mallinis, G.; Koutsias, N.; Tsakiri-Strati, M.; Karteris, M. Object-based classification using Quickbird imagery for delineating forest vegetation polygons in a Mediterranean test site. ISPRS J. Photogramm. Remote Sens. 2008, 63, 237–250. [Google Scholar] [CrossRef]
- Naidoo, L.; Cho, M.A.; Mathieu, R.; Asner, G. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment. ISPRS J. Photogramm. Remote Sens. 2012, 69, 167–179. [Google Scholar] [CrossRef]
- Gu, X.T. Land Use/Land Cover in Huangshui Basin Based on Machine Learning Classification Research; Qinghai Normal University: Xining, China, 2018. [Google Scholar]
- Chen, Y.P.; Luo, M.; Peng, J. Random Forest Algorithm Based on Grid Search Land use classification in industrial and mining reclamation areas. J. Agric. Eng. 2017, 33, 250–257. [Google Scholar]
- Yang, X.H.; Rochdi, N.; Zhang, J.K.; Banting, J.; Rolfson, D.; King, C.; Staenz, K.; Patterson, S.; Purdy, B. Mapping tree species in a boreal forest area using RapidEye and LiDAR data. In Proceedings of the International Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 69–71. [Google Scholar]
- Zhao, Q.Z.; Jiang, P.; Wang, X.W.; Zhang, L.H.; Zhang, J.X. Classification of Protection Forest Tree Species Based on UAV Hyperspectral Data. Trans. Chin. Soc. Agric. Mach. 2021, 52, 190–199. [Google Scholar]
- Yang, H.Y.; Du, J.M.; Ruan, P.Y.; Zhu, X.B.; Liu, H.; Wang, Y. Desert Steppe Vegetation Classification Method Based on UAV Remote Sensing and Random Forest. Trans. Chin. Soc. Agric. Mach. 2021, 52, 186–194. [Google Scholar]
- Li, H.K.; Wang, L.J.; Xiao, S.S. Random forest classification of land use in southern hills and mountains based on multi-source data. Trans. Chin. Soc. Agric. Eng. 2021, 37, 244–251. [Google Scholar]
- Kong, J.X.; Zhang, Z.C.; Zhang, J. Classification and identification of vegetation species based on multi-source remote sensing data: Research progress and prospect. Biodivers. Sci. 2019, 27, 796–812. [Google Scholar]
- Ceamanos, X.; Waske, B.; Benediktsson, J.A.; Chanussot, J.; Fauvel, M.; Sveinsson, J.R. A classifier ensemble based on fusion of support vector machines for classifying hyperspectral data. Int. J. Image Data Fusion 2010, 1, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.S.; Weng, Q.H. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Stereńczak, K.; Modzelewska, A.; Lefsky, M.; Waser, L.T.; Straub, C.; Ghosh, A. Review of studies on tree species classification from remotely sensed data. Remote Sens. Environ. 2016, 186, 64–87. [Google Scholar] [CrossRef]
- Seidel, D.; Annighöfer, P.; Ehbrecht, M.; Magdon, P.; Wöllauer, S.; Ammer, C. Deriving Stand Structural Complexity from Airborne Laser Scanning Data—What Does It Tell Us about a Forest? Remote Sens. 2020, 12, 1854. [Google Scholar] [CrossRef]
- Xu, J.Z.; Shan, J.; Wang, G. Hierarchical modeling of street trees using mobile laser scanning. Remote Sens. 2020, 12, 2321. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Y.; Xu, W.; Liu, Y.; Sun, J.; Wang, L. Morphological Characteristics of Tidal Creeks in the Central Coastal Region of Jiangsu, China, Using LiDAR. Remote Sens. 2019, 11, 2426. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.Y.; Xie, Z.X. Object-based Vegetation Mapping in the Kissimmee River Watershed Using HyMap Data and Machine Learning Techniques. Wetlands 2013, 33, 233–244. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Strager, M.P.; Conley, J.F.; Sharp, A.L. Assessing Machine-learning Algorithms and Image-and LiDAR-derived Variables for GEOBIA Classification of Mining and Mine Reclamation. Int. J. Remote Sens. 2015, 36, 954–978. [Google Scholar] [CrossRef]
- Schneider, F.D.; Morsdorf, F.; Schmid, B.; Petchey, O.L.; Hueni, A.; Schimel, D.S.; Schaepman, M.E. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 2017, 8, 1441. [Google Scholar] [CrossRef] [Green Version]
Vegetation Index [40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64] | Calculation Formula 1 |
---|---|
CIgreen [40] | |
CIred_edge [40] | |
DD [41] | |
DVI [42] | |
EVI [43] | |
GM [40] | |
GNDVI [40] | |
LCI [44] | |
MCARI [45] | |
mND705 [46] | |
mSR705 [41] | |
MSAVI [47] | |
MTVI1 [48] | |
NDI [40] | |
NDVI [49] | |
NPCI [50] | |
PBI [51] | |
PRI [52] | |
PSNDa [53] | |
PSNDb [53] | |
PVR [54] | |
RVI [55] | |
RVSI [56] | |
R680 [57] | |
R800 [58] | |
SAVI [59] | |
SPI [60] | |
SRPI [50] | |
TVI [61] | |
VARI [62] | |
VOGa [63] | |
VOG2 [63] | |
WI [64] |
Texture Index | Calculation Formula |
---|---|
Mean [65] | |
Variance | |
Entropy | |
Homogeneity | |
Contrast | |
Dissimilarity | |
Second Moment [66] | |
Correlation |
Vegetation Species Composition | Maximum | Minimum | Median | Std Dev |
---|---|---|---|---|
Populus spp. | 7.806 | 2.918 | 5.292 | 1.280 |
Pinus tabuliformis | 3.274 | 1.111 | 2.267 | 0.670 |
Hippophae sp. (arbor) | 8.432 | 3.066 | 5.883 | 1.404 |
Robinia pseudoacacia | 4.762 | 2.213 | 3.071 | 0.792 |
Amorpha fruticosa | 2.180 | 1.431 | 1.781 | 0.243 |
Caragana microphylla + Hippophae sp. (shrub) | 1.809 | 0.872 | 1.425 | 0.255 |
herbs | 0.586 | 0.062 | 0.221 | 0.128 |
bare land | 0.390 | 0.056 | 0.123 | 0.078 |
MSAVI | TVI | SPI | GM | RVI | HP95 | Accuracy | |
---|---|---|---|---|---|---|---|
Bare land | <0.71 | <15 | >1.25 | <2.18 | <3.59 | <0.35 | 92.68% |
Herbs | <0.85 |
LiDAR | Spectral | Vegetation Index | Texture Index | |
---|---|---|---|---|
RF accuracy rank | 0.70 | 0.45 | 0.60 | 0.70 |
1 | MaxH | 950 nm | R800 | B1-Correlation-2 |
2 | MinH | 918 nm | R680 | B1-Mean-2 |
3 | SDH | 946 nm | EVI | B1-Mean-1 |
4 | MedH | 934 nm | MSAVI | B2-Correlation-2 |
5 | HP95 | 914 nm | VARIred_dege | B2-Mean-2 |
6 | CVH | 882 nm | PVR | B1-Variance-1 |
7 | MinI | 938 nm | TVI | B2-Mean-1 |
8 | RMSH | 834 nm | CHIred_dege | B3-Mean-1 |
9 | Return1/2 | 942 nm | NDVI | B3-Mean-2 |
10 | Return1 | 878 nm | PSDa | B2-Contrast-2 |
Classification Method | Overall User Accuracy | Kappa Coefficient |
---|---|---|
IsoData | 44.0382% | 0.1475 |
maximum likelihood | 64.7809% | 0.5870 |
support vector machine | 73.4364% | 0.6858 |
direct random forest | 76.6830% | 0.7233 |
hierarchical classification | 87.4488% | 0.7874 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Liang, J.; Yang, Y.; Zhang, S.; Hou, H.; Zhu, X. Revealing the Structure and Composition of the Restored Vegetation Cover in Semi-Arid Mine Dumps Based on LiDAR and Hyperspectral Images. Remote Sens. 2022, 14, 978. https://doi.org/10.3390/rs14040978
Tang J, Liang J, Yang Y, Zhang S, Hou H, Zhu X. Revealing the Structure and Composition of the Restored Vegetation Cover in Semi-Arid Mine Dumps Based on LiDAR and Hyperspectral Images. Remote Sensing. 2022; 14(4):978. https://doi.org/10.3390/rs14040978
Chicago/Turabian StyleTang, Jiajia, Jie Liang, Yongjun Yang, Shaoliang Zhang, Huping Hou, and Xiaoxiao Zhu. 2022. "Revealing the Structure and Composition of the Restored Vegetation Cover in Semi-Arid Mine Dumps Based on LiDAR and Hyperspectral Images" Remote Sensing 14, no. 4: 978. https://doi.org/10.3390/rs14040978
APA StyleTang, J., Liang, J., Yang, Y., Zhang, S., Hou, H., & Zhu, X. (2022). Revealing the Structure and Composition of the Restored Vegetation Cover in Semi-Arid Mine Dumps Based on LiDAR and Hyperspectral Images. Remote Sensing, 14(4), 978. https://doi.org/10.3390/rs14040978